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1. Introduction

According to the common phase diagrams, iron and magnesium are almost immiscible at
ambient pressure Massalski (1986). In the liquid phase, the solubility of Mg in Fe is of the
order of 0.025 atomic percent (at.%). The maximum solid solubility of Fe in Mg is 0.00041
at.% and the Fe content in Mg at the eutectic point is less than 0.008 at.% (Haitani et al.,
2003). Below 1273 K the solubility of Mg in α-Fe is below the detection limit and about 0.25
at.% Mg can be solved in δ−Fe at the monotectic temperature. The immiscibility of Fe and
Mg at ambient conditions is in line with the well-known Hume-Rothery rules, according to
which more than 15% atomic size difference between alloy constituents hinders solid solution
formation (Massalski, 1996). In spite of the negligible solubility of Mg in Fe, several Fe-rich
metastable Fe-Mg solid solution have been synthesized.
According to the pioneering work by Hightower et al. (Hightower et al., 1997), mechanical
alloying produced Fe-Mg substitutional solid solutions with up to 20 at.% Mg and having the
body centered cubic (bcc) crystallographic phase of α-Fe. Later, using the similar alloying
procedure, Dorofeev et al. (Dorofeev et al., 2004; Yelsukov et al., 2005) found that about
5 − 7 at.% Mg in α-Fe forms supersaturated solid solution. These authors suggested that
the driving force for the formation of Fe-Mg solid solutions is associated with the excess
energy of coherent interfaces in the Fe-Mg nanocomposite, which facilitates incorporation
of Mg into α-Fe. Indeed, based on semiempirical thermodynamic calculations, Yelsukov et
al. (Yelsukov et al., 2005) obtained 6 kJ/mol for the enthalpy of formation for Fe-Mg solid
solutions, compared to 20 kJ/mol calculated for the corresponding Fe-Mg nanocomposites.
In addition to the mechanical alloying techniques, pressure was also found to facilitate the
solid solution formation between Fe and Mg. Dubrovinskaia et al. (Dubrovinskaia et al.,
2004) reported that at pressures around 20 GPa and temperatures up to 2273 K, the solubility
of Mg in bcc Fe was increased to 4 at.%. They found that the lattice parameter of the bcc
Fe-Mg alloy increased approximately by 0.6 % per at.% Mg. Furthermore, recent experimental
measurements in combination with theoretical simulations demonstrated that at the megabar
pressure range more than 10 at.% Mg could be dissolved in liquid Fe, which then could be
quenched to ambient conditions (Dubrovinskaia et al., 2005). The mechanism behind the
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2 Magnesium Alloys, Theory and Applications

high-pressure alloying is the much larger compressibility of Mg compared to that of Fe.
Most of the theoretical and experimental investigations of the Fe-Mg solid solutions so far
focused on the phase diagram, crystallographic structure, nanostructure, grain boundaries
and segregation. However, much less is known about the mechanical properties of Fe-rich
Fe-Mg alloys. Here we present a systematic first-principles study of the effect of Mg on
the elastic properties of ferromagnetic bcc Fe-Mg alloys. We calculate the single-crystal and
polycrystalline elastic parameters by using the all-electron exact muffin-tin orbitals method
(Andersen et al., 1994; Vitos et al., 2000; Vitos, 2001) in combination with the coherent-potential
approximation (Soven, 1967; Gyorffy, 1972; Vitos et al., 2001; Vitos, 2007). Since at ambient
conditions, the Fe-rich Fe-Mg alloys were found to adopt the ferromagnetic bcc structure
(Hightower et al., 1997; Dorofeev et al., 2004; Dubrovinskaia et al., 2005), all calculations
are performed for this magnetic and crystallographic phase. Using Mösbauer spectroscopy,
Hightower et al. (Hightower et al., 1997) found that bcc Fe-Mg alloys encompassing ∼ 18
at.% Mg possess large chemical heterogeneities. According to that study only few Fe atoms
have Mg atoms as first-nearest neighbors and the Mg atoms cluster into Fe-depleted zones
on the bcc lattice. On the other hand, Dorofeev et al. (Dorofeev et al., 2004; Yelsukov et al.,
2005) determined the effect of nearest neighbor and next nearest neighbor Mg atom on the
hyperfine magnetic field of Fe nuclei in Fe-Mg alloys containing 5 − 7 at.% Mg. Moreover,
the Fe0.96Mg0.04 synthesized by Dubrovinskaia et al. (Dubrovinskaia et al., 2004) at high
temperature and moderate pressures was reported to be homogeneous. It is also noticeable
the excellent agreement obtained between the experimental and theoretical equation of states
for Fe0.96Mg0.04, the latter obtained for completely random alloy (Dubrovinskaia et al., 2005).
These findings indicate that clustering of Mg atoms is less significant in Fe-rich alloys. Because
of that, we limit the present study to Fe1−xMgx alloys with 0 ≤ x ≤ 0.1 and assume random
distributions of the Mg atoms on the parent lattice.
In order to be able to assess the results obtained for Fe-Mg alloys at ambient condition,
here we also present some results obtained for random Fe1−xCrx alloys with 0 ≤ x ≤ 0.1.
It is well-known that Fe-Cr constitute the basis for stainless steels. The Fe-Cr alloys,
except the high temperature Fe-rich γ-phase and the σ-phase observed around equimolar
concentrations, adopt the bcc structure (Hultgren et al., 1973). At normal operating
temperatures, these bcc alloys are ferromagnetic with Curie temperatures around 900 − 1050
K (Hultgren et al., 1973). For x � 0.1 and T � 600 K, the Fe-Cr system is fully miscible,
whereas the nucleation or spinodal (α′) decomposition driven clustering occurs at higher Cr
concentrations (Tavaresa et al., 2001; Cieslak et al., 2000). Nevertheless, it has been shown
(Olsson et al., 2003; 2006) that the energetics of Fe-Cr alloys with � 20 at.% Cr are well
described using the substitutional disordered ferromagnetic bcc phase.
The composition and the structure of the Earth’s solid inner core are still unknown. The
core is considered to be made of iron-rich alloys containing 5-15% nickel (Anderson, 1989)
and one or more light elements (McDonough, 2003). Based on seismic observations, different
models have been constructed to describe the physical properties of the Earth’s interior. The
most widely accepted of these models is the ”Preliminary Reference Earth Model” (PREM,
(Dziewonski & Anderson, 1981)), which provides the radial distribution of elastic properties,
seismic quality factors and densities. The physical properties of pure iron at core conditions
have been extensively studied both experimentally (Singh et al., 1998; Mao et al., 1998;
Dubrovinsky et al., 2000) and theoretically (Stixrude & Cohen, 1995; Söderlind et al., 1996;
Steinle-Neumann et al., 1999; Laio et al., 2000; Vočadlo et al., 2000; Steinle-Neumann et al.,
2001; Belonoshko et al., 2003; Qiu & Marcus, 2003; Belonoshko et al., 2007), and they have
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Thermo - Physical Properties of Iron - Magnesium Alloys 3

been found to differ significantly from those of the PREM model. In 2001, Hemley and Mao
proposed that pure iron has a nonmagnetic hexagonal closed-packed (hcp) structure (ǫ-Fe)
at Earth’s core pressures and temperatures (Hemley & Mao, 2001). Lately, the body-centered
cubic (bcc) phase of iron was suggested to be present in the inner core, (Ross et al., 1990;
Matsui & Anderson, 1997; Belonoshko et al., 2003; 2007; 2008), although its stability at core
conditions is still in discussion (Vočadlo et al., 2003; Vočadlo, 2007). It has been shown recently
(Mikhaylushkin et al., 2007) that because of the subtle energy difference between the different
phases of Fe at core conditions, the presence of any of the hcp, face-centered cubic (fcc) or bcc
phases can not be ruled out in the Earth’s inner core.
The higher density of pure iron compared to that of the Earth’s core indicates the presence of
light element(s) in this region. In the past few years, notable effort has been made to study
iron-rich alloys at core conditions, covering nickel (Vočadlo et al., 2006; Kantor et al., 2007;
Dubrovinsky et al., 2007), silicon (Lin et al., 2002; Vočadlo et al., 2003; Chen et al., 2007) and
sulphur (Vočadlo et al., 2003; Chen et al., 2007) as alloying elements. However, none of these
proposed composition models were in full agreement with seismic observations.
Magnesium, one of the most abundant of Earth elements, which does not alloy with iron at
ambient conditions, has just recently been proposed as a possible component of the Earth’s
core, when Dubrovinskaia et al. have shown that high pressure promotes the solubility of
Mg in iron (Dubrovinskaia et al., 2004; 2005). On the other hand, today, magnesium is often
classified as a litophile element (McDonough & Sun, 1995; Allegre et al., 1995), and therefore
its presence in the core is precluded. This classification is based on two main arguments. First,
it is believed that the consistency between the relative amount of Mg in the Earth’s mantle and
in the chondritic models, makes the occurrence of Mg in the core unlikely. Second, it is thought
that metallic Mg in the core would require extremely reducing conditions. Indeed, based
on oxygen fugacity, the occurrence of metallic Mg is rather improbable (Robie et al., 1978)
at mantle conditions. However, the oxygen fugacity significantly increases with increasing
temperature for Mg, indicating that at inner core conditions the presence of Mg should not be
ruled out (Robie et al., 1978). Furthermore, the ionic character of metal oxides at the extreme
conditions of the core, is not yet fully understood. In addition, Si, which also has lower oxygen
fugacity, than the redox state of the Earth’s mantle, is widely accepted as a possible component
of the inner core.
Recently we showed that Mg is a strong candidate light element of the inner core (Kádas
et al., 2008a; Kádas, Vitos, Johansson & Ahuja, 2009). Here, without examining the partition of
Mg into the core, we describe the thermo-physical properties of hcp and bcc iron-magnesium
alloys at the conditions of the Earth’s inner core. We demonstrate the effect of Mg alloying on
the hexagonal axial ratio, elastic constants, density and sound wave velocities, and show that
the shear modulus and the transverse sound velocity of hcp Fe are notably reduced by Mg
(Kádas et al., 2008a). Though the calculated shear moduli and sound velocities of hcp Fe-Mg
alloys still differ significantly from those of the core as provided by seismic observations, even
at 10 atomic % Mg content, Mg alloying changes the elastic properties of hcp iron in such a way
that the differences to the seismic data decrease. At core conditions, we predict that 5-10% Mg
stabilizes bcc Fe both dynamically and thermodynamically (Kádas, Vitos, Johansson & Ahuja,
2009), and we give an electronic structure explanation of this phenomenon. We demonstrate
that the physical properties of bcc Fe-Mg alloys containing 5-10% Mg in fact reproduce those
of the inner core: the calculated density, elastic moduli and sound velocities of bcc Fe-Mg
alloys are consistent with seismic data. Therefore the bcc-structured Fe-Mg alloy seems to be
amongst the strongest candidate models for the Earth’s solid inner core.
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2. Theory

2.1 Computational method

The present calculations are based on density functional theory (DFT) (Hohenberg & Kohn,
1964) formulated within the Perdew-Burke-Ernzerhof generalized gradient approximation for
the exchange-correlation functional (Perdew et al., 1996). The Kohn-Sham equations (Kohn
& Sham, 1965) were solved using the exact muffin-tin orbitals (EMTO) method (Andersen
et al., 1994; Vitos et al., 2000; Vitos, 2001). The substitutional disorder was treated within
the coherent-potential approximation (CPA) (Soven, 1967; Gyorffy, 1972; Vitos et al., 2001;
Vitos, 2007). From the self-consistent charge density the total energy was calculated using the
full-charge density technique (Kollár et al., 2000).
The EMTO method is an improved screened Korringa-Kohn-Rostoker method (Andersen
et al., 1994), where the full potential is represented by overlapping muffin-tin potential
spheres. By using overlapping spheres one describes more accurately the exact crystal
potential, when compared to the conventional muffin-tin or non overlapping methods
(Andersen et al., 1998; Vitos, 2001). Further details about the EMTO method and its
self-consistent implementation can be found in Refs. (Vitos et al., 2000; Andersen et al., 1994;
Vitos, 2001; Vitos et al., 2001; Vitos, 2007). The EMTO approach ensures the accuracy needed
for the calculations of anisotropic lattice distortions in random alloys. It has been applied
successfully in the ab initio study of the thermo-physical properties of random Fe-based alloys
(Vitos et al., 2002; 2003; Olsson et al., 2003; Vitos et al., 2006; Dubrovinskaia et al., 2005;
Kádas et al., 2008a; Kádas, Vitos, Johansson & Ahuja, 2009; Zhang et al., 2009; 2010), simple
and transition metal alloys (Taga et al., 2005; Huang et al., 2006; Zander et al., 2007; Vitos,
2001; Magyari-Köpe, Grimvall & Vitos, 2002; Magyari-Köpe et al., 2004; Ahuja et al., 2009;
Delczeg-Czirjak et al., 2009; Kádas, Lindquist, Erikssson, Johansson & Vitos, 2009; Sahlberg
et al., 2009) and solid solutions (Magyari-Köpe et al., 2001; Magyari-Köpe, Vitos, Johansson
& Kollár, 2002; Landa et al., 2002; Magyari-Köpe, Vitos, G. Grimvall & Kollár, 2002; Hu et al.,
2007; Kádas et al., 2008b; Hu et al., 2008).

2.2 Calculation of elastic constants

2.2.1 Body-centered cubic elastic constants

There are three independent elastic constants in a body centered cubic system: C11, C12 and
C44. They can be obtained by calculating the total energy as a function of small strains δ
applied on the parent lattice. In the present application, the cubic shear constant, C′ = (C11 −
C12)/2 was obtained using volume-conserving orthorhombic deformation,

⎡

⎢

⎣

δo 0 0
0 −δo 0

0 0
δ2

o

1−δ2
o

⎤

⎥

⎦
. (1)

and C′ was determined from ∆Eo = 2VC′δ2
o + O(δ4

o).
Applying the monoclinic strain

⎡

⎢

⎣

0 δm 0
δm 0 0

0 0
δ2

m

1−δ2
m

⎤

⎥

⎦
, (2)

C44 was calculated from ∆Em = 2VC44δ2
m + O(δ4

m).
C11 and C12 were separated by using C′ and the cubic bulk modulus B = (C11 + 2C12)/3.
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2.2.2 Hexagonal closed-packed elastic constants

In a hexagonal closed-packed system there are five independent elastic constants:
C11,C12,C13,C33 and C44. They were obtained from the bulk modulus,

B =
C33(C11 + C12)− 2C2

13

CS
, (3)

where CS = C11 + C12 + 2C33 − 4C13, the logarithmic volume derivative of the hexagonal
lattice parameter,

d ln (c/a)0

d lnV
= −C33 − C11 − C12 + C13

CS
, (4)

and three isochoric strains (Steinle-Neumann et al., 1999). By varying the c/a ratio at a given
volume and applying the strain

⎡

⎢

⎣

δh 0 0
0 δh 0

0 0 1
(1+δh)2 − 1

⎤

⎥

⎦
, (5)

CS was calculated from ∆Eh = VCSδ2 + O(δ3), where δ is the magnitude of the strain, and
∆Eh = E(δh) − E(0) is the energy difference of the strained and unstrained systems. To
determine C66 = (C11 − C12)/2, we applied an orthorhombic strain

⎡

⎢

⎣

δo 0 0
0 −δo 0

0 0
δ2

o

1−δ2
o

⎤

⎥

⎦
, (6)

leading to the energy change ∆Eo = 2VC66δ2
o + O(δ4

o). Applying the monoclinic strain

⎡

⎢

⎣

0 0 δm

0 δ2
m

1−δ2
m

0

δm 0 0

⎤

⎥

⎦
, (7)

C44 was determined from ∆Em = 2VC44δ2
m + O(δ4

m).

2.2.3 Polycrystalline elastic constants

There are several different techniques for averaging the single-crystal data. We use Hill
(Hill, 1952) averaging method to investigate the polycrystalline bulk (B) and shear moduli
(G). According to the Hill averaging method, the polycrystalline B and G are given as the
arithmetic average of the Voigt (Voigt, 1889) and Reuss (Reuss, 1929) limits. In the crystal
aggregates, Voigt method assumed a uniform strain, while Reuss proposed a uniform stress.
Accordingly, for a cubic crystal, the polycrystalline shear modulus is

G = (GV + GR)/2,

GR = 5(C11 − C12)C44(4C44 + 3C11 − 3C12)
−1,

GV = (C11 − C12 + 3C44)/5.

(8)

where the GR and GV are the Reuss and Voigt bounds, respectively.
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6 Magnesium Alloys, Theory and Applications

For cubic crystal, the Voigt and Reuss bounds are identical with the single-crystal bulk
modulus, i.e.,

B = (BV + BR)/2,

BR = BV = (C11 + 2C12)/3,
(9)

Using a variational method, Hashin and Shtrikman (Hashin & Shtrikman, 1962) derived more
rigorous upper and lower bounds for B and G. For cubic lattices with C′

< C44, these bounds
are

Bu = Bu =
C11 + 2C12

3
,

Gl = C′ + 3

(

5

C44 − C′ + 4β1

)−1

,

Gu = C44 + 2

(

5

C′ − C44
+ 6β2

)−1

,

(10)

where

β1 =
3(B + 2C′)

5C′(3B + 4C′)
,

β2 =
3(B + 2C44)

5C44(3B + 4C44)
.

(11)

For C′
> C44, the upper and lower bounds are reversed.

2.3 Application to iron-magnesium systems

The cubic elastic constants of the random ferromagnetic bcc Fe1−xMgx (0 ≤ x ≤ 0.1) alloys
at ambient conditions were calculated as a function of the chemical composition. At each
concentration the theoretical equilibrium volume and the bulk modulus were derived from
an exponential Morse type function (Moruzzi et al., 1988) fitted to the ab initio total energies
of bcc structures calculated for seven different atomic volumes. In order to obtain the two
cubic shear moduli C′ and C44, we used volume-conserving orthorhombic and monoclinic
deformations as described, e.g., in Ref. (Vitos, 2007).
The polycrystalline Young’s modulus (E) and the Poisson ratio (ν) are connected to B and G
by the relations

E = 9BG/(3B + G),

ν = (3B − 2G)/(6B + 2G).
(12)

Finally, the polycrystalline elastic Debye temperature (Θ) was calculated from the longitudinal
and transversal sound velocities obtained from B, G, and the average alloy density (see, e.g.,
Ref.(Vitos, 2007)).
In the present electronic structure and total energy calculations, the one-electron equations
were solved within the scalar-relativistic and soft-core approximations. The Green function
was calculated for 16 complex energy points distributed exponentially on a semicircular
contour. In the basis set we included s, p,d, and f orbitals (lmax = 3), and the one-center
expansion of the full charge density was truncated at lh

max = 8 (Vitos, 2007). The electrostatic
correction to the single-site coherent potential approximation was described using the
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Thermo - Physical Properties of Iron - Magnesium Alloys 7

screened impurity model (Korzhavyi et al., 1995) with screening parameter of 0.6. The radii of
the overlapping muffin-tin spheres of Fe, Mg, and Cr were chosen to be equal to the average
atomic sphere radius.
To calculate the two cubic shear constants, C′ and C44, for bcc iron-magnesium alloys at core
conditions, the total energy was computed for six different orthorhombic and monoclinic
distortions (δo/m=0.00, 0.01, ..., 0.05). The bulk modulus was determined from an exponential
Morse-type function (Moruzzi et al., 1988) fitted to the total energies of the non-distorted bcc
structure (δ=0) calculated for 10 different volumes. Finally, C11 and C12 were separated by
using C′ and the cubic bulk modulus B.
To determine the elastic constants for hcp iron-magnesium alloys, the total energy was
calculated for six different orthorhombic and monoclinic distortions (δo/m=0.00, 0.01, ...,
0.05) to determine C66 and C44, respectively, and for nine hexagonal distortions (δh =
−0.04,−0.03, ...,0.00, ...,0.04) to obtain CS. The sound velocities were determined by solving
the secular equation, as it is given by Grimvall (Grimvall, 1999).
The temperature effect in the elastic constants calculated at fixed volume was taken
into account via the Fermi-Dirac distribution of the electrons and neglecting the phonon
contributions. We used the Debye model to account for the lattice vibration effects in the Gibbs
energy. In the self-consistent EMTO calculations, the one-electron equations were treated
within the scalar relativistic and soft core approximations. The EMTO Green’s function was
calculated for 16 energy points. In the EMTO basis set s, p, d and f orbitals were included for
both hcp and bcc Fe-Mg systems. In the case of the strained hcp structures 9744 k−points were
used in the irreducible part of monoclinic Brillouin zones. For the strained bcc structures,
22000 k-points were used in the irreducible part of the monoclinic Brillouin zones. The
Hashin-Shtrikman averages (Hashin & Shtrikman, 1962) were applied to calculate the shear
and Young moduli, and the sound velocities of bcc Fe-Mg alloys at Earth’s core conditions.
The total charge density was expanded in spherical harmonics, including terms up to lmax=10.

3. Iron-magnesium alloys at ambient conditions

In this chapter we review the thermo-physical properties of ferromagnetic body-centered
cubic iron-magnesium alloys at ambient conditions.

3.1 Equation of state and formation energy

In this section, we investigate the composition dependence of the equation of state and
formation energy of ferromagnetic bcc Fe1−xMgx (0 ≤ x ≤ 0.1) random alloys. For
comparison, we also show results obtained for Fe-Cr alloys. The composition dependence
of a(x) is shown in Fig. 1 (left panel) along with the experimental data for Fe-Mg (Hightower
et al., 1997; Dorofeev et al., 2004) and Fe-Cr (Sutton & Hume-Rothery, 1955; Pearson, 1958).
Compared to slight increase on bcc Fe by Cr, Mg strongly enlarge lattice parameter of bcc Fe
as shown in Fig. 1 (left panel).
Since the lattice constant of bcc Fe is by ∼ 0.019 Å smaller than that of B2 Cr, based on
Vegard’s rule we would predict a linear a(x) with slope of ∆a(x)/∆x ∼ 0.2 × 10−3 Å per
at.% Cr. However, both the experimental and the theoretical lattice parameters deviate from
this simple linear trend as shown in Fig. 1 (left panel). The EMTO lattice parameter reaches
a maximum value between 7.5 and 10 at.% Cr and remains above the lattice parameter of
pure Fe for all concentrations considered here. Using the theoretical values below c = 0.1,
the theoretical slope of a(x) ∼ 1.7 × 10−3 Å is larger than the average experimental value of
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Fig. 1. Theoretical (EMTO, solid symbols connect with lines) lattice parameter (left panel) of
ferromagnetic bcc Fe-Mg random alloys as a function of Mg concentration. The experimental
data (open symbols) are from Ref. (Hightower et al., 1997) (Hightower) and Ref. (Dorofeev
et al., 2004) (Dorofeev). For comparison, theoretical (EMTO) and available experimental Ref.
(Sutton & Hume-Rothery, 1955)(Sutton) and Ref. (Pearson, 1958)(Pearson) lattice constant of
ferromagnetic bcc Fe-Cr random alloys are also shown.The dashed line for Fe-Cr is obtained
from Vegard’s rule. Theoretical (EMTO) enthalpy of formation (right panel) for
ferromagnetic bcc Fe-Mg random alloy. For comparison, the enthalpy of formation for Fe-Cr
is also shown. The latter has been multiplied by 10 to match the scale. The predicted value by
Yelsukov et al. (Yelsukov et al., 2005) for Fe0.93Mg0.07 is shown by triangle.

∼ 0.5 × 10−3 Å per at.% Cr (Pearson, 1958), but is in perfect agreement with the former ab
initio calculation based on special quasi random structures (Olsson et al., 2006).
For the atomic radius of hcp Mg we obtained 1.764 Å, which agrees well with the experimental
value of 1.77 Å (Young, 1991). Using this atomic radius and that of pure Fe (1.40 Å), for the
bcc Fe1−xMgx alloys Vegard’s rule predicts a lattice parameter with slope of ∆a(x)/∆x ∼
3.6 × 10−3 Å per at.% Mg. The present EMTO results, shown in Fig. 1 (left panel), give
5.5 × 10−3 Å increase per at.% Mg. Moderate lattice expansion upon Mg addition to Fe was
also reported by Hightower et al. (Hightower et al., 1997) and Dorofeev et al. (Dorofeev et al.,
2004). In their measurements, the average lattice expansion below x = 0.1 was 0.6 × 10−3

and 2.7 × 10−3 Å per at.% Mg, respectively. Thus, similar to Fe-Cr, the present theoretical
∆a(x)/∆x seems to overestimate its experimental counterparts. On the other hand, the local
experimental slope between 10 and 12.5 at.% Mg by Hightower et al. reaches 5.4 × 10−3 Å
per at.% Mg, which is very close to the present value obtained for random solid solution.
Surprisingly, our calculated density change of 11% obtained for x = 0.1 is in perfect agreement
with the average experimental value measured below 10 at.% Mg (Fig. 1 in Ref.(Hightower
et al., 1997)).
According to the experimental phase diagram, the solid solubility of Mg in Fe, and vice versa,
is very small (Massalski, 1986), meaning that the formation energy of Fe-Mg alloy should be
large and positive. In Fig. 1 (right panel) we compare the formation enthalpy of Fe-Mg with
that of Fe-Cr. For the standard states, we use the ferromagnetic bcc Fe, the antiferromagnetic
B2 Cr, and the experimental hexagonal closed packed (hcp) Mg with c/a = 1.624. The present
enthalpy of formation for Fe-Cr shows a local negative minimum and becomes positive near
5.5% Cr, in good accordance with that reported in Refs. (Olsson et al., 2003; Korzhavyi
et al., 2009).The enthalpy of formation for Fe-Mg, on the other hand, is found to increase
monotonously up to 10 kJ/mol obtained for Fe0.90Mg0.10. This result is in line with the
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Thermo - Physical Properties of Iron - Magnesium Alloys 9

predicted enthalpy of formation for Fe-Mg by de Boer et al. (de Boer et al., 1988) and also
with that calculated by Yelsukov et al. (Yelsukov et al., 2005) for Fe0.93Mg0.07.

3.2 Single crystal elastic constants

For each Mg concentration x,the elastic constants were calculated at the corresponding
theoretical equilibrium lattice parameter a(x). The present theoretical single-crystal elastic
constants Cij(x) of ferromagnetic bcc Fe1−xMgx (0 ≤ x ≤ 0.1) random alloys are plotted in Fig.
2 as a function of Mg content. We find that all elastic constants decrease nearly linearly with
Mg addition. The theoretical C11(x),C12(x),C′(x), and C44(x) for x = 0.1 change by about
−36.3%,−34.2%,−38.2%, and −8.2%, respectively, compared to the corresponding values for
pure Fe. The monotonously decreasing trends of the Cij(x) of Fe-Mg (Fig. 2) indicating the
absence of electronic topological transition in Fe-rich Fe-Mg random solid solutions.
Before turning to the polycrystalline elastic moduli, we discuss the effect of local lattice
relaxation (LLR) around the impurity atoms on the single-crystal elastic constants. The LLR
effect, neglected in the CPA calculations, is expected to become important in systems with
large volume mismatch. Here we use a supercell technique to establish the order of magnitude
of the effect of LLR on the C′ elastic constant of Fe-Mg and Fe-Cr solid solutions. The
2x2x2 bcc supercell contained one Mg (or Cr) atom and 15 Fe atoms. First we calculated the
tetragonal elastic constant of Fe15Mg1 (Fe15Cr1) using ideal bcc underlying lattice with lattice
constant fixed to that obtained in a CPA calculation performed for the bcc Fe0.9375Mg0.0625

(Fe0.9375Cr0.0625) random alloy. Next we relaxed the first 8 nearest neighbor (NN) Fe atoms
around the impurity atom and recalculated C′ for the relaxed structure. In these calculations,
we used ∼ 2500 uniformly distributed k-points in the irreducible wedge of the Brillouin zone.
Results from the supercell calculations are summarized in Table 1. We find that in Fe15Mg1

the equilibrium Fe-Mg distance is ∼ 0.8% larger than the equilibrium Fe-Fe bond length in
pure bcc Fe. This figure may be contrasted with ∼ 0.1% contraction of the Fe-Cr distance
in the Fe-Cr system relative to the Fe-Fe bond length. Comparing the tetragonal elastic
constant calculated for the supercell having the ideal bcc structure (C′

u) to that calculated for
the supercell with relaxed Fe-impurity distance (C′

r), we can estimate the LLR effect in C′.
In Fe15Mg1 this effect is ∼ 0.7 GPa and in Fe15Cr1 ∼ 0.2 GPa. Since the alloying effects for
both systems are significantly larger than the above LLR effects (Fig. 2), we conclude that
the composition dependence of the elastic parameters of Fe-Mg and Fe-Cr systems is well
captured by the present EMTO-CPA approach.
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Fig. 2. Theoretical (EMTO) single-crystal elastic properties of ferromagnetic bcc Fe-Mg
random alloys as a function of Mg concentration.
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system C′
u δNN C′

r

Fe15Mg1 56.61 0.8 % 57.33
Fe15Cr1 77.40 -0.1 % 77.57

Table 1. Results of the supercell calculations for Fe15Mg1 and Fe15Cr1 systems. δNN is the
relaxation of the first nearest neighbor Fe atoms around the impurity atom. C′

u and C′
r (in

GPa) are the tetragonal elastic constants obtained for the supercells without and with local
lattice relaxation, respectively.

3.3 Polycrystalline elastic constants

The theoretical polycrystalline elastic moduli for ferromagnetic bcc Fe1−xMgx (0 ≤ x ≤ 0.1)
random alloys are displayed as a function of Mg content in Fig. 3. Similar to the single-crystal
elastic constants (Fig. 2), the polycrystalline elastic moduli also decrease with Mg content.
These results could in fact be anticipated if, for instance, we take into account that the
theoretical bulk modulus of hcp Mg is significantly smaller than that of bcc Fe. However,
the actual slope of B in Fig. 3 is much larger than that predicted from the ∼ 157 GPa
difference between the theoretical bulk moduli of Fe and Mg by assuming a linear composition
dependence for B(x). We find that for x = 0.1, B(x), G(x), E(x), and B/G(x) decrease by about
35.2%,21.7%,23.9%, and 17.3%, respectively, relative to those of pure Fe. Above 7.5 at.% Mg,
the calculated B/G(x) ratio of Fe-Mg alloys drops below the brittle-ductile limit of 1.75 set
by Pugh (Pugh, 1954), implying that Mg addition makes the ferromagnetic bcc Fe-Mg alloys
brittle.
The theoretical Poisson’s ratio (ν(x)) and Debye temperature (Θ(x)) of Fe-Mg are shown in
Fig. 4, for comparison theoretical and experimental (Speich et al., 1972) Poisson’s ratio and
Debye temperature of Fe-Cr are also shown. For Fe-Cr, the Poisson’s ratio slightly decreases
with Cr concentration up to 10 at.% Cr, in line with the experimental data (Speich et al., 1972).
The Debye temperature exhibits a monotonous enhancement with Cr content. In Fe0.9Cr0.1,
the calculated Poisson’s ratio decreases by 9.97% and the Debye temperature enhances by
4.45% with respect to that for pure Fe.
For Fe-Mg, both of them exhibit a nearly linear decreasing dependence on the chemical
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temperature for Fe-Cr are also shown.

composition. At 10 at.% Mg, the Poisson’s ratio and Debye temperature are by 12.37% and
8.45%, respectively, smaller than those corresponding to pure Fe. This Debye temperature
drop when going from Fe to Fe0.90Mg0.1 is expected to give a phonon vibration energy
contribution which stabilizes the solid solution. To estimate this effect, we make use of
the high-temperature expansion of the phonon energy (Grimvall, 1976). Namely, for two
solids with similar Debye temperatures, the vibrational free energy difference is ∆Fvib ≈
3kBT(∆Θ/Θ), where T is the temperature, ∆Θ/Θ is the relative Debye temperature and kB

the Boltzmann constant. We write the phonon free energy of formation for Fe1−xMgx as

∆Fvib(x) = x
[

Fvib(x)− Fvib(Mg)
]

+ (1 − x)
[

Fvib(x)− Fvib(Fe)
]

, where Fvib(x), Fvib(Mg),

and Fvib(Fe) are the vibrational free energies for Fe1−xMgx, Mg, and Fe, respectively. For
x = 0.1 we have [Θ(0.1)− Θ(Fe)]/Θ(Fe) ≈ −0.0845 and [Θ(0.1)− Θ(Mg)]/Θ(Mg) ≈ 0.406,
where for the Debye temperature of Mg we used 327 K (Grimvall, 1999). Using these relative
Debye temperatures, we arrive at ∆Fvib(0.1) ≈ −0.884 × 10−3T kJ/mol/K (referring to mole
of atoms). For comparison, the configuration entropy for Fe0.90Mg0.1, evaluated within the
mean-field approximations, is ∆Fconf(0.1)≈−2.70 × 10−3T kJ/mol/K. It is worth noting that

according to Fig. 1 (right panel), the total thermal free energy ∆

[

Fvib(0.1) + Fconf(0.1)
]

=

−3.584× 10−3T kJ/mol/K would stabilize the random Fe0.90Mg0.1 solid solution at ∼ 2790 K,
i.e. above the melting point of Fe.

4. Iron-magnesium alloys at Earth’s core conditions

In this chapter we review the thermo-physical properties of hexagonal closed-packed and
body-centered cubic iron-magnesium alloys at high pressure (and high temperature), up to
the conditions of the Earth’s solid inner core. We discuss the relevance of the theoretical results
to the inner core.

4.1 Hexagonal closed-packed iron-magnesium alloys

In the following, we demonstrate the elastic properties of hexagonal closed-packed
iron-magnesium alloys at high pressures and zero temperature (Kádas et al., 2008a).
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Volume C11 C33 C12 C13 C44

51.0 1545.5 1760.8 709.1 540.3 346.7 present work
49.6 1533.0 1544.0 846.0 835.0 583.0 Expt.a

50.0 1675 1835 735 645 415 LAPWb

49.9 1625.0 1867.6 809.3 639.2 356.5 APW+loc

50.9 1510 1450 460 673 414 FP-LMTOd

a Ref. Mao et al. (1998)
b Ref. Steinle-Neumann et al. (1999)

c Ref. Qiu & Marcus (2003)
d Ref. Söderlind et al. (1996)

Table 2. Theoretical and experimental elastic constants (in GPa) of nonmagnetic hcp Fe at
∼50 Bohr3/atom. All the theoretical results were obtained at zero temperature, while
measurements were performed at room temperature.

In order to check the accuracy of our method, we compare the present results obtained for
pure nonmagnetic hcp Fe to the available experimental and ab initio theoretical data at V=∼50
Bohr3/atom volume (Table 2).
We obtain a reasonable agreement both with theoretical and experimental results. The present
theoretical values agree with the full-potential linearized-augmented plane-wave (LAPW,
(Steinle-Neumann et al., 1999)), full-potential augmented plane-wave plus local orbital
(APW+lo, (Qiu & Marcus, 2003)) and full-potential linear muffin-tin orbitals (FP-LMTO,
(Söderlind et al., 1996)) results within ∼20%, except C12, where the FP-LMTO method
provides significantly smaller value than the other ab initio methods. We find larger
deviations from the X-ray diffraction measurements (Mao et al., 1998) for C13 and C44, where
the experiment provides notably larger values than any theoretical methods, even if we take
into account that the experimental volume is a little bit smaller than any of the theoretical
ones.

4.1.1 Equation of state

Prior to the calculation of the equation of state, we need to optimize the hexagonal axial ratio,
c/a, at each V volume for pure Fe and hcp Fe-Mg alloys. Panel (a) in Fig. 5 shows that
c/a increases with increasing pressure for pure Fe and Fe-Mg alloys (Kádas et al., 2008a).
However, the change in c/a is rather small, in the whole studied pressure range, it increases
by 0.7%, 0.6% and 0.5% in pure Fe, Fe0.95Mg0.05 and Fe0.9Mg0.1, respectively. We obtain the
lowest c/a values for pure Fe, and find that c/a increases with Mg content. Compared to pure
Fe, the average change in c/a is 0.3% in Fe0.95Mg0.05, and 0.6% in Fe0.9Mg0.1. We note that the
experimental c/a values for pure iron in the 34.8-300.6 GPa pressure range (Mao et al., 1990)
are very scattered and they vary between 1.575 and 1.602.
The theoretical equation of state is shown in Fig. 5 (b). At any pressure, the volume
increases with increasing Mg content compared to pure iron. This can be explained with
the larger atomic size of Mg: its metallic atomic radius is 27% larger than that of Fe. As
the pressure increases, the change in volume with increasing Mg concentration decreases,
which can be understood by considering that Mg has a much higher compressibility, than Fe
(Dubrovinskaia et al., 2005).
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Fig. 5. Theoretical pressure dependency of the hexagonal axial ratios (c/a) and the volume of
pure hcp Fe (circles), Fe0.95Mg0.05 (squares) and Fe0.9Mg0.1 (triangles).

4.1.2 Single crystal elastic constants

The theoretical elastic constants of Fe, Fe0.95Mg0.05 and Fe0.9Mg0.1 at different volumes are
shown in Table 3.
All the elastic constants follow a normal decreasing behavior with increasing volume. Their
average changes in this volume interval are ∆C11=-70%, ∆C33= -69%, ∆C12=-77%, ∆C13=-79%
and ∆C44=-62%. We observe monotonous change with the Mg concentration at each volume:
C11, C33 and C44 decrease with increasing Mg content, while C12 and C13 slightly increase.
C66 = (C11 − C12)/2 decreases with increasing Mg concentration. We calculate the largest
variations for C44: compared to pure iron, it decreases by 14% in Fe0.95Mg0.05 and 27% in
Fe0.9Mg0.1 at V=44.6 Bohr3/atom. Both pure hcp Fe and Fe-Mg alloys are mechanically stable
in the whole pressure range considering the following stability criteria (Grimvall, 1999), C11 >

|C12|, C33(C11 + C12)> 2C2
13, C11C33 > C2

13 and C44 > 0, which are fulfilled at any volume and
Mg content.

Volume C11 C33 C12 C13 C44

Fe:
44.602 2257.1 2597.4 1151.2 873.3 476.6
50.965 1545.5 1760.8 709.1 540.3 346.7
65.450 676.8 773.9 240.5 179.2 178.8

Fe0.95Mg0.05:
44.602 2159.2 2503.2 1169.1 869.6 411.6
50.965 1476.3 1707.6 739.3 544.6 303.9
65.450 653.4 767.9 264.3 187.6 157.4

Fe0.9Mg0.1:
44.602 2036.5 2398.7 1206.2 875.7 348.5
50.965 1399.3 1650.5 775.7 552.9 261.2
65.450 633.1 752.0 289.9 196.1 136.6

Table 3. Theoretical elastic constants (in GPa) of hcp Fe and hcp Fe-Mg alloys at different
volumes (in Bohr3/atom). These volumes correspond to pressures between approximately
18 and 340 GPa.
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4.1.3 Polycrystalline elastic constants

In the following, we examine the effect of Mg alloying on the physical properties of iron, and
compare our theoretical results to those of the PREM model. Panel (a) in Fig. 6 shows that
Mg decreases the bulk modulus, B, at any pressure. We find that B of the Fe0.9Mg0.1 alloy
is in an excellent agreement with PREM data of the inner core. We note, however, that our
calculations were performed at zero temperature, and according to the theoretical results of
Steinle-Neumann et al., B increases in Fe with increasing temperature (Steinle-Neumann et al.,
2001).
Examining the effect of alloying on the density, we find that the increasing Mg concentration
decreases it at any given pressure (Fig. 6 (b)). However, the densities of Fe-Mg alloys
do not reach those of the inner core reported in the PREM model, not even at 10% Mg
content. The shear modulus decreases with increasing Mg content (Fig. 6 (c)). Though at
core pressures 10% Mg alloying reduces the shear modulus by 23%, compared to pure iron,
it is still insufficient to reproduce shear moduli of the inner core. For the sound velocities,
we find that the longitudinal (compressional) sound wave velocity, vP, slightly decreases with
increasing Mg alloying (Fig. 6 (d)), and even at 10% Mg concentration, we calculate about
20% larger values than those of the PREM values at the Earth’s inner core. The transverse
(shear) sound velocity, vS, decreases to a larger extent with increasing Mg content than vP.
Although at core pressures 10% Mg alloying reduces vS by 12%, compared to pure iron, we
obtain here ∼45% larger values than those expected in the inner core. We note that both the
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Fig. 6. Theoretical bulk modulus (a), density (b), shear modulus, G (c), and sound velocities
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Seismic data as given in the PREM model are shown for comparison (inverted triangles).
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present calculated vP and vS values, being in linear relation with the density, fulfill Birch’s law
(Birch, 1961) at any Mg concentration.
In summary, investigating the elastic properties of iron-rich hcp Fe-Mg alloys, containing 5
and 10 atomic % Mg, up to pressures of the Earth’s inner core, we found that in these systems
the increasing Mg content decreases the bulk modulus, density and both the longitudinal
and transverse sound velocities. Mg alloying changes the elastic properties of hcp iron in
such a way that the differences to the PREM values decrease. Our results indicate that Mg
should be considered as a possible component of the Earth’s inner core. In addition, we note
that agreement between the calculated value of the bulk modulus and that of PREM is not a
sufficient test for a compositional model of the inner core, as has been noted in the literature
before.

4.2 Body-centered cubic iron-magnesium alloys

I the following, we demonstrate the thermo-physical properties of body-centered cubic
iron-magnesium alloys at high pressure and high temperature (Kádas, Vitos, Johansson &
Ahuja, 2009).

4.2.1 Equation of state

We calculated the equation of state for pure bcc Fe, as well as for bcc Fe1−xMgx (Fe0.95Mg0.05

and Fe0.9Mg0.1) alloys at zero temperature (Fig. 7). For comparison, for pure Fe both the
nonmagnetic (NM) and ferromagnetic (FM) states were considered. Figure 7 shows that
the volumes of NM and FM bcc Fe are notably different at low pressure, but the volume
difference gradually decreases with increasing pressure and disappears around ≈300 GPa.
This is in line with the gradually vanishing calculated ferromagnetic moment on Fe. We
also modelled the high temperature paramagnetic phase using the disordered local magnetic
moment (DLM) approach. The DLM was proven to describe the effect of loss of the net
magnetic moment accurately above the transition temperature (Oguchi et al., 1983). Our
calculated DLM moments rapidly vanish with pressure and become zero already at ∼10 GPa.
The effect of Mg-alloying can be observed in Fig. 7. At low pressures, the volume of Fe-Mg
alloys increases with the Mg content, due to the larger atomic size of Mg. Since Mg has higher
compressibility, than Fe, the change in volume with increasing Mg concentration decreases
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with increasing pressure. The volume difference between pure Fe and Fe-Mg alloys practically
vanishes at core pressures (329-364 GPa (Dziewonski & Anderson, 1981)).

4.2.2 Single crystal elastic constants

The zero temperature shear elastic constants, C′, C44, and the bulk modulus, B, calculated
at different V volumes for for pure bcc Fe, Fe0.95Mg0.05 and Fe0.9Mg0.1 alloys are shown in
Fig. 8 (solid lines). At T=0 K, pure bcc Fe is dynamically unstable, since one of its elastic
constants, the tetragonal shear modulus (C′) is negative at each volume. In addition, C′ shows
an anomalous behavior: it increases with increasing volume. However, C′ remains negative at
each volume, even in Fe0.9Mg0.1. We calculate (∆C′/∆V)Fe=7.6 GPa/Bohr3 for pure iron, and
(∆C′/∆V)Fe0.95Mg0.05

=4.1 GPa/Bohr3 and (∆C′/∆V)Fe0.9Mg0.1
=1.7 GPa/Bohr3 for the alloys. C44

and B follow a normal decreasing behavior with increasing volume.
At T=7000 K, in our calculations, pure bcc Fe is still unstable at high pressures, i.e. at small
volumes. Namely, at V=44.60 Bohr3/atom, we calculate C′=-43.71 GPa for Fe at T=7000 K. We
find that small amount of magnesium addition stabilizes dynamically the bcc phase of Fe-Mg
alloys. At the lowest core temperature (∼5000 K), we obtain C′(Fe0.91Mg0.09)=6.4 GPa at 355
GPa. However, at higher temperature, i.e. closer to the centre of the core, significantly less
Mg is sufficient for dynamical stability. For instance, at 7000 K already 5 at.% Mg addition
leads to positive C′ for the bcc phase (Fig. 8). C44 and B decrease with increasing volume in
both pure Fe and in Fe-Mg alloys at T=7000 K. The high temperature bulk moduli are slightly
larger than those calculated at zero temperature (Fig. 8).
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To understand the role of Mg on the dynamical stability of the bcc phase, we follow the
effect of the orthorhombic distortion δ (used to compute C′) on the bcc DOS (Fig. 9, upper
panel). In bcc Fe, the orthorhombic distortion splits the degenerated d peak located around -7
mRy below EF (corresponding mainly to the eg states), pushing one d band towards negative
energies and one d band above the Fermi level. Because of that, the DOS between -40 mRy
and EF decreases, which gives a substantial negative contribution to the electronic energy.
Consequently, the total energy decreases upon lattice distortion yielding a large negative
tetragonal shear constant for bcc Fe (C′

Fe=-285 GPa at 0 K and 44.6 Bohr3/atom). This
mechanism is responsible for the dynamical instability of bcc Fe at core pressures and low
temperatures. In Fe-Mg alloys, the above effect is greatly diminished. Due to the chemical
disorder, the DOS is much smoother near the Fermi level in Fe0.9Mg0.1 compared to that in
pure Fe (Fig. 9, upper panel, black solid line). As a result, the energy decrease upon lattice
distortion is less dominant for the alloy than for pure Fe. This leads to a significantly larger
C′ for Fe-Mg than for Fe already at low temperatures (C′

Fe0.9Mg0.1
=-83 GPa at 0 K and 44.6

Bohr3/atom).
The marked difference between the bcc and hcp DOS’s near EF (Fig. 9) is also reflected in
the temperature effects. The electron excitations are more significant in the case of the bcc
structure than for the hcp structure. This is because, first the DOS at EF is notably larger in the
bcc phase, and second the DOS at EF is very irregular in the bcc phase in contrast to the almost

85Anodization of Magnesium Alloys Using Phosphate Solution 85Thermo - Physical Properties of Iron - Magnesium Alloys

www.intechopen.com



18 Magnesium Alloys, Theory and Applications

constant DOS in the hcp phase. The increasing temperature increases C′ of bcc Fe, because of
the strong increase in the electronic entropy with distortion. This gives positive contribution
to the Gibbs free energy. In pure Fe at 6000 K, the electronic entropy term in the Gibbs free
energy (-TSe) is increased by 3.1 mRy with orthorhombic distortion, compared to that of the
non-distorted system. In Fe0.9Mg0.1, -TSe is increased by 1.7 mRy in the distorted structure,
which indicates that the dynamical stabilization effect of temperature is larger in pure Fe than
in Fe-Mg alloys. However, this can not compensate the large chemical stabilization effect
of Mg present already at low temperatures. Accordingly, we calculate C′(Fe)=-77 GPa and
C′(Fe0.9Mg0.1)=37.0 GPa at 6000 K and 44.6 Bohr3/atom (356 GPa).

4.2.3 Polycrystalline elastic constants

The polycrystalline shear modulus (G) can not be defined for dynamically unstable systems.
Accordingly, in the following, we examine the polycrystalline elastic constants at T=7000 K
temperature, for the dynamically stable bcc Fe-Mg alloys, and reveal the effect of Mg alloying
on the elastic properties. The Hashin-Shtrikman averages (Hashin & Shtrikman, 1962) of
the shear modulus (G), the Young modulus (E), the polycrystalline anisotropy (A), and the
longitudinal (vP) and transversal (vS) sound velocities calculated for bcc Fe0.95Mg0.05 and
Fe0.9Mg0.1 alloys at different volumes and at T=7000 K are shown in Fig. 10. The shear
modulus follows a normal decreasing behavior with increasing volume in both alloys (Fig. 10,
panel (a)). Between V=44.60 and V=57.91 Bohr3/atom G decreases by 20% in Fe0.95Mg0.05, and
39% in Fe0.9Mg0.1. The shear modulus increases with Mg alloying at each volume considered
here. The change in G, due to the increased Mg content, diminishes with increasing volume.
This is because G decreases almost linearly with increasing volume in Fe0.9Mg0.1, while in
Fe0.95Mg0.05 |∆G/∆V| increases with increasing volume. G is 49% larger in Fe0.9Mg0.1 than
in Fe0.95Mg0.05 at V=44.60 Bohr3/atom, and the corresponding difference in G is only 15% at
V=57.91 Bohr3/atom.
Magnesium enhances the stiffness of bcc Fe at T=7000 K, as the Young moduli, E = 9BG/(3B+
G), are higher in Fe0.9Mg0.1 than in Fe0.95Mg0.05 at each volume (panel (b) in Fig. 10). In
Fe0.9Mg0.1, E decreases approximately linearly with increasing volume (i.e. with decreasing
pressure), while in Fe0.95Mg0.05 |∆E/∆V| increases with increasing volume. Because of this,
the change in E due to 5% Mg addition diminishes with increasing volume: E is 47% larger in
Fe0.9Mg0.1 than in Fe0.95Mg0.05 at V=44.60 Bohr3/atom, and this difference is reduced to 14%
at V=57.91 Bohr3/atom.
In polycrystalline materials,

A =
GV − GR

GV + GR
(13)

can be used as a measure of elastic anisotropy, where GV and GR are the Voigt and Reuss
shear moduli (Grimvall, 1999). In an isotropic material, the Voigt and Reuss averages of the
shear moduli are equal, so that A=0. The more anisotropic a material is, the larger A value
it has. The bcc Fe-Mg alloys considered here are highly anisotropic: A varies between 0.90
and 0.51 in Fe0.95Mg0.05, and it changes between 0.53 and 0.37 in Fe0.9Mg0.1. The anisotropy
is larger in Fe0.95Mg0.05 than in Fe0.9Mg0.1 at each volume (Fig. 10, panel (c)), indicating
that the increasing Mg content decreases the anisotropy of the alloys. For both alloys the
anisotropy decreases with increasing volume. As a comparison, we note, that there is a
significant difference in anisotropy between the two phases, namely the bcc and hcp phases
of pure Fe. Hexagonal Fe is almost isotropic: A=0.02 at V=44.60 Bohr3/atom (Kádas et al.,
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2008a). In this phase, Mg alloying does not change anisotropy notably: at the same V=44.60
Bohr3/atom volume, A=0.03 in hcp Fe0.95Mg0.05, and A=0.04 in hcp Fe0.9Mg0.1.

The longitudinal sound velocity can be calculated as vP =
√

B+4G/3
̺ , where ̺ is the density.

The longitudinal sound velocity decreases linearly with increasing volume (panel (d) in Fig.

10) in both Fe0.95Mg0.05 and Fe0.9Mg0.1. Since B ≫ G in these alloys, we find that vP ∼
√

B,
which in turn follows a linear trend with volume. Increasing Mg content raises vP at each V
volume.
The transversal sound velocity, vS =

√

G/̺, monotonically decreases with increasing volume
in Fe0.9Mg0.1 (panel (e) in Fig. 10). In Fe0.95Mg0.05, vS follows a different behavior: it
increases with increasing volume up to V=50.97 Bohr3/atom, and decreases above V=54.36
Bohr3/atom. The trend in vS vs. volume obtained for Fe0.95Mg0.05 and Fe0.9Mg0.1 can be

explained by vS being approximately proportional to
√

G in bcc Fe-Mg alloys. The transversal
sound velocity is raised by increasing Mg content at each volume.

4.3 Implications for the Earth’s inner core

Iron-based alloys at high pressure and temperature are relevant to the Earth’s solid inner core.
There are extreme conditions in this part of our planet: the pressure varies between 329 and
364 GPa (Dziewonski & Anderson, 1981), and the temperature changes between 5000 and 8000
K (Hemley & Mao, 2001).
We showed in Section 4.1.3 that Mg alloying changes the elastic properties of hcp iron in
such a way that the differences to the PREM values decrease. However, the shear modulus
and both the longitudinal and transversal sound velocities significantly differ from those
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Fig. 11. Shear and bulk moduli, and sound velocities of bcc Fe-Mg alloys. Calculated shear
moduli (a), bulk moduli (b) and sound velocities (vS shear wave and vP compressional wave
velocities, panel (c)) are displayed for Fe0.91Mg0.09 at temperatures of T=5000 K (circles) and
T=7000 K (squares), and for Fe0.95Mg0.05 at T=7000 K (triangles). Seismic data as given in the
PREM model (Dziewonski & Anderson, 1981) are shown for comparison (inverted triangles).

of the PREM values at the Earth’s inner core. The electronic DOS of hcp Fe (Fig. 9)
indicates that the electronic excitations are not as significant in the hcp phase of Fe than in
the bcc phase. Therefore we do not expect dramatic changes in the elastic constants at high
temperature, compared to zero temperature. Accordingly, one may not expect significantly
better agreement in the shear modulus and sound velocities of hcp Fe-Mg alloys with PREM
data at high temperature than at T=0 K.
Therefore, in the following we focus on bcc-structured alloys, and we compare the theoretical
high-temperature elastic properties of bcc Fe-Mg alloys with seismic data of the inner core, as
given in the PREM model (Dziewonski & Anderson, 1981).
The calculated density of the bcc Fe0.91Mg0.09 alloy is 13.17 g/cm3 at 5000 K and 350 GPa,
which shows an excellent agreement with the corresponding core density (Dziewonski &
Anderson, 1981), the deviation being 1.6%. The present density is smaller than 13.58 g/cm3

obtained from ab initio molecular dynamics simulations (Belonoshko et al., 2007) for pure
bcc iron at 356.7 GPa. In Fig. 11, we compare the shear (G) and bulk (B) moduli, as well as
compressional (vP) and shear (vS) wave velocities of Fe0.91Mg0.09 at 5000 and 7000 K, and those
of Fe0.95Mg0.05 at 7000 K with the PREM data. The shear modulus of Fe0.91Mg0.09 at 5000 K
is in very good agreement with the seismic data, the deviation being -7.8% at 353 GPa (panel
(a)). The figure also demonstrates that G increases with increasing temperature at constant
Mg content. However, at higher temperatures smaller amount of Mg can stabilize bcc Fe,
and G sensitively decreases with decreasing Mg concentration. Accordingly, G(Fe0.95Mg0.05)
at 7000 K agrees excellently with those of the core: the present theoretical value at 363 GPa
differs by -5.8% from the seismic data. The calculated bulk moduli (Fig. 11 (b)) are also very
close to those of the inner core (Dziewonski & Anderson, 1981). B(Fe0.91Mg0.09) differs from
the seismic data by -2.5% and -2.1% at 5000 and 7000 K, respectively, while the deviation
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for Fe0.95Mg0.05 at 7000 K is only -0.1%. The compressional (P-wave) velocity also shows
an excellent agreement with PREM (Fig. 11 (c)). At core pressures, the deviations between
theoretical and PREM vP values are -2.9% and 0.6% for Fe0.91Mg0.09 at 5000 K and 7000 K,
respectively, and -2.5% for Fe0.95Mg0.05 at 7000 K. It has been shown (Vočadlo, 2007) that both
bcc and hcp phases of pure Fe, as well as FeS and FeSi have significantly higher shear wave
velocities than those deduced from seismology. At the same time, the present theoretical shear
wave velocity (Fig. 11 (c)) agrees well with PREM for Fe0.91Mg0.09 at 5000 K: the difference
being -5.4% at 353 GPa. At 7000 K and 362 GPa, the deviation between theoretical and PREM
vS values is somewhat larger (14.6%). However, vS decreases with decreasing Mg content,
and we obtain an excellent agreement (-4.8%) with seismic data for Fe0.95Mg0.05 at 7000 K and
363.8 GPa.
In summary, a bcc-structured Fe-Mg alloy containing 5-10% Mg in fact reproduces the physical
properties of the Earth’s inner core, as given in the PREM model, which makes it a very strong
candidate structural model for the core.

5. Conclusions

Using the EMTO method in combination with the coherent-potential approximation, we
have calculated the single-crystal and polycrystalline elastic properties of ferromagnetic bcc
Fe-Mg random alloys encompassing up to 10 at.% Mg. At ambient conditions, all elastic
parameters of ferromagnetic bcc Fe-Mg decrease in an almost linear manner with Mg addition.
In general, Mg is found to have a more pronounced impact on the elastic properties of
Fe-based alloys than that of Cr. In particular, the B/G ratio decreases by 17.3% when 10%
Mg is added to bcc Fe, indicating that Mg reduces the ductility of Fe. According to the
classical solid-solution strengthening models (Vitos & Johansson, 2007; Labusch, 1972), the
large alloying effects obtained for the Fe-Mg alloys should result in an enhanced mechanical
hardness. These predictions are subject for further theoretical investigations and call for well
designed experimental studies on the mechanical properties of Fe-rich Fe-Mg solid solutions.
We showed that at Earth’s core pressures, Mg alloying changes the elastic properties of
hcp iron in such a way that the differences to the seismic data decrease. The calculated
shear moduli and sound velocities of hcp Fe-Mg alloys still differ significantly from those
of the core as provided by seismic observations, even at 10% Mg content. We showed
that at the conditions of the inner core 5-10% Mg stabilizes bcc Fe both dynamically and
thermodynamically, and we gave an electronic structure explanation of this phenomenon. We
demonstrated that the physical properties of bcc Fe-Mg alloys containing 5-10% Mg reproduce
those of the inner core: the calculated density, elastic moduli and sound velocities of bcc Fe-Mg
alloys are consistent with seismic data. Therefore the bcc-structured Fe-Mg alloy is amongst
the strongest candidate models for the Earth’s solid inner core.
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Kádas, K., Lindquist, M., Erikssson, O., Johansson, B. & Vitos, L. (2009). Magnetism-driven
anomalous surface alloying between Cu and Cr, Appl. Phys. Lett. 94: 172507.
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