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1. Introduction 

“We still share genes around, and the resemblance of the enzymes of grasses to those of 
whales is a family resemblance” (Lewis Thomas, The lives of a cell, 1974). 

Gene transfer technology is an invaluable research tool to study gene function and its 
regulation. In vitro transfer of exogenous nucleic acids into mammalian cells has been of 
pivotal importance for the characterization of gene functions (Hampton & Kinnaird, 2010). 
Likewise, in vivo transfer of functionally active foreign genes into target mammalian somatic 
tissues or organs has played a critical role in the development of effective gene therapy 
strategies (Yang, 1992) that has escalated into clinical application for the therapeutic 
treatment of inherited and acquired diseases (Mountain, 2000). In addition, the genetic 
engineering of model organisms became possible (Niemann & Kues, 2003). Most of the gene 
transfer research has been conducted on several non-reproductive topics including blood 
diseases (Nienhuis, 2008), neurological dysfunctions (Manfredsson & Mandel, 2010), cancer 
(Pei et al., 2010), lung diseases (Geiger et al., 2010), bone healing (Evans, 2010), skin diseases 
(Long et al., 2009) and heart failure (Poller et al., 2010). To a lesser extent gene transfer 
research in gynecological diseases (Raki et al., 2006; Hassan et al., 2009) and reproductive 
medicine (Stribley et al., 2002; Daftary & Taylor, 2003; Yoshimura et al., 2010) has been 
undertaken using the mouse as model species. Although the mouse model possesses several 
advantages (e.g. short generation interval, large litter size), some large animals (e.g. non-
human primates, dogs, pigs, sheep, cattle and horses) are considered relevant model species 
in biomedical research. For instance, pig and sheep species have been used as models for 
cardiovascular disease (Ishii et al., 2006), wound repair (Graham et al., 2000), respiratory 
disease (Scheerlinck et al., 2008), cancer (Du et al., 2007), diabetes (Dyson et al., 2006), 
ophthalmological disorders (Klassen et al., 2008) and neurological dysfunctions (Kragh et 
al., 2009). The physiology, organ size, genome organization, life span and pathology of farm 
animal species reflect the human situation much better than rodent models (Casal & 
Haskins 2006; Habermann et al., 2007; Jacobsen et al., 2010; Muschler et al., 2010).   
Implementation of in vivo gene transfer technology in relevant large animal models is 
pivotal to elucidate molecular pathways involved in reproductive processes such as ovarian 
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follicular development, fertilization, and early embryo development. This research will 
allow the generation of safer and more efficient strategies in human reproductive medicine 
for infertility treatment and contraception.  
A large animal model for gene transfer studies in reproduction should resemble human 
reproductive features as close as possible. In this regard, the bovine model is increasingly 
accepted as an alternative model species to generate conceptual models of relevance for 
human reproduction (Adams & Pierson, 1995; Ménézo & Hérubel, 2002; Baumann et al., 
2007; Velazquez, 2008). Both species are monovulatory and displayed similarities regarding 
ovarian folliculogenesis, gene expression profile during early embryogenesis, and gestation 
length period (Campbell et al., 2003; Adjaye et al., 2007; Mihm & Evans, 2008; Kues et al., 
2008; Xie et al., 2010). Furthermore, several gynaecological procedures are performed 
virtually in the same fashion as in women (Velazquez et al., 2009b). The aim of this chapter 
is to highlight the methods than could potentially be applied for in vivo gene delivering in 
the reproductive tract of female bovine species in order to address topics of reproductive 
relevance for both humans and cattle.  

2. Basics of gene transfer technology 

2.1 Gene transfer 
Broadly speaking, gene transfer technology involves the transfer of exogenous nucleic acids 
(deoxyribonucleic acid [DNA] or ribonucleic acid [RNA]) into target cells either to produce a 
biologically active protein or to inhibit protein synthesis. The classic concept of gene transfer 
involves the insertion of DNA encoding the desire gene as complementary DNA (cDNA) 
into the nucleus of target cells, followed by transcription into messenger RNA, which is then 
exported to the cytoplasm and translated into its encoding protein (Grigsby & Leong, 2010). 
The introduced cDNA may restore a lost gene function, interfere with gene’s function or 
initiate a new function (Stribley et al., 2002). However, progress in gene transfer technology 
now allows the deliver of large fragments of genomic DNA containing the whole locus of 
the desired gene (Lufino et al., 2008). Furthermore, with the increasing understanding of the 
non-coding DNA functions the use of non-coding regulatory RNAs is becoming an 
important tool for gene transfer technology (Poller et al., 2010). Several RNA-based 
technologies have been used to down-regulate gene expression in loss-of-function studies 
including small interfering RNA (siRNA), short hairpin RNA (shRNA) and micro RNA 
(miRNA) (Guo et al., 2010; Khurana et al., 2010; Poller et al., 2010). Although RNA 
interference (RNAi) technology (via siRNAs and shRNAs) is only used for gene silencing, 
miRNA interventions can also be applied for up-regulation of protein expression (Poller et 
al., 2010). Gene transfer can be targeted to either somatic (somatic gene transfer) or germ-
line (i.e. oocyte, spermatozoa, and preimplantation embryos) cells (Stribley et al., 2002).  

2.2 Gene therapy 
Gene transfer studies using in vitro cellular assays have been critical to unravel basic 
features of gene function (Hampton & Kinnaird, 2010). However, gene transfer technology 
has been put forward for clinical use as a therapeutic tool (i.e. gene therapy) (Mountain, 
2000). Gene transfer for therapeutic purposes can be aimed at correcting a genetic defect in 
target cells (i.e. correcting gene therapy) or to destroy target cells using a cytotoxic pathway 
(i.e. cytotoxic gene therapy) (Stribley et al., 2002). Gene therapy can be carried out either ex 
vivo or in vivo (Yang, 1992; Stribley et al., 2002; Gardlík et al., 2005). The ex vivo approach 
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involves the in vitro transfer of exogenous genetic material into cells followed by the in vivo 
delivery of the genetically modified cell into the target tissue (Yang, 1992; Stribley et al., 
2002; Gardlík et al., 2005). In vivo gene therapy makes reference to the direct transfer of 
nucleic acids into target cells (Yang, 1992; Stribley et al., 2002; Gardlík et al., 2005).  

2.3 In vivo gene delivery 
The delivery of nucleic acids to the nuclei of target cells requires the use of carrier vehicles 
called vectors. After systemic or topical administration, the vector carrying the transgene 
has to cross the plasma membrane and move through the cytosol before delivering the 
transgene into the nucleus target cell (Ziello et al., 2010).  In order to achieve efficient gene 
transfer the vector has to avoid degradation from components in the extracellular matrix 
(e.g. exonucleases) and the cytoplasm (e.g. endonucleases) and effectively release the 
transgene for nuclear uptake and transcriptional processing (Escoffre et al., 2010; Parra-
Guillén et al., 2010). Gene transfer vectors can be classified into viral and non-viral (Table 1) 
(Niidome & Huang, 2002; Niemann & Kues, 2003; Gardlík et al., 2005; Young et al., 2006; 
Vassaux et al., 2006; Lufino et al., 2008; Al-Dosari & Gao, 2009; Tros de llarduya et al., 2010).  
 

Viral vectors  Non-viral vectors 

Retrovirus/Lentivirus Naked plasmid DNA 
Adenovirus Lipoplexes  
Adeno-associated virus Polyplexes   
Herpes simplex virus Inorganic nanoparticles 
Alphavirus Artificial chromosomes 
Poxvirus Peptides 
Vaccinia virus Bacteria 
Simian virus 40 Minicircle DNA 
Moloney murine leukemia virus Transposon 

Table 1. Common viral and non-viral vectors used for gene transfer technology 

Viral vector-mediated gene transfer is based on the innate capacity of viruses to infect cells. 
Recombinant viruses without the ability to replicate have to be synthesized in order to avoid 
infectious diseases in the host. This requires the deletion of essential genes for viral 
replication and the insertion of the gene of interest into the viral genome (Kay et al., 2001). 
Viral vectors enter target cells via receptor-mediated endocytosis (Ziello et al., 2010). 
Following endocytosis viral vectors are released from endosomes and travel along the 
microtubules towards the nucleus where they deliver the transgene through nuclear pores 
(Fig. 1) (Dinh et al., 2005; Yea et al., 2007). However, other viral vectors (e.g. retroviruses) 
deliver the transgene in the nucleus during mitotic-nuclear-envelope breakdown (Kay et al., 
2001) or do not depend on microtubule-mediated transport. Instead, they do not escape 
endosomes soon after cellular uptake and reach the nucleus in a diffuse motion where they 
are released from late endosomes or lysosomes (Dinh et al., 2005; Akita et al., 2010).   
The majority of non-viral vectors rely on plasmid DNA as the primary carrier of the 
transgene (Schleef & Blaesen, 2009; Escoffre et al., 2010). Injection of naked plasmid DNA is 
the simplest gene delivery system, but transgene expression (i.e. transfection) is usually low 
due to its rapid degradation after delivery, especially under systemic administration (Parra-
Guillén et al., 2010). This problem has been addressed with the use of chemical vectors, 
which act as protective complexes (i.e. DNA-complexes) that facilitate cellular uptake and 
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intracellular delivery (Tros de llarduya et al., 2010). It has been suggested that DNA 
complexes can enter the cytosol by fusion with the plasma membrane, but most of the 
experimental evidence indicates that the main entrance route of non-viral DNA-complexes 
currently used in gene transfer research is receptor-mediated endocytosis (Medina-Kauwe et 
al., 2005; Khalil et al., 2006; Ziello et al., 2010).  Nevertheless, within a vector line, the origin 
of the vector could determine its cellular uptake pathway. Accordingly, chemically derived 
gold nanoparticles enter the cytoplasm using an endocytic pathway, but gold nanoparticles 
produced by laser ablation can enter cultured bovine immortalized cells by passive 
diffusion (Taylor et al., 2010).   
 

 

Fig. 1. General pathway of vector cellular uptake via receptor-mediated endocytosis 
followed by microtubule-mediated transport in viral (e.g. adenovirus) and non-viral (e.g. 
polyplexes and lipoplexes) gene delivery systems. Non-viral DNA-complex dissociation can 
occur in the cytosol or in the nucleus, after nuclear entry of the DNA-complex during 
mitosis, when the nuclear envelope disassembles. Dissociated exogenous DNA can enter the 
nucleus either through the nuclear pore complex or during mitosis. 

The most accepted model of cellular uptake of non-viral vectors is based in polyplexes (i.e. 
polymer-based transfection agents) and lipoplexes (i.e. cationic liposome-based transfection 
agents). Following endosomal entrapment non-viral vectors undergo microtubule-facilitated 
trafficking and accumulate within close proximity to the nucleus (Fig. 1) (Vaughan & Dean, 
2006; Doyle & Chan, 2007). The site of release of the transgene seems to depend on the type 
of non-viral DNA-complex. Endosomal release of polyplexes in the cytoplasm can occur 
without release of DNA from the polymer and the polyplexes may enter the nucleus intact, 
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where they subsequently release the transgene (Cohen et al., 2009). Polyplexes are released 
from the endosome by a proton-sponge mechanism in which the polyplex exacerbates 
proton accumulation in the endosome, resulting in passive chloride influx followed by 
osmotic swelling and endosomal rupture (Medina-Kauwe et al., 2005; Midoux et al., 2009). It 
has been hypothesized that the nuclear entry of polyplexes takes place at the time of nuclear 
membrane breakage during mitosis (O’Rorke et al., 2010), but there is evidence that nuclear 
proteins, such as nucleolin, can incorporate non-viral vectors into the nucleus in an 
endocytosis-independent manner (Chen et al., 2008b).  
Nevertheless, it has been demonstrated that some polyplexes can release their DNA cargo 

before entering the nucleus via ion exchange with RNA present in the cytoplasm (Huth et 

al., 2006). Presumably, DNA release from polyplexes in the nucleus could be caused by ion 

exchange with chromosomal DNA (Schaffer et al., 2000) or by polymerases through 

stripping of histone proteins during DNA replication (Thomas & Klibanov, 2003a). Release 

of DNA from polyplexes is affected by polymer degree of deacetylation (DDA) and 

molecular weight (MW), as high DDA and MW reduced DNA dissociation, whereas 

intermediate values of these polymer characteristics are associated with efficient DNA 

dissociation rate (Thibault et al., 2010).  

Experimental evidence has shown that lipoplexes are more likely to release the DNA in the 

cytosol during endosomal escape (Pollard et al., 1998; Cohen et al., 2009). Current evidence 

indicates that liposomes fuse with endosomal membranes leading to a neutralization of 

cationic lipids in the lipoplexes by anionic membrane lipids.  This process causes endosome 

destabilization and displaces the DNA from the cationic lipids into the cytoplasm 

(Tarahovsky et al., 2004; Medina-Kauwe et al., 2005; Caracciolo et al., 2007).  Recent evidence 

suggests that the capacity of lipoplexes to escape the endosome is strongly influenced by its 

formulation. For instance, multicomponent lipoplexes (i.e. incorporation of three to six lipid 

species simultaneously) displayed an enhanced ability to destabilized endosomes compared 

to binary complexes (Caracciolo et al., 2009).    

Due to their significant size, DNA constructs are unable to cross the nuclear membrane by 

passive diffusion (Lukacs et al., 2000). Investigations on the mechanism of nuclear 

translocation of plasmid DNA have documented that nuclear uptake of exogenous DNA 

occurred during mitosis, when the nuclear envelope breaks down and the permeability 

barrier to the nucleus is lost (Mortimer et al., 1999; Brunner et al., 2000; Cohen et al., 2009). 

However, this cytoplasmic to nuclear translocation mechanism does not operate in 

differentiated non-dividing cells (Dean et al., 2005, Khalil et al., 2006). The other 

documented form of entry of foreign DNA into the nucleus is through the nuclear pore 

complex, mediated by nuclear localization signals (NLSs) (Dowty et al., 1995; Dean, 1997; 

Boulikas, 1998; Dean et al., 2005). Alternatively, non-viral vectors can release the transgene 

into the nucleus after fusion with the nuclear membrane (Kamiya et al., 2002).  

There are several physical methods that can increase the efficiency of vector delivery (Table 

2) (Russ & Wagner, 2007; Al-Dosari & Gao, 2009; Escoffre et al., 2010; Wells, 2010). These 

physical techniques can be applied alone or in combination, and are mainly used in in vitro 

settings (Escoffre et al., 2010). Nonetheless, some of these physical methods (e.g. 

electroporation and ultrasound) have shown to work efficiently under in vivo conditions, 

enhancing nucleic acid delivery at a specific location (Huber & Pfisterer, 2000; Saito & 

Nakatsuji, 2001; Sato et al., 2003; Brown et al., 2004). Although the precise mechanisms by 
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Method Putative Mechanism 

Needle injection Physical damage caused by needle insertion generates 
pores in the cell membrane 

Jet injection High-speed ultrafine stream generates pores in the 
cell membrane  

Electroporation Electrical field pulses generate pores in the cell 
membrane  

ltrasound Ultrasonic waves induce pores in the cell membrane 
by acoustic cavitation  

Hydrodynamic injection The high pressure of a rapid injection of a large 
volume of vector solution generates cell membrane 
pores  

Laser irradiation A short exposure to a laser beam generates cell 
membrane pores 

Photochemical internalization Illumination induces photochemical damage and 
rupture of endosomal membranes  

Plasma Ion deposition on the cell surface by direct current 
plasma induces membrane permeability 

Hyperthermia Cells lose their cytoskeletal structure and contract, 
causing widening of intercellular gap junctions  

Gene gun Heavy metal macroparticles are impacted at high 
velocity allowing direct penetration through the 
plasma membrane into the cytoplasm and even the 
nucleus 

Magnetofection Magnetic forces accelerate accumulation of vectors 
(superparamagnetic nanoparticles) on the cell  surface 
followed by endocytosis  

Table 2. Physical methods for gene delivery 

which these physical methods operate are not totally understood, most of them allow direct 

entrance of vectors into the cytosol by generating a transient membrane permeabilization, 

avoiding in this way the endocytic pathway (Escoffre et al., 2010; Wells, 2010). 

Alternative strategies to improve transgene delivery include the use of the hybrid vectors.  

For instance, coating of adenovirus with polymers or liposomes allows the production of 

“stealth” viruses that can avoid recognition by the host’s antibodies and permits targeting of 

desired receptors following linkage of ligands to the chemical coating (Han et al., 2010; Kim 

et al., 2010; Zhong et al., 2010). Other hybrid vector combinations include polymer-artificial 

chromosome (Magin-Lachmann et al., 2004); polymer-gold nanoparticle (Thomas & 

Klibanov, 2003b); liposome-peptide-artificial chromosome (White et al., 2003); polymer-

peptide (Huang et al., 2010), liposome-polymer (Schäfer et al. ,2010) and viral vector 

combinations such as adenovirus-Epstein-Barr virus (Gardlík et al., 2005). 

The general consensus is that viral gene deliver systems achieve stable in vivo transgene 

expression more efficiently than non-viral systems (Gardlík et al., 2005; Hassam et al., 2009; 

Escoffre et al., 2010; Grigsby & Leong, 2010). The lower efficiency of non-viral vectors seems 

not to be associated with their capacity to reach the vicinity of the nucleus, but with their 

ability to cross the nuclear envelope (Dean et al., 2005). Accordingly, Hama et al. (2006) 
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reported lower efficient transgene expression with lipoplexes than with adenoviral vectors, 

which was attributed to differences in nuclear transcription efficiency rather than to 

differences in intracellular trafficking.  Nevertheless, advances with artificial chromosomes 

and transposons could offer an efficient in vivo non-viral gene delivery system (Lufino et al., 

2008; Wilson & George, 2010). Non-viral vectors offer appealing advantages over viral 

vectors including higher insert capacity for DNA cargo size, low host immunogenicity, easy 

manufacturing and potential for repeated administration (Niidome & Huang, 2002; Al-

Dosari & Gao, 2009; Grigsby & Leong, 2010). 

2.4 Transgene expression 
Once in the nucleus, expression vectors (i.e. expression cassette in a viral or non-viral 

vector) may integrate into the host genome or remain as extrachromosomal genetic 

elements (i.e. episomal vector) (Lufino et al., 2008). Nuclear uptake of the expression 

vector can result in either permanent or transient transgene expression (Ehrhardt et al., 

2008; Lufino et al., 2008; Voigt et al., 2008; Romano et al., 2009). Although some viruses 

can provide transient expression (e.g. adenovirus, vaccinia virus), most of the viral gene 

transfer systems result in permanent transgene expression (e.g. retrovirus, adeno-

associated virus) due to their capacity to achieve chromosomal integration (Young et al., 

2006). Nevertheless, some integrating viruses are prone to epigenetic silencing and 

provide a transient burst of transgene expression. Lentiviruses have been known to 

escape epigenetic silencing and are currently the viral vector with most faithful expression 

(Park, 2009). In contrast, with the exception of transposons (Hackett et al., 2005; Wilson & 

George, 2010) non-viral vectors so far investigated do not integrate into the host genome 

(Gardlík et al., 2005). Non-integrated plasmid vectors from non-viral vectors usually 

produce a transient transgene expression (Gardlík et al., 2005), except when they are 

combined with viral replicons, which facilitates extrachromosomal replication, the 

presence of the vector as a stable episome and high efficiency of transfer (Gardlík et al., 

2005). Furthermore, advances in extrachromosomal vector technology have allowed the 

creation of high capacity non-viral episomal vectors with the ability to achieve stable 

transgene expression (Lufino et al., 2008).  

When an expression vector is not integrated into the host genome of dividing cells the 

extrachromosomally expression vector may not be segregated to all daughter cells during 

cellular division (Fig. 2) (Ehrhardt et al., 2008; Lufino et al., 2008).  This transgene dilution 

due to a reduction in the number of copies of extrachromosomal DNA in each cell cycle is 

partially responsible for the transient levels of gene expression (Gardlík et al., 2005). When 

stable chromosomal integration takes place, the transgene will be inherited to both daughter 

cells after each cell cycle (Fig. 2). Chromosomal integration of viral vectors and transposons 

is usually random, which bring the risk of disrupting host gene expression (i.e. insertational 

mutagenesis) (Baum et al., 2006; Hackett et al., 2007). Activation of host cell oncogenes and 

inactivation of tumor suppressors are among the genetic consequences of insertational 

mutagenesis (Baum et al., 2006; Hackett et al., 2007). However, whereas retro- and 

lentiviruses preferentially integrate into promoter and exonic regions of transcribed genes, 

most transposons integrate into intergenic regions (Yant et al., 2005; Hackett et al., 2005). 

Thus, transposons represent probably the safest method currently available for genetic 

engineering (Grabundzija et al., 2010; Kues et al., 2010).      
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Fig. 2. Transgene segregation in extrachromosomal positioning (episomal) or chromosomal 
integration of expression vectors after gene delivery.   

Regardless of the expression vector position in the nucleus (i.e. episomal or chromosomal), 
transcriptional activity is not always efficient, which can result in ectopic, weak or even 
undetectable transgene expression (Giraldo & Montoliu, 2001). Possible causes of transgene 
expression variability include differences in the number of integrations, transgene 
inactivation, or different genome integration sites of the vector. Transgene expression 
critically depends on the number of plasmids entering the nucleus (James & Giorgio, 2000; 
Glover et al., 2010), which not only depends on the ability of vectors to deliver intact DNA 
but also on the type of cell, as some cells translocate plasmid DNA from the cytoplasm to 
the nucleus more efficiently than others (James & Giorgio, 2000). However, high copy 
numbers of the transgene can increase methylation pattern of the promoter and thereby 
inducing transgene silencing (Garrick et al., 1998). In addition to promoter 
hypermethylation, transgene silencing may also involve chromatin modifications such as 
chromatin condensation caused by histone tail deacetylation and histone code switch (He et 
al., 2005). In some cases formation of repressive heterochromatin on the plasmid DNA 
backbone without methylation of the promoter can also cause transcriptional silencing of 
the transgene (Chen et al., 2008a). Moreover, integration into a transcriptionally inactive 
region of DNA, such as constitutive heterochromatin, will also result in transgene 
inactivation (Hackett et al., 2007). It is common to observe the transferred gene undergoing a 
brief period of expression followed by a decline to undetectable levels even though the 
vector DNA concentration remains constant in cells (Bestor, 2000).  
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3. Current gene transfer models in bovine species 

Current uses of gene transfer models in bovine species include the production of transgenic 
cattle via germ-line gene transfer to produce valuable proteins in milk and serum of cattle 
for therapeutic purposes in humans (Table 3). 
 

Protein 
Possible therapeutic 

application 
Reference 

Human lactoferrin Infectious complications Krimpenfort et al., 1991 

Human α-lactalbumin Phenylketonuria Eyestone et al., 1998 

Human serum albumin Blood volume restoration Behboodi et al., 2001 
Human bile salt-stimulated lipase Pancreatic insufficiency Chen et al., 2002 
Human immunoglobulin Immuno-related diseases Kuroiwa et a., 2002 
Human growth hormone Growth-related disorders Salamone et al 2006 
Human myelin basic protein Multiple sclerosis Al-Ghobashy et al., 2009 

Table 3. Examples of human proteins produced in transgenic cattle and their possible 
therapeutic application 

Other applications of bovine transgenesis include the production of recombinant antibodies 

for tumor cell killing therapy (Grosse-Hovest et al., 2004) and the creation of cattle resistant 

to diseases (e.g. mastitis) (Wall et al. ,2005) or with enhanced milk composition (e.g. higher 

levels of casein)  (Brophy et al., 2003).  

Methodologies to produce transgenic cattle include microinjection of exogenous DNA into 

the pronuclei of zygotes, sperm-mediated gene transfer (via intracytoplasmic injection), 

injection (in the perivitelline space) of oocytes with viral vectors, and somatic cell nuclear 

transfer (SCNT) (Niemann & Kues, 2003; Velazquez, 2008). Currently the most common 

method to produce transgenic bovine offspring is SCNT.  This approach involves the in vitro 

transfer of the foreign DNA into somatic cells followed by the insertion of positive 

transgenic cells into enucleated oocytes which develop to the blastocyst stage and are 

subsequently transferred to recipients (Fig. 3).  

The use of in vivo gene therapy has been reported in a neonatal bovine model of 

citrullinemia (Lee et al., 1999), a urea-cycle disorder causing hyperammonemia due to the 

lack of argininosuccinate synthetase (ASS) (Marquis-Nicholson et al., 2010).  In this study, 

two calves diagnosed with citrullinemia were supplemented with arginine and sodium 

benzoate from 24 hrs after birth onwards to avoid death. At day 10 after birth a single 

application of a viral vector carrying human ASS cDNA into the external jugular vein 

caused selective transduction of hepatocytes and resulted in decreased levels of glutamine 

(an indication of de novo synthesis of urea), which lasted until day 18 posttreatment. Since 

the treatment just restored ASS activity in liver and not in the kidneys, arginine therapy had 

to be continued. This partial enzymatic correction was lost 3 weeks after vector application 

(Lee et al., 1999).   

In a different in vivo gene transfer model, Brown et al. (2004) injected a single dose of 

plasmid DNA carrying cDNA for growth hormone-releasing hormone (GHRH) in the 

trapezius muscle of dairy heifers followed by electroporation. Treated animals displayed an 

increase in haemoglobin, red blood cells, peripheral blood mono-nuclear cells and insulin-

like growth factor-1 (IGF-1) compared to control animals at 300 days posttreatment. These 

physiological effects were observed without effect on concentrations of glucose and insulin. 
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The treatment was associated with increased body condition score, reduced hoof pathology 

and decreased mortality (Brown et al., 2004). The same group tested this gene delivery 

system during heat stress in pregnant heifers (Brown et al., 2009). They reported that calves 

from treated cows showed lower mortality and a significant improvement of survival from 

birth to 260 days, along with increased daily weight gain. In dams, milk production and 

prolactin concentrations were increased. Furthermore, the second pregnancy rate was 

improved in cows receiving the plasmid-based GHRH (Brown et al., 2009).  
 

 

Fig. 3. Main steps in the production of transgenic bovine offspring using conventional 
somatic cell nuclear transfer. 

Previous research has shown that growth hormone and IGF-1 play a significant role on 

ovarian follicular development and preimplantation embryo development (Kaiser et al., 

2001; Sirotkin, 2005; Velazquez et al., 2009b). It will be interesting to test whether the 

plasmid-based GHRH treatment could serve as therapy to increase the superovulatory 

response of low responder animals (De Roover et al., 2005) or to increase pregnancy rates in 

cows with infertility problems (Thatcher et al., 2006).    

Bovine models with RNA interference (RNAi) technology have been also implemented in 

loss-of-function studies to address gene function on ovarian follicular development and 

development of oocytes and preimplantation embryos (Table 4). Although the effects of 

gene knockdown on embryo development have been analyzed mostly in vitro, approaches 

using in vivo embryo culture have been reported (Tesfaye et al., 2010). 
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Gene RNAi  Parameter analyzed Reference 

Cyclin B1 dsRNA Oocyte maturation Paradis et al., 2005 
C-mos dsRNA Oocyte maturation Nganvongpanit et al., 2006 
Oct-4 dsRNA Embryo development Nganvongpanit et al., 2006 
JY-1 siRNA Embryo development Bettegowda et al., 2007 
p66Shc shRNA Embryo development Favetta et al., 2007 
Survivin dsRNA Embryo development Park et al., 2007 
Connexin 43 dsRNA Embryo development Tesfaye et al., 2007 
E-cadherin dsRNA Embryo development Tesfaye et al., 2007 
FIBP siRNA Ovarian steroidogenesis  Forde et al., 2008 
Betaglycan siRNA Ovarian steroidogenesis Forde et al., 2008 
Follistatin siRNA Embryo development Lee et al. ,2009 
KPNA7 siRNA Embryo development Tejomurtula et al., 2009 
CENPF dsRNA Embryo development Toralová et al., 2009 
KRT18 dsRNA Embryo development Goossens et al., 2010 
BIRC6 ds/shRNA Embryo development Salilew-Wondim et al., 2010 
MSX1 ds/siRNA Embryo development Tesfaye et al., 2010 

Table 4. Examples of use of RNAi in bovine models. dsRNA=double-stranded RNA, 
siRNA=small interfering RNA, shRNA=short hairpin RNA. 

4. Methods for in vivo gene delivery in the reproductive tract of female bovine 
species 

4.1 In vivo gene delivery to the ovaries 
Since its first reported use as a tool to aspirate bovine oocytes in vivo (Pieterse et al., 1988), 
ovarian transvaginal ultrasonography (OTU) has been used in ovum-pick programs for the 
in vitro production of bovine preimplantation embryos world-wide for commercial purposes 
(van Wagtendonk-de Leeuw, 2006). Bovine OTU is performed in virtually the same way as 
in humans, with the advantage that the bovine ovary can be fixed to the probe more 
precisely via rectal palpation. OTU is considered a non-invasive technique that has played a 
pivotal role in the elucidation of mechanism involved in the control of follicular growth and 
developmental capacity of the oocyte in both humans(Revelli et al., 2009) and cattle (Beg & 
Ginther 2006; Leroy et al., 2008). This has been mainly accomplished with the analysis of 
aspirated oocytes and ovarian follicular fluid samples. Other possible in vivo procedures 
with OTU include injections in individual follicles (Beg & Ginther 2006), ovarian stroma 
(Oropeza et al., 2004) and corpus luteum (CL) (Yamashita et al., 2008). Ovarian biopsies can 
also be performed with OTU for the collection of CL (Kot et al., 1999) and ovarian cortical 
samples (Aerts et al., 2005). Moreover, OTU allows the in vivo transfer of oocytes from one 
ovarian follicle to another (i.e. interfollicular oocyte transfer) (Bergfelt et al., 1998).      
Bovine OTU could afford the possibility of in vivo delivering of vectors directly to the 
ovaries without the necessity of surgical procedures. The feasibility of this model is partially 
supported by the transient transfection of murine ovarian cells achieved after direct in vivo 
intraovarian (IOI) injection of circle plasmid DNA followed by electroporation (Sato et al., 
2003). Likewise, production of transgenic mice expressing green fluorescent protein has 
been achieved after direct IOI of plasmid DNA without subsequent electroporation (Yang et 
al., 2007). The necessity of surgical exposure of ovaries in these murine models hinders the 
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opportunity for repeated administration of vectors producing transient transgene 
expression. This could be easily circumvented with the bovine model as intraovarian 
injections could be carried out at least twice per week (Velazquez et al., 2009a). Advances in 
ultrasound-triggered targeted gene delivery vehicles such as echogenic liposomes (Smith et 
al., 2010) could provide an efficient OTU in vivo vector delivery system in cattle. Following 
gene delivery, integration of the transgene could be analyzed in primordial and preantral 
follicles (Aerts et al., 2005), oocytes from antral follicles (Zaraza et al., 2010) and granulosa 
cells (Wells et al., 1999) with minimal discomfort for the carrier animal. Furthermore, since 
sheep ovaries can be imaged in situ (i.e. ovaries are exteriorized through a mid-ventral 
laparotomy) with fibered confocal fluorescence microscopy (Al-Gubory, 2005), the 
possibility of analyzing in vivo transgene integration with fluorescent reporter genes such as 
green fluorescent protein (Zizzi et al., 2010) is plausible (Fig. 4).  
 

 

Fig. 4. Hypothetical in vivo monitoring of ovarian transgene integration with fluorescent 
reporter genes using fibered confocal fluorescence microscopy in cattle. 

Since human and cattle ovaries are similar in size (Kagawa et al., 2009), the bovine OTU 
model could be useful to investigate the effect of silencing or overexpressing oocyte-specific 
genes known to be expressed also in humans such as bone morphogenetic protein 15 
(BMP15) and growth differentiation factor 9 (GDF9) (Simpson, 2008). Experiments  with 
these genes in a bovine OTU model aimed at controlling granulosa cell proliferation and 
follicle-stimulating hormone (FSH) responsiveness (Shimasaki et al., 2003) could 
substantially contribute to the development of therapeutic strategies for conditions such as 
premature ovarian failure (Simpson, 2008) or ovarian hyperstimulation syndrome 
(Mikkelsen, 2005). This latter disorder could be also addressed in the bovine OTU model 
with gain- or loss-of-function studies with anti-müllerian hormone in superovulated cows, 
as in both species anti-müllerian hormone is associated with the number of antral follicles 
responding to ovarian superstimulation (Broer et al., 2010; Monniaux et al., 2010).  
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The bovine OTU model will be an important tool for in vivo silencing of candidate genes 
involved in the regulation of cattle dominant follicle selection recently identified by genomic 
approaches (Mihm & Evans, 2008). Monitoring of ovarian follicular development with 
transrectal ultrasonography is a routine procedure in the cattle industry that was the based 
for the characterization of the follicular wave pattern in women (Baerwald, 2009). Data 
generated with the bovine model could provide valuable information for humans, especially 
when using modified cow models  (i.e. FSH-suppressed cows during the follicular phase) 
that mimic the time of follicular recruitment and development of the dominant follicle in a 
highly analogous manner to women (Campbell et al., 2003). 

4.2 In vivo gene delivery to the oviduct 
In vivo transfection of oviductal epithelium has been reported in rodents via deposition of 
naked plasmid DNA or lipoplexes in the lumen of the infundibulum (Relloso & Esponda, 
1998; 2000; Rios et al., 2002).  Access to the fallopian tubes in this laboratory animal model 
requires invasive surgery. In cattle, a minimal invasive technique based on transvaginal 
endoscopy has been developed that allows in vivo access to the oviducts (Besenfelder et al., 
2001). This endoscopy-mediated transvaginal access to the fallopian tubes has made possible 
the in vivo recovery and transfer of embryos from the zygote to the 8-16 cell stage in 
standing cows without the necessity of general anaesthesia (Besenfelder et al., 2010). The use 
of this transvaginal endoscopic procedure was pivotal for the generation of gene expression 
profiles of in vivo preimplantation embryos (Kues et al., 2008). The importance of using this 
technique to recover early stages embryos relies in the fact that postmortem recovery of in 
vivo-produced embryos can alter embryo gene expression (Knijn et al., 2005). This is 
especially relevant when studying the effects of gene silencing on preimplantation embryo 
development in vivo (Tesfaye et al. 2010). 
With this technique it will be possible to infuse vectors into the lumen of the oviduct 
repeatedly (Besenfelder et al., 2008) and the efficiency of transfection could be improved with 
the combined use of transrectal ultrasonography, as ultrasound application can improve in 
vivo vector cellular uptake in the reproductive tract (Maruyama et al., 2004). Transgene 
integration in the oviductal epithelium with fluorescent reporter genes could be also 
monitored in vivo with flexible fibered confocal fluorescence microscopy microprobes. This is 
supported by the used of this technology to carry out in vivo imaging of fluorochrome-labelled 
ram spermatozoa to analyze in situ sperm motility in the ewe genital tract after surgical 
positioning of the microprobe (Druart et al., 2009). With the endoscopic approach the 
positioning of the confocal microprobe into lumen of the oviducts may be feasible (Fig. 5).  
Silencing (or overexpression) of genes in the oviduct thought to play similar roles in 
oviductal biology in humans and cattle (identified during comparison of data from 
microarray analysis from the two species [Bauersachs et al., 2004]), could provide clues for 
the development of therapies for human contraception and for the formulation of enhanced 
embryo culture medium. Suggested candidate genes of bovine embryo developmental 
competence (El-sayed et al., 2006) could be tested. This may be achieved with an ex vivo 
approach of embryo gene silencing such as the one developed by Tesfaye et. al. (2010). Data 
from the bovine model could be useful for humans, as global transcription profiles during 
the maternal-zygotic transition are similar in both species (Xie et al. 2010). The model could 
be particularly relevant for genes showing high homology between the two species such as 
HMGN3a and SMARCAL I, which are known to play a critical role in chromatin 
remodelling during early embryo development (Uzun et al., 2009). 
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Fig. 5. Hypothetical in vivo monitoring of oviductal transgene integration with fluorescent 
reporter genes using fibered confocal fluorescence microscopy in cattle. 

4.3 In vivo gene delivery to the uterus 
Non-invasive access to the uterus is a standard procedure broadly used for artificial 
insemination (AI) and embryo transfer in cattle herds (Velazquez, 2008) that could be 
applied for repeated in vivo gene transfer in the bovine uterus. Uterine in vivo gene transfer 
has been demonstrated in mice (Charnock-Jones et al., 1997; Kimura et al., 2005; Rodde et al., 
2008) and rabbits (Laurema et al., 2007). However, accurate access to the lumen of uterus in 
small animals requires invasive surgical procedures (Ngô-Muller & Muneoka, 2010). As 
with ovaries and oviducts, transrectal ultrasonography could improve vector cellular uptake 
via sonoporation (Maruyama et al., 2004).  In vivo transgene tracking in the uterus with 
fibered confocal fluorescence microscopy, as previously reported in transgenic rabbits (Al-
Gubory and Houdebine, 2006), could be performed in a non-invasive way with transcervical 
endoscopy (Fig. 6). Transcervical endoscopy is a fairly established technique in cattle used to 
evaluate uterine involution and its association with uterine diseases (Mordak et al., 2007; 
Madoz et al., 2010). In addition, confocal laser endomicroscopy technology is already 
available (Buchner et al., 2010). 
Genes with possible roles in uterine biology in humans and cattle, identified during 
comparison of data from microarray analysis from the two species (Bauersachs et al., 2008), 
could be silenced (or overexpressed) in order to develop therapies for human contraception 
and for the formulation of enhanced embryo culture medium. The development of models 
of uterine cancer in superovulated cows (Velazquez et al. 2009b), will be particularly 
relevant to test the therapeutic usefulness of tumor suppressor induction (e.g. TP53) or 
silencing of growth factor receptors (e.g. IGF-1R). Testing (i.e. silencing or overexpression) of 
candidate genes of bovine embryo developmental competence (El-sayed et al., 2006) can be 
carried out with the use of embryo transfer, a technique well established in the cattle 
industry (Velazquez, 2008). Information generated with the bovine embryo transfer model 
could be useful to human assisted reproduction, as gene expression profiles in blastocysts of 
both species are to a large extent identical (Adjaye et al., 2007). 
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Fig. 6. Hypothetical in vivo monitoring of uterine transgene integration with fluorescent 
reporter genes using fibered confocal fluorescence microscopy in cattle. 

5. Animal welfare considerations 

All of the techniques mentioned above require special training and should be carried out by 
professionals that have proper understanding of bovine physiology and anatomy. In the 
hands of professionals this techniques are safe and cause minimal disturbance to the animal. 
Nervous cows or those sensitive to rectal palpation (i.e. excessive rectal bleeding during 
exploratory palpation) should be indentified to avoid unnecessary suffering. Environmental 
enrichment (e.g. music or visual effects) should be implemented whenever possible to 
provide comfort to the animal during the procedure. Health status should be monitored 
closely after gene delivery to identify and treat ill animals.  Euthanasia must be 
implemented immediately when required.  

6. Conclusions 

The female bovine could provide a useful model for in vivo gene transfer in the reproductive 
tract.  The bovine model may not only offer easiness in the delivering of transgenes in 
reproductive tract, but also long-term monitoring. This chapter has provided just a handful 
of the possible scenarios that could be addressed in the bovine model with relevance for 
human reproductive medicine. The strong similarities in some reproductive characteristics 
between the two species open the possibility of using the female bovine as a pre-clinical 
model in reproductive sciences. It is interesting to note that procedures with proved 
capacity to increase the superovulatory response of cows (i.e. aspiration of the dominant 
follicle) (Bungartz & Niemann, 1994) developed more than a decade ago, are just recently 
being proposed for application in women as a means to increase the efficiency of assisted 
reproduction (Bianchi et al. 2010). Perhaps it is time for human reproductive scientists to 
pay close attention to reproductive large animal models. 
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