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1. Introduction

In most of the practical applications of Automatic Speech Recognition (ASR), the input 
speech is contaminated by a background noise. This strongly degrades the performance of 
speech recognizers (Gong, 1995; Cole et al., 1995; Torre et al., 2000). The reduction of the 
accuracy could make unpractical the use of ASR technology in applications that must work 
in real conditions, where the input speech is usually affected by noise. For this reason, 
robust speech recognition has become an important focus area of speech research (Cole et 
al., 1995).
Noise has two main effects over the speech representation: it introduces a distortion in the 
representation space, and it also causes a loss of information, due to its random nature. The 
distortion of the representation space due to the noise causes a mismatch between the 
training (clean) and recognition (noisy) conditions. The acoustic models, trained with speech 
acquired under clean conditions do not model speech acquired under noisy conditions 
accurately and this degrades the performance of speech recognizers. Most of the methods 
for robust speech recognition are mainly concerned with the reduction of this mismatch. On 
the other hand, the information loss caused by noise introduces a degradation even in the 
case of an optimal mismatch compensation.
In this chapter we analyze the problem of speech recognition under noise conditions. Firstly, 
we study the effect of the noise over the speech representation and over the recognizer 
performance. Secondly, we consider two categories of methods for compensating the effect 
of noise over the speech representation. The first one performs a model-based compensation 
formulated in a statistical framework. The second one considers the main effect of the noise 
as a transformation of the representation space and compensates the effect of the noise by 
applying the inverse transformation.

2. Overview of methods for noise robust speech recognition

Usually the methods designed to adapt ASR systems to noise conditions are focused on the 
reduction of the mismatch between training and recognition conditions and can be situated 
in one of these three groups (Gong, 1995; Bellegarda, 1997):O
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• Robust representations of speech: if speech is represented with a parameterization 
that is minimally affected by noise, we can assume that the mismatch between training 

and recognition conditions can be ignored.

• Compensation of the noisy speech representation: if we know how the speech represen-
tation is affected by noise, the effect of the noise over the representation of the speech 
can be compensated, and a clean version of the speech representation can be processed 
by the recognizer.

• Adaptation of the clean speech models to the noise environment: taking into account 
the noise statistics, the speech models (trained in the reference clean environment) can 
be adapted to the recognition noisy conditions and the recognition can be performed 
using the noisy speech representation and the models adapted to noise conditions.

Figure 1. Block diagram of a speech recognition system processing clean or noisy speech 
with clean speech models 

If we denote with x the clean speech representation, the effect of the noise produces a 
distortion and converts x into y. As shown in figure 1, the noise produces a mismatch 
between training and recognition conditions since corrupted speech y is recognized using 
clean models x. According to the above classification, methods based on robust 
representation assume that x K- y, which minimizes the impact of recognizing noisy speech y
using clean models x. Compensation and adaptation methods assume that noisy speech y is 
a distorted version of the clean speech y = T(x), where T(-) models the distortion caused by 
noise. Compensation methods estimate for the inverse distortion function T-l (•), and 
provide an estimation of the clean speech as:

  (1) 

and recognition is performed using the estimation of the clean speech x and the clean 
models x. On the other hand, adaptation methods apply the estimated distortion function 
T(-) to the models:

 (2) 

and recognition is performed using the noisy speech y and the estimation of the noisy 

models .
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2.1 Robust parameterizations

For those methods included in this category, speech parameterization is assumed to be in-
dependent of the noise affecting the speech. In order to improve robustness against noise a 
variety of methods have been proposed:

• Application of liftering windows:   In LPC-cepstrum based representations, cepstral 
coefficients are not equally affected by noise. For this reason, the application of liftering 
windows to reduce the contribution of low-order coefficients (i.e. those more affected 
by noise) increases robustness against noise (Junqua & Wakita, 1989; Torre et al., 1997).

• Methods based on auditory models: Some authors have designed parameterizations 
based on human auditory models in order to increase robustness. In this group we can 
find, for example, PLP analysis (Perceptually-based Linear Prediction) (Hermanski et 
al., 1985; Junqua & Haton, 1996), the EIH model (Ensemble-Interval Histogram) (Ghitza, 
1992; Ghitza 1994; Rabiner & Juang, 1993), or the synchronous auditory models like the 
Seneff auditory model 0ankowski et al., 1995) and the SLP (Synchronous Linear 
Prediction) proposed by Junqua 0unqua & Haton, 1996). Compared to LPC-cepstrum, 
parameterizations based on auditory models provides better recognition results under 
noise conditions, where auditory masking or lateral inhibition play an important role in 
speech perception.

• Mel-scaled cepstrum: The Mel-Frequency Cepstral Coefficients (MFCC) (Davis & Mer-
melstein, 1980) provide significant better results than LPC-cepstrum under noise con-
ditions, and similar results to those provided by parameterizations based on auditory 
models, even though with significantly lower computational load (Jankowski et al., 
1995). For this reason, high resolution auditory models are not considered for speech 
recognition applications that must work in real time, and MFCC parameterization is 
one of the most commonly used speech representations for robust speech recognition 
(Moreno, 1996).

• Discriminative parameterizations: Parameterizations based on discriminative criteria 
enhance those features containing more discriminative information, and this improves 
separability among classes. This improves recognition in both, clean and noisy condi-
tions. In this group, Linear Discriminant Analysis (LDA) (Duda & Hart, 1973; 
Fukunaga, 1990) has been successfully applied for robust speech recognition (Hunt et 
al., 1991). Some comparative experiments shows that IMELDA representation 
(Integrated MEL-scaled LDA) are more robust to noise than LPC-cepstrum or MFCC. 
Discriminative Feature Extraction (Torre et al., 1996) has also been successfully applied 
to robust speech recognition (Torre et al., 1997).

• Slow variation removal: Most noise processes varies slowly in time (compared to the 
variations of the speech features).  High-pass filtering of the speech features tends to 
remove those slow variations of the feature vectors representing speech, which 
increases accuracy of speech recognizers under noise conditions.  RASTA processing 
(RelAtive SpecTrAl) performs this high-pass filtering of speech parameterization either 
in the logarithmically scaled power spectra (Hermanski et al., 1993) or in the cepstral 
domain (Mokbel et al., 1993).  Some experiments show that RASTA processing reduces 
error rate when training and recognition conditions are very different, but increases it 
when conditions are similar (Moreno & Stern, 1994). An efficient and simple way to 
remove slow variations of speech parameters is the Cepstral Mean Normalization 
(CMN). CMN provides results close to those of RASTA processing without the 
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undesired degradation observed when training and recognition conditions are similar 
(Anastasakos et al., 1994). Currently, the use of CMN is generalized for robust speech 
parameterizations (Moreno, 1996; Young et al., 1997).

• Inclusion of time derivatives of parameters: Dynamic features or time derivatives (i.e. 
delta-cepstrum and delta-delta-cepstrum) (Furui, 1986) are usually included into the 
speech parameterization since they are not affected by slow variations associated to 
noise. The inclusion of the dynamic features improves the recognizer performance in 
both, clean and noisy conditions (Hernando & Nadeu, 1994).

2.2 Compensation of the noise

Compensation methods provide an estimation of the clean speech parameterization in order 
to reduce the mismatch between training (clean) and recognition (noisy) conditions. This 
way, the clean version of the speech is recognized using models trained under clean 
conditions. In this category, we can find the following methods:

• Parameter mapping:   Based on stereo speech observations (the same speech signal 
acquired under both, clean and noisy conditions) this method estimates a mapping that 
transforms clean into noisy speech parameterizations.  Linear mapping assumes that 
mapping is a linear function that is estimated based on minimum mean squared error 
criterion over the stereo speech observations. Usually stereo observations are obtained 
by adding noise to some clean speech observations (Mokbel & Chollet, 1991).  Some 
authors have proposed non linear mappings (Seide & Mertins, 1994) or mapping based 
on neural networks (Ohkura & Sugiyama, 1991).  The effectiveness of this method is 
limited because in practice there is no stereo speech material available for the estimation 
of the transformation, and clean speech must be contaminated with an estimation of the 
noise in the recognition environment.

• Spectral subtraction: Assumed that noise and speech are uncorrelated signals, and that 
noise spectral properties are more stationary than those of the speech, the noise can be 
compensated by applying spectral subtraction, either on the spectral domain, or in the 
filter-bank domain (Nolazco & Young, 1994). The effectiveness of spectral subtraction 
strongly depends on a reliable estimation of the noise statistics.

• Statistical enhancement: Clean speech can be considered a function of the noisy speech 
and the noise, where the noise parameters are unknown and randomly variable. Under 
this assumption, clean speech parameterization can be estimated in a statistical 
framework (Ephraim, 1992).   Maximum A-Posteriori (MAP) methods computes the 
noise parameters maximizing the a-posteriori probability of the cleaned speech given 
the noisy speech and the statistics of the clean speech. Minimum mean squared error 
methods estimate noise parameters minimizing the distance between cleaned speech 
parameters and clean speech models, given the noisy speech observations. Usually, sta-
tistical enhancement based on an explicit model of the probability distributions of clean 
speech and noise involves numerical integration of the distributions, which implies 
practical problems for real time implementations.

• Compensation based on clean speech models: Under some approaches, compensation is 
formulated from a clean speech model based on a vector quantization codebook (Acero, 
1993) or a Gaussian mixture model (Moreno, 1996; Stern et al., 1997). Under methods 
like CDCN (Codeword-Dependent Cepstral Normalization) (Acero, 1993) and RATZ 
(Moreno, 1996; Stern et al., 1997; Moreno et al., 1998) the transformation associated to 
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noise is computed for each Gaussian (or each region of the vector quantizer). Clean 
Gaussians and the corresponding noisy Gaussians provide an estimation of the clean 
speech from the noisy speech. The VTS (Vector Taylor Series) approach (Moreno, 1996; 
Moreno & Eberman, 1997) computes the correction for each Gaussian taking into 
account its parameters and the statistics of the noise, and performs the compensation 
taking into account the clean and the corresponding noisy Gaussian mixture models.

2.3 Adaptation of the models

The aim of adaptation methods is, as in the previous case, to minimize the mismatch 
between training (clean) and recognition (noisy) conditions. However, in this case, the 
mismatch is minimized by adapting the clean models to noise conditions.

• HMM decomposition: Under this approach, also called Parallel Model Combination 
(PMC) (Gales & Young, 1993; Gales, 1997), noisy speech is modeled with a hidden 
Markov model (HMM) with N X M states, where N states are used to model clean 
speech, and M are used to model the noise.  This way, a standard Viterbi algorithm is 
applied to perform simultaneous recognition of speech and noise.   In the case of non-
stationary noises, several states M can be used to model the noise. In the case of 
stationary noises, one state would be enough to represent the noise. The probability 
distribution of the combined model at each state must take into account that one of the 
clean speech model and the one corresponding to the noise. One of the main drawback 
of this method is the computational load.

• State dependent Wiener filtering: Hidden Markov models allow segmentation of the 
speech signal into quasi-stationary segments corresponding to each state of the HMM. 
This adaptation method includes, for each state of the HMM, a Wiener filter to compen-
sate for the noise effect in the recognition process, or alternatively, a correction of the 
probability distribution to implement the Wiener filtering (Vaseghi & Milner, 1997).

• Statistical adaptation of HMMs: This methods adapts the hidden Markov models to 
noisy conditions under a statistical formulation.  Usually, mean and variances of the 
Gaussians are adapted taking into account stereo speech observations (if available) by 
iteratively maximizing the probability of the noisy speech being generated by the 
adapted models (Moreno, 1996).

• Contamination of the training database: Training with noise speech is obviously the 
most efficient way for adapting models to noise conditions. However, this cannot be 
done in practice because a-priori knowledge of the noise statistics is not available 
during recognition, and perform retraining with noisy speech would require estimation 
of the noise in the sentence to be recognized, contamination of the training database 
with such noise and training the recognizer with the noisy database. Training is a time 
consuming process and this procedure cannot be implemented in real time. However, 
recognition results under retrained conditions can be obtained in laboratory conditions. 
This kind of experiments provides an estimation of the upper limit in performance that 
can be obtained with the best method for robust speech recognition. Training with a 
specific type and level of noise significantly improves recognition performance when 
the speech to be recognized is affected for this kind and level of noise, but usually the 
performance degrades if the training and recognition noises do not match. Usually, if 
training is performed with a variety of noises, robustness improves and performance 
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under noise condition significantly improves. This is the philosophy of multi-condition 
training proposed in the standard Aurora II (Hirsch & Pierce, 2000). 

3. Effect of the noise over the speech representation

3.1 MFCC speech representation

The effect of the noise depends on the speech representation and the type and level of noise. 
Currently, most of the representations for ASR are based on Mel Frequency Cepstral Coeffi-
cients (MFCC). Standard MFCC parameterization usually includes: (1) Pre-emphasis of the 
speech signal, in order to enhance high frequencies of the spectrum. (2) Segmentation of the 
signal into frames, typically with a duration from 20 to 40 msecs, using a Hamming 
window. (3) Using a Filter Bank, the output power in logarithm scale is obtained for each 
filter. These coefficients are known as Filter Bank Outputs (FBO). Usually, the Filter-Bank is 
composed of triangular filters distributed in the Mel frequency scale. (4) By applying a 
Discrete Cosine Transform (DCT), the FBO coefficients are transformed into the cepstral 
coefficients (the MFCC). In the MFCC domain, the correlations among the different 
coefficients is small. Also, high order MFCC parameters are removed in order to ignore the 
fine structure of the spectral shape. (5) Finally, coefficients describing the evolution in time 
of the MFCC parameters ( -cepstrum and -cepstrum) can be included in the 
parameterization. Additionally, the energy of the frame (and the  and  associated 
parameters) are usually be included in the feature vectors representing the speech signal.

3.2 Additive noise in M FCC-based representations

(A) Distortion in the log-filter-bank domain: Let xi and ni be the samples of the speech 
signal and an additive noise, and yi = xi + ni the samples of the noisy speech. The energy of a 
frame can be written as: 

 (3) 

and assuming statistical independence of the noise and speech signals:

 (4) 

This result can be applied to whatever parameter representing an energy of the noisy signal, 
and in particular, to the output energy of each filter of the filter-bank. Let Xb(t), Nb(t) and Yb
(t) be the output energy of the filter b at frame t corresponding to the clean speech, the noise 
and the noisy speech, respectively. The relationship among them is described by:

. (5)

and for the logarithmically scaled output of the filter-bank (xb(t) =log(Xb(t))):

(6)
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This equation describes how additive noise affects log-filter-bank outputs in MFCC based 
parameterizations. Figure 2 represents the effect of the additive noise in this domain. One 
can observe three effects associated to additive noise:

• Additive noise produces a non-linear distortion of the representation space.

• For those regions where noise level is greater than speech level, the log-energy of the 
noisy speech is similar to that of the noise.  In that case, speech signal is masked by 
noise.

For those regions where speech level is greater than noise level, the noisy speech is only 
slightly affected by noise. 
Since MFCC representation is obtained by a linear transformation (usually a discrete cosine 
transform) of the log-filter-bank energies, the above described effects are also present in 
MFCC domain. 

Figure 2. Distortion of the logarithmically scaled energy when a noise with constant level of 
20 dB is added 

(B) Distortion of the probability distributions: The previously described distortion of the 
representation space caused by additive noise also transforms the probability distributions. 
Let px (xb) be a probability density function (pdf) in the clean domain, and nb the noise level 
affecting the clean speech. The pdf in the noise domain can be obtained as:

(7)

where xb(yb, nb) and the derivative can be calculated from equation (6):  

(8)

(9)

Figure 3 represents a Gaussian probability distribution representing clean speech (mean 
15dB; standard deviation 2dB) and the corresponding noisy pdf when speech is 
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contaminated with noise with different levels (0 dB, 5 dB, 10 dB, 15 dB). The following 
effects of the noise over the pdf can be observed: 

• The additive noise causes a displacement of the mean.

• The standard deviation is reduced because the compression caused by noise is not 
uniform (is more important for the region of low energy).

• Due to the non-linear effect of the noise, the noisy pdf is distorted and it is not a 
Gaussian.

Figure 3. Distortion of the probability distributions caused by additive noise. Clean 
Gaussian with µx=15dB and x=2dB. Noise with constant level OdB, 5dB, lOdB and 15dB

The impact of the mismatch caused by noise over classification is evident. Due to the 
distortion of the representation space caused by noise, the pdfs representing clean speech do 
not represent appropriately noisy speech. Let px (x| 1) and px (x| 2) be two pdfs 
representing class 1 and class 2 in the clean domain respectively. Due to the noise, both 
pdfs are distorted, and both clases would be represented by py (y| 1) and py (y| 2) in the 
noisy domain (that can be obtained by equation (7)). As illustrated in figure 4 the optimal 
boundaries are different in the clean and noisy representations. Mismatch is produced 
because noisy speech observations are classified using clean pdfs (and therefore boundary 
associated to clean pdfs), which increases the probability of classification error. In order to 
avoid this mismatch, the noise should be compensated on the speech representation (by 
applying the inverse transformation according to equation (6)) in order to obtain the clean 
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speech xb, or alternatively, the models should be adapted (by applying equation (7)) in order 
to classify noisy speech with noisy models.
In figure 5 the area associated to the classification error in the previous example is shown. 
When the clean boundary is used to classify noisy speech, there is an increment in the error 
probability (this increment is associated to the mismatch). However when the noisy 
boundary is used, the probability error is exactly the same as in the case of clean speech.
(C) Randomness of noise: If noise was a constant level Uf,, the problems of noise 
compensation or noise adaptation would be easy to be solved. Using equation (6), an exact 
clean version of the speech would be obtained (or using equation (7) an exact noisy model 
could be used to classify noisy speech). In both cases, the probability of error would be 
independent of the noise level and similar to that obtained for clean speech (as can be 
observed in figure 4).
However, noise is a random process and therefore, the transformation is a function of 
random and unknown parameters. The energy of the noise cannot be described as a 
constant value nb but as a pdf pn (nb), and therefore, for a given value of the clean speech xb

the noisy speech is not a value yb, but a probability distribution given by:

(10)

where nb (yb, xb) and the partial derivative are given by equation (6):

(11)

(12)

Figure 6 shows a Monte Carlo simulation representing how clean speech observations xb are 
transformed into noisy speech observations yb when noise is considered a random process 
described by a Gaussian distribution with different standard deviations. This figure 
illustrates the effects of the noise due to its randomness:

• For each value of clean speech xb we do not obtain a value of noisy speech yb but a 
probability distribution py(yb|xb).

• For high energies of the clean speech (greater than the noise level) the noisy speech 
distribution is narrow.

• For low energies of the clean speech (compared to the noise level) the noisy speech 
distribution is wider.

• From a noisy speech observation yb an estimation of the corresponding clean speech xb

is not possible. In the best case we could estimate the probability distribution px (xb\yb)
and from it, the expected value xb = E[xb|yb] and the corresponding standard error. In
other words, due to the randomness of the noise, there is an information loss that will 
increase the classification error.

• The information loss is more important as xb is more affected by noise (for xb with low 
energy compared to the noise).

• The information loss is more important as the noise level increases.
When the noise is described as a pdf, the probability distribution of the noisy speech can be 
computed as:
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(13)

and taking into account equations (10), (11) and (12): 

(14)

Figure 7 shows the effect of considering the randomness of the noise over the distribution of 
the noisy speech, obtained by numerical integration of equation (14). It can be observed that 
distributions are wider as the distribution of the noise pdf is wider. This increment in the 
width of py(yb) increases the error probability and causes the information loss associated to 
the randomness of the noise. 

Figure 4. Displacement of the optimal decision boundary due to the noise. Clean distribu-
tions are Gaussians with µ1=10dB, 1=3dB, µ2=15dB, 1=2dB. Clean distributions are con-
taminated with a constant noise of lOdB. Optimal clean boundary at xb =12.5317dB; optimal 
noisy boundary at yb =14.4641dB 
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Figure 5. Classification error for noisy distribution using the optimal decision boundary yb,
and error increment when clean optimal decision boundary xb is used  

Figure 6. Transformation of clean observations into noise observation when 
contaminated with a noise with Gaussian distribution with /zn=20dB and un equal to 
0.25dB, O.SdB, IdB and 2dB 
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3.3 Effects of the noise over recognition performance 

Figure 7. Effect of the randomness of noise over the probability distribution of the noisy speech: 
as the standard deviation of the noise increases, the noisy speech presents a wider distribution 

According to the previous analysis, additive noise has two effects over speech recognition 
performance. On one hand, the distortion of the representation space produces a mismatch 
between training and recognition environments. On the other hand, the noise causes an 
information loss due to its implicit randomness. In order to study the role of each one over 
the error rate, recognition experiments can be performed using clean speech models and 
speech models retrained (using speech contaminated with the same noise affecting in the 
recognition environment). The increment of the error rate in the retrained conditions 
represents the degradation associated to the information loss caused by noise, while the 
increment of the error rate when using clean speech models represent the degradation due 
to both, the mismatch and the information loss. 
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Figure 8. Reference recognition results (word accuracy versus SNR) for the baseline system 
(MFCC with CMN, clean training) and the retrained system 

Figure 8 shows recognition performance for both, clean training and retraining conditions, 
for a connected digit recognition task (database of Spanish connected digits "DIGCON" 
(Torre et al., 2001)). The speech, represented with MFCC (including A and AA associated 
parameters and CMN) has been artificially contaminated with additive Gaussian white 
noise for SNRs ranging from 30 dB to -3 dB. Recognition experiments were carried out using 
a 256 Gaussians Semi-Continuous HMM speech recognizer. As observed in the figure, noise 
degrades performance of speech recognizer, due to both, the mismatch between training 
and recognition conditions and the information loss. The recognition results obtained under 
retraining conditions approaches the best results that could be achieved in the case of 
optimal compensation of speech representation or adaptation of speech models. 

4. Model based compensation of the noise effects 

4.1 Statistical formulation of noise compensation 

Compensation of the noise effect can be formulated in a statistical framework, taking into 
account the probability distribution of the clean speech from a clean speech model. 
This way, the estimation of the clean speech could be obtained as the expected value of 
the clean speech, given the observed noisy speech, the model describing the clean speech 
and the model describing the noise statistics: 

 (15) 

As clean speech model x, a Gaussian mixture model (GMM) in the log-filter-bank domain 
can be trained using clean speech. The model describing the noise n must be estimated 
from the noisy speech to be recognized. Usually the noise is represented as a Gaussian pdf 
in the log-filter-bank domain, and the parameters of the Gaussian are estimated from the 
first frames of the sentence to be recognized, or using the silence periods identified with a 
Voice Activity Detector (VAD). Different methods have been proposed to provide the 
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compensated clean speech under a statistical formulation. In the next section we describe 
the Vector Taylor Series (VTS) approach (Moreno, 1996; Moreno et al, 1997). 

4.2 Vector Taylor Series approach 

The effect of additive noise, described by equation (6), can be rewritten as: 

 (16) 

representing that noisy speech yb(t) is obtained by applying a correction gb(t) to the clean 
speech xb(t), where the correction is: 

(17)

Let us ignore the frame index t for simplicity. We can define two auxiliary functions fb and hb

as:

(18)

(19)

verifying that: 

(20)

(21)

(22)

where go, fo and ho are the functions gb, fb and hb evaluated at xO and nO.

Using the Taylor series approach, we can describe how a Gaussian pdf in the log-filter-
bank domain is affected by additive noise. Let us consider a Gaussian pdf representing clean 
speech, with mean µx (b) and covariance matrix x (b, b'), and let us assume a Gaussian noise 
process with mean µn (b) and covariance matrix n (b, b'). Taylor series can be expanded 
around xO =µx(b) and nO =µn(b). The mean and the covariance matrix of the pdf 
describing the noisy speech can be obtained as the expected values: 

(23)

(24)

and can be estimated as a function of  as: 

(25)

(26)
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where go(b), fo(b) and ho(b) are the functions gb, fb and hb evaluated at x0 =µx(b) and no = µn(b). 
Therefore, the Taylor series approach gives a Gaussian pdf describing the noisy speech from 
the Gaussian pdfs describing the clean speech and the noise. 

Figure 9. Recognition results obtained with VTS for different orders (0, 1 and 2) in Taylor 
series expansion 

If the clean speech is modeled as a mixture of K Gaussian pdfs, the Vector Taylor Series 
approach provides an estimate of the clean speech vector  given the observed noisy speech 
y and the statistics of the noise ( and ) as: 

(27)

where nx,k is the mean of the kth clean Gaussian pdf and P(k|y) is the probability of the noisy 
Gaussian k generating the noisy observation, given by: 

(28)

where P(k) is the a-priori probability of the kth Gaussian and is the kth noisy 
Gaussian pdf (with mean and covariance matrix ) evaluated at y. The mean 

and covariance matrix of the kth noisy Gaussian pdf can be estimated from the noise 
statistics and the kth clean Gaussian using equations (25) and (26). This way, under VTS 
approach, the compensation process involves the following steps: 
1. A Gaussian mixture model (GMM) with K Gaussians in the log-filter-bank domain is 

previously trained using clean speech 
2. The noise statistics are estimated for the sentence to be compensated. 
3. The clean GMM is transformed into the noisy GMM using equations (25) and (26). 
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4. The probability of each Gaussian generating each noisy observation P(k |y) is 
computed using the noisy GMM (equation (28)). 

5. The correction function g(/J-x,ki M"n) associated to each Gaussian of the GMM is 
computed. 

6. The expected value of the clean speech is then computed for each frame using 
equation (27).

Figure 9 shows recognition results for the previously described connected digit task when VTS 
(K=V2&) is applied as noise compensation method. The reference plots correspond to the 
baseline clean trained and retrained systems. The other plots represent the error rate obtained 
when Oth, 1st and 2nd order VTS approach is applied for noise compensation. As can be 
observed, VTS significantly improves recognition performance, even though results are below 
that of the retrained system. Performance improves as the order in the expansion increases. 

5. Non-linear methods for noise compensation 

5.1 Limitations of model-based compensation 

Model-based methods for noise compensation provide an appropriate estimation of the 
clean speech. They benefit from an explicit modelling of the clean speech and noise 
distributions as well as from an explicit modelling of the mechanism of distortion. Other 
effective way to face the noise compensation is to focus on the probability distribution of the 
noisy speech and apply the transformation that converts this distribution into the one 
corresponding to the clean speech. This approach does not take into account the mechanism 
of distortion, and only assumes that the compensated speech must have the same 
distribution as the clean speech. This can be considered as a disadvantage with respect to 
model based procedures (which would provide a more accurate compensation). However, if 
the mechanism of distortion if not completely known, a blind compensation procedure that 
is not restricted by a model of distortion can be useful. That is the case of Cepstral Mean 
Normalization (CMN) or Mean and Variance Normalization (MVN) (Viiki et al., 1998) that 
provides some compensation of the noise independently of the noise process and 
independently of the representation space where they are applied. This way, CMN 
compensates for the effect of channel noise, but is also able to partly reduce the effect of 
additive noise (since one side effect of additive noise is the displacement of the mean of the 
Gaussian pdfs). MVN allows compensation of mean and variance of the distributions, and 
therefore provides a more accurate compensation of additive noise than CMN. 
One of the limitations of CMN and MVN is that they apply a linear transformation to the 
noisy noisy speech representation, and, as described in figure 2 the distortion caused by the 
noise present a non-linear behavior. In order to compensate for the non-linear effect of the 
noise, an extension of CMN and MVN methods has been formulated in the context of 
histogram equalization (HEQ) (Torre et al., 2005). 

5.2 Description of histogram equalization 

Histogram equalization was originally proposed in the context of digital image processing 
(Russ, 1995). It provides a transformation x1 = F (x0) that converts the probability density 
function p0 (x0) of the original variable into a reference probability density function p1(x1) =
pref(x1). This way, the transformation converts the histogram of the original variable into the 
reference histogram, i.e. it equalizes the histogram, as described below. 
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Let x0 be an unidimensional variable following a distribution p0 (x0). A transformation x1 (x0)
modifies the probability distribution according to the expression, 

(29)

where x0(x1) is the inverse transformation of x1 (x0). The relationship between the cumulative 
probabilities associated to these probability distributions is given by, 

(30)

and therefore, the transformation x1 (x0) which converts the distribution p0 (x0) into the 

reference distribution p1(x1) = pref (x1) (and hence converts the cumulative probability 

C0(x0) into C1(x1) = Cref (x1)) is obtained from equation (30) as, 

 (31) 

where is the reciprocal function of the cumulative probability Cref (x1), providing 

the value x1 corresponding to a certain cumulative probability C. For practical 
implementations, a finite number of observations is utilized and therefore cumulative 
histograms are utilized instead cumulative probabilities, and for this reason the procedure is 
named histogram equalization rather than probability distribution equalization. 
The histogram equalization method is frequently utilized in Digital Image Processing in 
order to improve the brightness and contrast of the images and to optimize the dynamic 
range of the grey level scale. The histogram equalization is a simple and effective method 
for the automatic correction of too bright or too dark pictures or pictures with a poor contrast. 

5.3 Noise compensation based on histogram equalization 

The histogram equalization method allows an accurate compensation of the effect of 
whatever non-linear transformation of the feature space assumed that (1) the transformation 
is mono-tonic (and hence does not cause an information loss) and (2) there are enough 
observations of the signal to be compensated for an accurate estimation of the original 
probability distribution. 
In the case of Digital Image Processing, the brightness and contrast alterations (mainly due to 
improper illuminations or non-linearities of the receptors) usually correspond to monotonic 
non-linear transformations of the grey level scale. On the other hand, all the pixels in the 
image (typically between several thousands and several millions) contribute to an accurate 
estimation of the original probability distributions. This makes the histogram equalization 
very effective for image processing. 
In the case of automatic speech recognition, the speech signal is segmented into frames (with 
a frame period of about 10 ms) and each frame is represented by a feature vector. The number 
of observations for the estimation of the histograms is much smaller than in the case of image 
processing (typically several hundreds of frames per sentence) and also an independent 
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histogram equalization should be applied to each component of the feature vector. If the 
method is applied for noise compensation, one should take into account that the more speech 
is considered for the estimation of the histograms the more accurate transformation is 
obtained for the noise compensation. Additionally, the histogram equalization is intended to 
correct monotonic transformations but the random behavior of the noise makes the 
transformation not to be monotonic (which causes a loss of information in addition to the 
mismatch). The noise compensation based on histogram equalization (like the rest of the 
methods for noise compensation) can deal with the mismatch originated by the noise but 
not with the loss of information caused by the random behavior of the noise, and this limits the 
effectiveness of the noise compensation based on histogram equalization (like for other 
compensation methods). 

Figure 10. Effect of the histogram equalization over the representation of the speech for the 
energy coefficient. In the first row, the evolution over time of the energy (at different SNRs) is 
represented before (left) and after (right) histogram equalization, for a sentence. Histograms 
are represented in the second row. Transformations provided by histogram equalization 
procedure are represented in the last row 

Compared to other compensation methods, the histogram equalization presents the advantage 
that it does not require any a-priori assumption about the process affecting the speech 
representation and therefore it can deal with a wide range of noise processes and can be 



Speech Recognition Under Noise Conditions: Compensation Methods 457

applied to a wide range of speech representations. We have applied the histogram 
equalization to each component of the feature vector representing each frame of the speech 
signal. As reference probability distribution, we have considered a normal probability 
distribution for each component. The histogram equalization is applied as a part of the 
parameterization process of the speech signal, during both, the training of the acoustic models 
and the recognition process. In Figure 10 we show how the histogram equalization method 
compensates the noise effect over the speech representation. We have contaminated the speech 
signal with additive Gaussian white noise at SNRs ranging from 60 dB to 5 dB. In the figure 
we have represented the effect of the noise and the histogram equalization for the energy 
coefficient. As can be observed, the noise severely affects the probability distributions of the 
speech causing an important mismatch when the training and recognition SNRs do not match. 
Histogram equalization significantly reduces the mismatch caused by the noise. However, it 
cannot remove completely the noise effect due to its random behavior. 

Figure 11. Recognition results obtained with different compensation methods, including 2nd 
order VTS (VTS-2), histogram equalization (HEq), and the combination of both (VTS-2-HEq). 
Compensation based on mean and variance normalization has also been included as reference 

5.4 Application of histogram equalization to remove residual noise 

One of the main features of histogram equalization is that no assumption is made with respect 
to the distortion mechanism. This reduces its effectiveness with respect to methods like VTS. 
However, this allow to use histogram equalization in combination with other methods. 
Usually, after applying a compensation method (for example, VTS, spectral subtraction, 
Wiener filtering, etc.) a residual noise is still present. This residual noise is difficult to be 
modeled because the mechanism of distortion becomes more complex than for additive or 
channel noise. In this case, histogram equalization can be applied since no assumption is 
required about the distortion process, and the compensation is performed taking only into 
account the probability distributions of the clean an noisy speech representations. 
In figure 11 recognition results are presented for the previously described recognition task, 
including the reference results (clean training and retraining), histogram equalization, VTS 
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and the combination of both. Results applying Mean and Variance Normalization (MVN) 
have also been included as reference. As can be observed, histogram equalization provides 
better results than reference (CMN) and also better than MNV. This is consistent with the 
fact that histogram equalization can be considered an extension of CMN and MVN. Results 
provided by histogram equalization are worse than those of VTS, which shows that a 
model-based compensation method provides a more accurate compensation of the noise 
noise (particularly in these experiments, where additive Gaussian white noise was 
artificially added and therefore noise distortion match with the model proposed for VTS 
noise compensation). One can also observe that the combination of both, VTS and histogram 
equalization, provides an improvement with respect to VTS, showing that after VTS there is 
a residual noise that can be reduced by histogram equalization. 

6. Conclusions 

In this chapter, we have presented an overview of methods for noise robust speech recognition 
and a detailed description of the mechanism degrading the performance of speech recognizers 
working under noise conditions. Performance is degraded because of the mismatch between 
training and recognition and also because of the information loss associated to the randomness 
of the noise. In the group of compensation methods, we have described the VTS approach (as a 
representative model-based noise compensation method) and histogram equalization (a non-
linear non-model-based method). We have described the differences and advantages of each 
one, finding that more accurate compensation can be achieved with model-based methods, 
while non-model-based ones can deal with noise without a description of the distortion 
mechanism. The best results are achieved when both methods are combined. 
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