
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



7 

An Overview of Metallic Biomaterials for  
Bone Support and Replacement 

Anupam Srivastav 
College of Engineering & Technology, IFTM, Moradabad,  

India 

1. Introduction 

The National Institutes of Health Consensus Development Conference, USA defines a 
Biomaterial as – any substance (other than drugs) or combination of substances, synthetic or 
natural in origin, which can be used for any period of time, as a whole or as a part of a 
system which treats, augments or replaces any tissue, organ, or function of the body (Dee et 
al., 2002). Biomaterials are distinct from other classes of materials because of special 
requirement of meeting biocompatibility criteria. 
Biocompatibility is the ability of a material to perform with an appropriate host response in a 
specific application. The body tissues respond differently depending upon the type of 
foreign material. The type of foreign material and its corresponding tissue response is given 
in Table 1 below. 
 

S. No Type of Foreign Material Tissue Response 

1 Toxic Surrounding tissue dies 

2 Nontoxic/Biologically Inactive Fibrous tissue of variable thickness develops 

3 Nontoxic / Biologically Active Interfacial bond forms 

4 Nontoxic / Resorbable Surrounding tissue replaces material 

Table 1. Types of Tissue Response to Different Foreign Materials (Hench, L.L and Best, S., 2004). 

In case of implant materials, closer it is in biochemical qualities to host's tissue, more 
difficult it will be for the host in discriminating this implant material as a foreign object in 
the body. As a result of this, the accepter tissue is likely to respond through the rejection 
phenomenon of immunoresponce which endangers the host's body. On the other hand, 
material farther away in biochemical characteristics from the accepter tissue is more likely to 
be a better biomaterial. The material closer to the host tissue in qualities would perform 
poorly as they are decomposed faster, digested and absorbed, whereas materials dissimilar 
in qualities are identified as foreign objects and are isolated from the host tissue by means of 
a new fibrous membrane (Chiroff et al., 1975). Any bone implant material when used either 
for joint replacement such as knee and wrist joint or total hip replacement (THR), it comes in 
contact with sinovial fluids. The sinovial fluid which is an aqueous colloid containing 
chlorides and phosphates of Na, K and Ca, albumins, globulins, amino-acids, sugars and 
bacterias, acts as a lubricant in natural joints and reduces friction. So, the implant material 
for bone must have no or very insignificant reactivity with body fluids (Holmes, 1979).  
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Modern biomaterials are getting benefited by the developments in the fields of traditional 
and non-traditional materials. However, there are still two major difficulties associated with 
biomaterials. The first is an incomplete understanding of the physical, chemical and 
mechanical functioning of many biomaterials and of the human response to these materials. 
The second difficulty is that many biomaterials do not perform as desirably as we would 
like. In view of this, special attention is now being focused on development of materials 
which are specially suited for specific biomaterial applications, such as for orthopaedic 
implant applications (Osborn and Newesely, 1980; Kitsugi et al., 1981; LeGeros, R. Z., 1988; 
Lavernia C. and Schoenung, J. M., 1999), i.e. the materials which show little or no 
inflammatory response and have sufficient mechanical strength when used as implant 
material. Therefore Orthopaedic implant material should exhibit: a) complete body stability, 
b) complete biocompatibility, c) high wear strength d) high mechanical strength, e) low 
friction (Krause Jr. et al., 1990). 

1.1 Structure and properties of human bone 

The bones of the body come in a variety of sizes and shapes. The four principal types of bones 
are long, short, flat and irregular. Bones that are longer than they are wide are called long 
bones. They consist of a long shaft with two bulky ends or extremities. They are primarily 
compact bone but may have a large amount of spongy bone at the ends or extremities. Long 
bones, as shown in Figure 1, include bones of the thigh, leg, arm, and forearm. 
 

 

Fig. 1. Parts of a long bone (http://training.seer.cancer.gov) 
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There are two types of bone tissues: compact and spongy. The names imply that the two 
types differ in density, or how tightly the tissue is packed together. There are three types of 
cells that contribute to bone homeostasis. Osteoblasts are bone-forming cell, osteoclasts 
resorb or break down bone, and osteocytes are mature bone cells. An equilibrium between 
osteoblasts and osteoclasts maintains bone tissue.  

1.2.1 Compact bone  

Compact bone, as shown in Figure 2, consists of closely packed osteons or haversian 
systems. The osteon consists of a central canal called the osteonic (haversian) canal, which is 
surrounded by concentric rings (lamellae) of matrix. Between the rings of matrix, the bone 
cells (osteocytes) are located in spaces called lacunae. Small channels (canaliculi) radiate 
from the lacunae to the osteonic (haversian) canal to provide passageways through the hard 
matrix. In compact bone, the haversian systems are packed tightly together to form what 
appears to be a solid mass. The osteonic canals contain blood vessels that are parallel to the 
long axis of the bone. These blood vessels interconnect, by way of perforating canals, with 
vessels on the surface of the bone. Human bone thus has a complex hierarchical 
microstructure that can be considered at many dimensional scales (Nalla et al., 2003). At the 
shortest length-scale, it is composed of type-I collagen fibres (up to 15 μm in length, 50–
70nm in diameter) bound and impregnated with carbonated apatite nanocrystals (tens of 
nanometres in length and width, 2–3 nm in thickness). These mineralized collagen fibres are 
further organized at a microstructural length-scale into a lamellar structure, with roughly 
orthogonal orientations of adjacent lamellae (3–7 μm thick) Permeating this lamellar 
structure are the secondary osteons (up to 200–300 μm diameter): large vascular channels 
(up to 50–90 μm diameter) oriented roughly in the growth direction of the bone and 
surrounded by circumferential lamellar rings. 
 

 

Fig. 2. Internal Structure of Bone (http://training.seer.cancer.gov) 
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1.2.2 Spongy (cancellous) bone 

Spongy (cancellous) bone is lighter and less dense than compact bone. Spongy bone consists 
of plates (trabeculae) and bars of bone adjacent to small, irregular cavities that contain red 
bone marrow. The canaliculi connect to the adjacent cavities, instead of a central haversian 
canal, to receive their blood supply. It may appear that the trabeculae are arranged in a 
haphazard manner, but they are organized to provide maximum strength similar to braces 
that are used to support a building. The trabeculae of spongy bone follow the lines of stress 
and can realign if the direction of stress changes. 

1.2.3 Mechanical properties of bone 

Bone consists of a collagenous framework upon which calcium salts are deposited mainly as 
hydroxyapatite. The mature bone is lamellar, its collagenous fibres building regular patterns. 
In the cancellous bone the collagen bundles lie parallel to the long axis of the trabecula and in 
the compact (cortical) bone the fibres are disposed in concentric rings around the vascular 
spaces. Bone can also be considered as consisting of cells and extracellular matrix, with 35% of 
the matrix being composed of organic and 65% of inorganic ones (Martin, 1998). The inorganic 
part comprises of calcium salts whereas that of the organic components is collagen and 
noncollagenous proteins. The noncollagenous proteins form 10% of the organic material. They 
modulate matrix organization, bind calcium and similar to bone growth factors, regulate bone 
formation and resorption (Sandberg, 1991). 
The mature bone can be divided into cancellous (trabecular) or compact bone, depending of 
the degree of bone porosity. Compact bone has a porosity of 5-30% and cancellous bone is 
approximately 30-90% porous, which is the proportion of the volume occupied by non-
mineralized tissue (Carter and Heyes, 1977). The diaphyses of long (tubular) bones are 
composed mainly of compact bone whereas the epiphyses and methaphyses consist of 
cancellous bone that is continuous with the inner surface of the cortical shell and exists as a 
three-dimensional, sponge-like lattice composed of plates and columns of bone. The 
trabeculae divide the interior volume of bone into interconnecting pores of different 
dimensions. The composition and true densities of compact and trabecular bone are thought 
to be similar (Galante et al., 1970) as are their microscopic material properties (McEiheney et 
al., 1970). 
A key requirement in bone is compressive strength, and the most important factor in 
compressive strength is the degree of mineralization. Decreased mineralization results in 
increased risk of fracture (Wright and Hayes, 1977). A collagen and hydoxyapatite 
composite is advantageous from a mechanical standpoint. Mineralized tissue can be 
considered as a porous, two-phase composite consisting of hydroxyapatite crystals 
embedded in collagen matrix (Lees and Devidson, 1977). On the other hand, increasing 
collagen intermolecular cross-linking is associated with increased mineralization. The 
resulting composite structure is much stronger and stiffer due not only to the higher mineral 
content but also due to the stiffening of the collagen matrix caused by the greater cross-
linked density (Memmone and Hudson, 1993; Carter and Springler, 1978). It has been 
suggested that the longitudinal strength and stiffness of mineralized bone tissue are 
approximately equal to the strain rate raised to the 0.06 power. 
Structurally, bone can be considered as a composite having both solid and a liquid phase. 
The solid phase consists of mineralized bone tissue and the fluid phase comprises of blood 
vessels, blood and marrow, nerve tissue, miscellaneous cells and interstitial fluid 
(McEiheney et al., 1970).  

www.intechopen.com



An Overview of Metallic Biomaterials for Bone Support and Replacement 

 

157 

The compressive strength of cortical bone in humans is around 200 MPa and for the femur it 
is around 17 GPa (Reilly et al., 1974; Reilly and Burstein, 1975). Cancellous bone is much 
weaker and the results obtained have varied, depending on the location of the bone 
(Goldstein, 1987). Compressive strengths of 0.15-27 MPa and elastic modulus from 50 to 350 
MPa have been reported for cancellous bone (Carter and Heyes, 1977; Scoenfeld, 1974). 
 

Composition Enamel Dentin Bone 
Hydroxyapatite     

(HAp) 

Calcium [wt%] 36.5 35.1 34.8 39.6 

Phosphorus [wt%] 17.7 16.9 15.2 18.5 

Ca/P (molar ratio) 1.63 1.61 1.71 1.67 

Sodium [wt%] 0.5 0.6 0.9 -- 

Magnesium [wt%] 0.44 1.23 0.72 -- 

Potassium [wt%] 0.08 0.05 0.03 -- 

Total Inorganic  [wt%] 97 70 65 100 

Total Organic [wt%] 1.5 20 25 -- 

Water [wt%] 1.5 10 10 -- 

Elastic Modulus  [GPa] 80 15 0.34-13.8 10 

Compressive Strength 10 100 150 100 

Table 2. Comparative composition and structural parameters of inorganic phases of adult-
human calcified tissues (Dorozhkin and Epple, 2002).  

2. Metallic biomaterials 

Metals are used as biomaterials due to their excellent electrical and thermal conductivity 
and mechanical properties. The metals and alloys are used as passive substitutes for hard 
tissue replacement such as total hip replacement and knee joints; for fracture healing aids as 
bone plates and screws, spinal fixation devices; and dental implants; because of their 
excellent mechanical properties and corrosion resistance. Some metallic alloys are used for 
more active roles in devices such as vascular stents, catheter guide wires, orthodontic 
archwires and cochea implants. 
The orthopaedic surgeons, in dealing with the vast and complex problems of reconstructive 
surgery and some of the more complicated fracture problems, rely on the use of metallic 
biomaterials for fixation and replacement of portions of bone. Common use of metals for 
internal fixation is as old as early 1900s. Metal implants in the form of wire, bands, screws, 
bolts, staples, nails and plates are applied in the temporary fixation of fractures.  
Metals are also used to fabricate implants which are designed to permanently replace the 
load-bearing function of a bone. Some of these metals and alloys are materials such as Al, In, 
Sn, Ti, Zr, Cr, Mo, Ta, Fe-Ni-Cr, Co-Ni-Cr, Co-Cr-Mo, Al-V-Ti and Ti-Mo-Pd, 316 L stainless 
steel and Cobalt based MP 35N alloy. Total hip replacement and joint replacement are some 
of the areas where these materials are required to remain in the body permanently.  
The problems which are associated with these implant materials are not that severe with 
temporary fixation devices as they are with permanent implants. Some of the common 
problems associated with these implant materials are biocompatibility (involving local 
reaction in the tissues near the implant or a general reaction or an allergic reaction distant 
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from implant site) (Groot, 1980), wear and friction of load bearing implants in the presence 
of body fluids and effect of wear debris on the surrounding tissues, corrosion and fatigue in 
the presence of body fluids and lack of skeletal attachments (Rieu et al., 1990; Jarcho, 1981; 
Damien and Parsons 1990; Klein 1990; White and Shors 1986).  
In its role of temporary fixation, the orthopaedic implant is used to bone fragments and keep 
them from being displaced during the healing process. Once healing is completed, the bone 
regains its original function and the implant is removed. Due to this reason, any of the 
aforementioned problems except for biocompatibilities are short-lived. However, any 
allergic reactions due to implant itself or wear debris or corrosion products cannot be 
neglected. Also, in future it is likely that orthopedic surgery including total joint 
replacement will be used in younger patients, who will not only be more active but will 
require their prostheses for a longer period (Barralet et al., 2002).  
The main metals in clinical use are: Titanium and its alloys, Vitallium, Aluminium, Cobalt-
Chromium alloys and various Stainless Steels, all of them being inert and biocompatible to 
acceptable levels (Mofid et al., 1997).  

2.1 Stainless steel 
The first metal alloy developed specifically for human use was the “Vanadium steel” which 
was used to manufacture bone fracture plates and screws. Vanadium steel is no longer used 
in implant fabrication, as its corrosion resistance in vivo is inadequate. Later, another type of 
stainless steel (18.8 type 302) was used for the purpose due to its more strength and superior 
corrosion resistance than the vanadium steel. Subsequently, small amount of Mo was added 
to this type of steel to enhance its corrosion resistance and it became known as 316 stainless 
steel. After 1950, the percentage of Carbon in it was also reduced from 0.08 wt% to 0.03 wt% 
to further improve its corrosion resistance and thus it became 316 L stainless steel (Park, and 
Bronzino, 2000).  
The 316 and 316L stainless steels are the most widely used for implant fabrication but ASTM 
recommends the use of 316 L stainless steel. The composition and important mechanical 
properties of general 316 L stainless steel are given in Tables 3 and 4 below: 
  

S. No Chemical Element Composition (%) 

1 Carbon 0.03 max 

2 Manganese 2.00 max 

3 Phosphorous 0.03 max 

4 Sulfur 0.03 max 

5 Silicon 0.75 max 

6 Chromium 20.00 max 

7 Nickel 14.00 max 

8. Molybdenum 4.00 max 

Table 3. Composition of 316 L stainless steel (ASTM, F139-86, 1992) 

 

Condition 
Ultimate Tensile 
Strength (MPa) 

Yield Strength 
(0.2% offset) (MPa) 

% Elongation 
Rockwell 
Hardness 

Annealed 485 172 40 95 HRB 

Cold-Worked 860 690 12 -- 

Table 4. Mechanical properties of 316 L stainless steel implant material (ASTM, F139-86, 
1992) 
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The high Young’s modulus (approximately 10 times that of bone) of 316 L stainless steel (as 
can be seen in Table 8) leads to stress shielding of surrounding bone and hence causes bone 
resorption.  

2.2 Titanium and its alloys 
The use of Titanium as implant material dates as late as 1930s. It is primarily due to its 
lightness (Table 5) and good mechano-chemical properties. There are four grades of 
unalloyed pure titanium, differentiated on the basis of amount of impurities such as 
Oxygen, Nitrogen and Iron present in them, which are used for surgical implant 
applications. The amount of Oxygen in particular affects the ductility and the strength of 
these grades. 
 

Alloys Density (g/cm3) 

Ti and its alloys 4.5 

316 L stainless steel 7.9 

Co-Cr-Mo alloy 8.3 

Table 5. Density of some alloys used as implant materials   

Among the Titanium alloys, Ti6Al4V whose chemical composition is given in Table 6 is 
most widely used for implant applications. The main alloying elements in this material are 
Aluminium and Vanadium. The other alloys of Ti used are Ti13Nb13Zr whose main 
alloying elements are Niobium and Zirconium and Ti3V11Cr3Al, having Aluminium, 
Chromium and Vanadium as the alloying elements.  
 

Element Grade 1 Grade 2 Grade 3 Grade 4 Ti6Al4V 

Nitrogen 0.03 0.03 0.05 0.05 0.05 

Carbon 0.10 0.10 0.10 0.10 0.08 

Hydrogen 0.015 0.015 0.015 0.015 0.0125 

Iron 0.20 0.30 0.30 0.30 0.25 

Oxygen 0.18 0.25 0.35 0.40 0.13 

Aluminium --- --- --- --- 5.50-6.50 

Vanadium --- --- --- --- 3.50-4.50 

Titanium Balance Balance Balance Balance Balance 

Table 6. Chemical composition of different grades of Ti and its alloy (ASTM, F67-89, 1992; 
ASTM, F136-84, 1992). 

It can be seen in Table 7, that Ti13Nb13Zr alloy is more ductile and has higher elastic 
modulus than the Ti6Al4V alloy, as well as pure grades of Ti. 
 

Property Grade 1 Grade 2 Grade 3 Grade 4 Ti6Al4V Ti13Nb13Zr 

Tensile Strength 
(MPa) 

240 345 450 550 860 1030 

Yield Strength  
(2% offset) (MPa) 

170 275 380 485 793 900 

% Elongation 24 20 18 15 10 15 

% Reduction in area 30 30 30 25 25 45 

Table 7. Mechanical properties of different grades of Ti and its alloys (ASTM, F67-89, 1992; 
ASTM, F136-84, 1992). 

www.intechopen.com



 Biomedical Engineering, Trends in Materials Science 

 

160 

The success of Ti as implant material is related to its ability to osseointegrate into the 
surrounding bone which means it exhibits bioactive properties in the presence of tissue, 
allowing the growth of bone directly up to its surface. The reason for the success of Ti 
implants are (i) that it being highly reactive metal, forms a dense, coherent passive oxide 
film which not only prevents the ingress of corrosion products into the surrounding tissues 
in the initial stages of implantation (Sutherland et al., 1993) but also steadily grows in-vivo 
(Moor and Grobe, 1990) which is stoichiometrically similar to TiO2 which is biocompatible 
(Kasemo, 1983; Lausmaa and Kasemo, 1990) and (ii) reformation of this surface coating to 
TiOOH matrix which traps the super oxide (O2-) produced during the inflammatory 
response thus preventing the release of hydroxyl radical (OH*) (Tengvall and Lundstrom, 
1989). Ti and its alloys are however more expensive than stainless steels. 
These materials have  poorer  wear  characteristics  than  other  metals  and  alloys  used  as  
implant materials and therefore they are now not considered suitable for load bearing 
surfaces. 
Titanium and its alloys have excellent resistance to corrosion. Their Elastic moduli are 
approximately half that of stainless steels (Table 8) and therefore create less risk of stress 
protection of bone. 
 

Material E (GPa) 
Yield Strength 

(GPa) 
Tensile 

Strength (MPa) 
Fatigue Limit 

(MPa) 

Stainless steel 190 221-1213 586-1351 241-820 

Co-Cr alloy 210-253 448-1606 655-1896 207-950 

Titanium 110 485 760 300 

Ti6Al4V 116 896-1034 965-1103 620 

Cortical Bone 15-30 30-70 70-150 --- 

Table 8. Comparison of mechanical properties of metallic biomaterial with bone (Brunski, 
1996).  

2.3 Co-cr alloys 
There are basically two types of Co-Cr alloys which are used as implant materials, (i) Co-Cr-
Mo alloy which is castable and (ii) Co-Ni-Cr-Mo alloy which is forged. The Co-Cr-Mo alloy 
is in use in medicine particularly in dentistry since many decades and has found use in 
artificial joint applications also. The Co-Ni-Cr-Mo alloy is a recent development and has 
found application as an implant material for heavily loaded joints such as artificial hip and 
knee. As per American Society for Testing and Materials, the four types of Co-Cr alloys 
which are recommended for use as surgical implant materials are (i) cast Co-Cr-Mo alloy, 
(ii) wrought Co-Cr-W-Ni alloy, (iii) wrought Co-Ni-Cr-Mo alloy and (iv) wrought Co-Ni-Cr-
Mo-W-Fe alloy. The chemical composition of these alloys is given in Table 9. 
Amongst all the above discussed alloys, the Co-Ni-Cr-Mo is most corrosion resistant, 
whereas the abrasive wear properties are similar to Co-Cr-Mo alloy. However, it is not 
preferred for bearing surfaces of implants due to its poor frictional properties. The superior 
mechanical properties (particularly fatigue strength) make it useful for implants which 
require long service life. 

3. Corrosion of metallic implants 

The physiological environment is typically modelled as a 37 oC aqueous solution, at pH 7.2 
(Healy, and Ducheyn, 1992), with dissolved gases (such as oxygen), electrolytes, cells and 
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Co-Cr-Mo Co-Cr-W-Ni Co-Ni-Cr-Mo Co-Ni-Cr-Mo-W-Fe 
Element 

Min Max Min Max Min Max Min Max 

Cr 27.0 30.0 19.0 21.0 19.0 21.0 18.0 22.0 

Mo 5.0 7.0 --- --- 9.0 10.5 3.00 4.00 

Ni --- 2.3 9.0 11.0 33.0 37.0 15.00 25.00 

Fe --- 0.75 --- 3.0 --- 1.0 4.00 6.00 

C --- 0.35 0.05 0.15 --- 0.025 --- 0.05 

Si --- 1.00 --- 1.00 --- 0.15 --- 0.50 

Mn --- 1.00 --- 2.00 --- 0.15 --- 1.00 

W --- --- 14.0 16.0 --- --- 3.00 4.00 

P --- --- --- --- --- 0.015 --- --- 

S --- --- --- --- --- 0.010 --- 0.010 

Ti --- --- --- --- --- 1.0 0.50 3.50 

Co Balance Balance Balance Balance Balance Balance Balance Balance 

Table 9. Chemical composition of different Co-Cr alloys (ASTM, F75-87, 1992; ASTM, F90-87, 
1992;  ASTM, F362-84, 1992). 

proteins. Immersion of metals in this environment can lead to corrosion, which is 
deterioration and removal of metals by chemical reaction. During this electrochemical 
process of corrosion, metallic biomaterials release ions, which reduce the biocompatibility 
and jeopardize the life of an implant.   Most metals such as iron (Fe), Chromium (Cr), Cobalt 
(Co), Nickel (Ni), Titanium (Ti), Tantalum (Ta), Niobium (Nb), Molybdenum (Mo) and 
Tungsten (W) that are used to make above discussed alloys to manufacture implants can 
only be tolerated by the body in minute amounts [51-53]. Sometimes, these metallic elements 
in naturally occurring forms, are essential in red blood functions (Fe) or synthesis of Vitamin 
B12 (Co), but cannot be tolerated in large amounts in the body. The biocompatibility of the 
metallic implants is therefore of considerable concern because these implants can corrode in 
an in vivo environment. The consequences of corrosion are the disintegration of implant 
material, which weakens the implant and the harmful effect of corrosion products on the 
surrounding tissues and organs.   
Metallic implants used for load bearing purposes such as joint prostheses, screws and plates 
undergo different types of corrosion over time such as galvanic corrosion produced by two 
different types of metal, crevice corrosion and pitting (Gosain, and Persing, 1999;. Cohen, 
1962; Traisnel et al. 1990). Further, fretting corrosion may also occur when the oxide film on 
the metal is damaged such as in case of a screw in a plate hole.  

3.1 Corrosion of 316L stainless steel  

316 L stainless steel, similar to Ti-6A1-4V and  Co-Cr-Mo alloys, etc are known to be prone 
to corrosion and wear with sign of local macrophage reaction. Metallurgical and histological 
examination of implants made of biomaterials such as 316 L stainless steel, Co-Cr-Mo alloys 
and Ti-6AI-4V alloys, etc. show severe corrosion of the surface and even implant failure due 
to corrosion. In these cases, considerable amount of wear particles are released from metal-
on-metal prostheses, which cause long term problems (Groot, 1980). Also, during 
examination of tissues adjacent to these failed implants, whole gamut of histopathological 
reactions from acute inflammation, through granulation of tissue to fibrosis, hyaline and a 
cellular collagens, and necrosis are observed  (Jiang and Shi, 1998).  
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The characteristics tissue reaction to stainless steel implant is cylosiderosis. Stainless steel 
implants are also known to be associated with pain in its locality (when corroded).  
In one of the detailed studies carried out on a retrieved bone plate and screw which was 
clinically used in-vivo to heal fracture in human patient, investigation was made to study 
the effect of actual body environment on the implants and to establish the reason for 
degradation or failure, if any (Srivastav et al., 1992).  
For the study a retrieved commercially available standard 316L stainless steel bone plate 
and screw was selected which was implanted for a period of 2.5 months in a male human 
patient of about 30 years of age. These plate and screws were explanted as per routine after 
the healing of the fracture. The chemical composition of the implant material is given in 
Table 10.  
 

Elements Present Weight Present 

Cr 17 

Ni 12 

Mo 03 

Mn 02 

Si 0.75 

C 0.03 

P 0.03 

S 0.03 

Fe Balance 

Table 10. Chemical composition of 316L stainless steel used in the study  

3.2 Metallurgical investigation of corroded 316 L stainless steel implant 

The 316L stainless steel plate and screw were examined by naked eye after cleaning in 
detergent solution. The areas warranting further examination i.e. those where corrosion was 
found by naked eye were prepared for observation under scanning electron microscope.  
Examination of retrieved implants (bone plate and screws) with naked eyes has shown 
that the overall surface of the bone plate and the screws had neither any cracks nor 
fracture or any sign of corrosion, except clearly visible corrosion spots in and around the 
screw holes of the bone plate as shown in Figures 3 and 4 (Srivastav et al., 1992). It can 
thus be deduced that during the complete 3 months period of implantation,   which can be 
termed as short in vivo period, 316 L stainless steel serves the purpose of bone support 
and helps in healing the fracture of the bone without any mechanical failure. Also, there is 
no significant effect of biological fluids on the material, except some localized effects 
around a few screw holes. 
On closer investigation, it was however found that the screw hole at the top was most 

corroded and the bottom most hole was not at all corroded. This clearly means that the 

corrosion which is only localized in the screw hole, starts with the top most screw hole. In 

addition to this, the corrosion was found to be more pronounced inside and near the screw 

hole than away from the hole. The reason for this significant observation could be the fact 

that during this short period of implantation, the body fluids did not have as much effect on 

the corrosion of the plate as the physiological stresses. The load and the stresses were 

transmitted from the bone to the plate initially at the top. The stresses were more 

concentrated near the hole. This resulted in stress induced corrosion of the screw holes. 

www.intechopen.com



An Overview of Metallic Biomaterials for Bone Support and Replacement 

 

163 

 

Fig. 3. Retrieved bone plate and screws showing corroded screw holes of the plate (arrow) 

 

Fig. 4. Corrosion at the counter sunk of screw hole as seen at higher magnification 

These corrosion spots are the potential source of metal ions and compounds which are 
known to have toxic effects on the tissues. The tissues adjacent to the failed or corroded 
implants have been reported to experience a whole gamut of histopathological reactions 
from acute inflammation, through granulation of the tissues to fibrosis, hyaline and a 
cellular collagens, and necrosis (Eggli, 1983). 
Further, the improper positioning and mating of screw had resulted in crevice corrosion of 
the counter sunk of screw hole as has also been confirmed in other studies (Traisnel, 1990). 
A careful look at the corrosion area at higher magnification under SEM [Figure-5] revealed 
the presence of corrosion pitting and fretting, which is due to micro movements between the 
screw and the hole under load and which induces the crevice corrosion.  
The reason for the corrosion in and around screw hole is clearly because the plate and screw 
surface acts as a bearing surface, where under the physiological loads, micromovements of 
the joint occurs, leading to formation of wear debris. The solubility of this small amount of 
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metal debris probably increases in presence of body fluids due to the large ratio of bearing 
surface area to the mass of the debris under higher stresses. 
 

 

Fig. 5. Corrosion surface at higher magnification showing crevice and pitting corrosion at 
the countersunk (Srivastav et al., 1992) 

Further, Figure-6 clearly indicates that the corrosion was spreading outwardly. This shows 
that eventually the whole area would have got corroded if implant was allowed to remain in 
the body for longer period, such as, in case of a permanent implant. This would have 
weakened the bone plate as found in other studies (Kwon, 2002) and if the use is continued 
for longer duration (six months to a year), then the bone plate would undoubtedly have 
fractured and failed under load as has been observed in other studies also. After the implant 
fails mechanically or functionally, it would require immediate removal as it has been found 
to induce severe pain and allergic reactions such as cytosiderosis, fibrosis in the adjacent 
tissues. Also, the release of Iron and its compounds, which are toxic and insoluble, may 
ultimately lead to cirrhosis of liver and damage to spleen (Jian and Shi, 1998).  
It is most unlikely that 316 L stainless steel will behave like a safe metallic biomaterial and 
hence needs some kind of surface improvement or protection such as protective coatings to 
minimize the chances of corrosion. These materials also have their limitations and hence 
search for more biocompatible and reliable is needed. 

3.3 An alternative to metallic biomaterials: 

The integration of metallic implants to the host bone is promoted by coating them with 
biocompatible materials such as ceramics. These coatings are deposited by techniques such as 
PVD, ion plating, sputtering, etc. Using a variety of above mentioned techniques, a wide range 
of ceramic materials have successfully been deposited and it has been reported in many 
studies that these coatings significantly improve the wear characteristics of the materials on 
which they are deposited (Jamison, 1980; Hinterman, 1981; Asanabe, 1987). Similar bioceramic 
coatings can be effectively used for implants or prosthetic devices. These biocompatible 
coatings not only provide the implant the necessary tribological properties and the desired 
corrosion resistance, but also provide them with much desired superior biocompatibility.  
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Fig. 6. Spreading of corrosion area from the screw hole to outer surface 

Investigations carried out on Al2O3 coatings have revealed that the coated implants obtain 

the necessary damping capability. The damping capability of Al2O3 coating, which is an 

order of magnitude higher than that of the metallic materials used in joint prostheses, 

absorbs a significant energy before failure (Calderale and Vullo, 1977). The improvement of 

wear resistance by ion implantation on metallic joint prosthesis has also been studied in 

detail. Ion implantation is reported to bring improvement in other properties too such as 

fatigue, corrosion and fretting resistance of these metals and alloys (Rieu 1990). Similarly, 

the corrosion resistance of these alloys has been strongly enhanced by hard ceramic coatings 

when deposited by radio-frequency sputtering (Sella, 1990). In recent past, coating of 

plasma-sprayed apatite has been applied which leads to the formation of a strong bond 

between bone and metal implant (Geesink et al., 1998; Hamn et al., 199). This is particularly 

desired in cases such as hip arthroplasty, where implants have a tendency to detach with 

time. The presence of amorphous phase of HAp in these coatings is an inherent problem in 

manufacturing high quality implants (Zyman, 1993).  

However, the life of a coated implant depends upon the life of these coatings. It is therefore 

desirable that the implant be coated with materials which are adherent to the implant 

surface as much as possible, so that it has a very slow and delayed delamination and flaking 

off. As a result of delamination and flaking off of these, ceramic coatings, hard ceramic 

particles come in between the rubbing surfaces and cause sudden and extensive damage to 

the interface. Once negligible or slow wear, thus becomes catastrophic. Hence, these ceramic 

coated surfaces are useful until the coating is intact (Komvopolouslos et al., 1987). The 

formation and accumulation of wear debris not only affects the life of the implant but also 

causes severe tissue reactions and pain, thus necessitating immediate removal. Even in case 

of implants which are used for non bearing surfaces, the degradation and or delamination of 

these coatings have been reported (Whitehead et al., 1993; Yie et al., 1995). To minimize this 

problem of delamination, solution such as use of composite coatings has been suggested 

(Srivastav and Prakash, 1992) which also has not been studied in detail and no permanent 

solution has been obtained except for using bulk bioceramics in place of metallic implants. 
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