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1. Introduction 

This chapter concerns influences of fungicides and pesticides on specific enzymes of various 

living systems. There is a growing interest on enzyme systems and environmental factors  

affecting them in the field of biochemistry and molecular biology. As known, fungicides, 

pesticides and other chemicals can enter rain water, food, irrigation water or rivers in many 

cases, and may be hazardous for living systems. Many chemical substances including 

fungicides, pesticides, drugs and metal ions influence metabolism at very low 

concentrations by altering enzyme activities and disrupting physiological balances. Many 

biocides are known to interfere with a number of processes as they have neurotoxic, 

hematotoxic, genotoxic, hepatic and renal effects on vertebrates (Hayes, 1990; Pretty & Hine, 

2005; Ecobichon, 1996; WHO, 1967; Eisler, 1996). Although there are numerous examples of 

applications of widely used pesticides and fungicides, little is known about their effects on 

specific enzymes in organisms and there is a serious lack of data and information on 

exposures, effects and biological evaluation that connect them. Whereas the effects of 

several factors on enzyme levels and activity is reasonably well appreciated, the effects of 

xenobiotic exposure on specific enzyme systems have not received substantial review yet. 

Relevant xenobiotics are derived from pharmaceutical, nutraceutical and environmental 

exposure, and many of the mechanisms involved are highly complex in nature, not easily 

predictable from existing in vitro tests and do not always predict well from in vivo animal 

models. After a detailed review of enzymes, fungicides and pesticides, a framework for 

considering the different levels of direct and indirect modulation by xenobiotics is 

developed herein, and areas that still require further investigation are highlighted. It is 

anticipated that this chapter may help explain some of the variation in levels of specific 

enzymes, guide the direction of long-term drug/nutraceutical safety trials, and stimulate 

ideas for future research.  

2. Enzymes 

2.1 Description  

Enzymes are proteins which catalyze biochemical reactions in high yields. The molecules at 
the beginning of the enzymatic process are called substrates, and the enzyme converts them 
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into different molecules, called the products. Enzymes are required in almost all processes 
in a biological cell at significant rates. Enzymes are very selective for their substrates and 
speed up only a few reactions from among many possibilities. Thus, the set of enzymes 
made in a cell determines which metabolic pathways occur in the cell. Enzymes lower the 
activation energy of a reaction like all catalysts, thus they dramatically increase the reaction 
rates. Most enzyme reaction rates are much faster (millions of times) than those of un-
catalyzed reactions. Since enzymes are catalysts, they are not consumed by the reactions 
they catalyze, nor do they alter the equilibrium of these reactions. However, enzymes do 
differ from most other catalysts by being much more specific. Enzymes are known to 
catalyze about 4,000 biochemical reactions (Bairoch, 2000). The macromolecular components 
of almost all enzymes are composed of proteins, except for a class of RNA modifying 
catalysts known as ribozymes. Many enzymes consist of a protein and a non-protein (called 
the cofactor). The proteins in enzymes are usually globular. The intra- and intermolecular 
bonds that hold proteins in their secondary and tertiary structures are disrupted by changes 
in temperature and pH. This affects shapes and so the catalytic activity of an enzyme is pH 
and temperature sensitive. Enzymes are found in all tissues and fluids of the body. 
Intracellular enzymes catalyze the reactions of metabolic pathways. Plasma membrane 
enzymes regulate catalysis within cells in response to extracellular signals, and enzymes of 
the circulatory system are responsible for regulating the clotting of blood. Almost every 
significant life process is dependent on enzyme activity. Enzymes are classified on the basis 
of their composition. Those composed wholly of proteins are known as simple enzymes in 
contrast to complex enzymes, which are composed of protein plus a relatively small organic 
molecule. Complex enzymes are also known as holoenzymes. In this terminology the 
protein component is known as the apoenzyme, while the non-protein component is known 
as the coenzyme or prosthetic group where prosthetic group describes a complex in which 
the small organic molecule is bound to the apoenzyme by covalent bonds; when the binding 
between the apoenzyme and non-protein components is non-covalent, the small organic 
molecule is called a coenzyme. Many prosthetic groups and coenzymes are water-soluble 
derivatives of vitamins. Although enzymes are highly specific for the kind of reaction they 
catalyze, the same is not always true of substrates they attack. Generally, enzymes having 
broad substrate specificity are most active against one particular substrate. 

2.2 Enzymatic catalysis 

Catalysis of biochemical reactions in the cell is vital because reaction rates of the uncatalysed 
reactions are much lower. The mechanism of enzymatic catalysis and other types of 
chemical catalysis are in principle similar. The enzyme reduces the energy required to reach 
the highest energy transition state of the reaction by providing an alternative reaction route 
and by stabilizing intermediates. The reduction of activation energy (Ea) increases the 
number of reactant molecules with enough energy to reach the activation energy and form 
the product. In order for a reaction to occur, reactant molecules must contain sufficient 
energy to cross a potential energy barrier, the activation energy. All molecules possess 
varying amounts of energy depending, for example, on their recent collision history but, 
generally, only a few have sufficient energy for reaction. The lower the potential energy 
barrier to reaction, the more reactants have sufficient energy and, hence, the faster the 
reaction will occur (Bender, 1964). All catalysts, including enzymes, function by forming a 
transition state, with the reactants, of lower free energy than would be found in the 
uncatalysed reaction. Even quite modest reductions in this potential energy barrier may 
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produce large increases in the rate of reaction. There are a lot of mechanisms by which 
activation energy decrease may be achieved. The most important of these involves the 
enzyme initially binding the substrate(s), in the correct orientation to react, close to the 
catalytic groups on the active enzyme complex and any other substrates (Chaplin, 1986). In 
this way the binding energy is used partially in order to reduce the contribution of the 
considerable activation entropy, due to the loss of the reactants' (and catalytic groups') 
translational and rotational entropy, towards the total activation energy. Other contributing 
factors are the introduction of strain into the reactants, provision of an alternative reactive 
pathway and the desolvation of reacting and catalysing ionic groups. The energies available 
to enzymes for binding their substrates are determined primarily by the complementarity of 
structures. The specificity depends upon minimal steric repulsion, the absence of unsolvated 
or unpaired charges, and the presence of sufficient hydrogen bonds. These binding energies 
are capable of being quite large. However, enzymes do not use this potential binding energy 
simply in order to bind the substrate(s) and form stable long-lasting complexes. If this were 
to be the case, the formation of the transition state between enzyme-substrate and enzyme-
product would involve an extremely large free energy change due to the breaking of these 
strong binding forces, and the rate of formation of products would be very slow. They must 
use this binding energy for reducing the free energy of the transition state. This is generally 
achieved by increasing the binding to the transition state rather than the reactants and, in 
the process, introducing an energetic strain into the system and allowing more favourable 
interactions between the enzyme's catalytic groups and the reactants. A description of 
several ways enzyme action may be affected as follows.  
Salt concentration: If the salt concentration is close to zero, the charged amino acid side 
chains of the enzyme molecules will attract each other. The enzyme will denature and form 
an inactive precipitate. If, on the other hand, the salt concentration is very high, normal 
interaction of charged groups will be blocked, new interactions will occur, and again the 
enzyme will precipitate. An intermediate salt concentration such as that of human blood 
(0.9%) or cytoplasm is the optimum for many enzymes.   
pH: pH is a logarithmic scale that measures the acidity or H+ concentration in a solution. 
The scale runs from 0 to 14 with 0 being highest in acidity and 14 lowest. When the pH is in 
the range of 0-7, a solution is said to be acidic; if the pH is around 7, the solution is neutral; 
and if the pH is in the range of 7-14, the solution is basic. Amino acid side chains contain 
groups such as -COOR and -NH2 that readily gain or lose H+ ions. As the pH is lowered an 
enzyme will tend to gain H+ ions, and eventually enough side chains will be affected so that 
the enzyme's shape is disrupted. Likewise, as the pH is raised, the enzyme will lose H+ ions 
and eventually lose its active shape. Many enzymes perform optimumly in the neutral pH 
range and are denatured at either an extremely high or low pH. Some enzymes, such as 
pepsin, which acts in the human stomach where the pH is very low, have a low pH 
optimum.  
Temperature: Generally, chemical reactions speed up as the temperature is raised. As the 
temperature increases, more of the reacting molecules have enough kinetic energy to 
undergo the reaction. Since enzymes are catalysts for chemical reactions, enzyme reactions 
also tend to go faster with increasing temperature. However, if the temperature of an 
enzyme-catalyzed reaction is raised still further, a temperature optimum is reached; above 
this value the kinetic energy of the enzyme and water molecules is so great that the 
conformation of the enzyme molecules is disrupted. The positive effect of speeding up the 
reaction is now more than offset by the negative effect of changing the conformation of more 
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and more enzyme molecules. Many proteins are denatured by temperatures around 40-50 
0C, but some are still active at 70-80 0C, and a few even withstand boiling.  
Modulators: Many molecules other than the substrate may interact with an enzyme. If such 
a molecule increases the rate of the reaction it is an activator, and if it decreases the reaction 
rate it is an inhibitor. These molecules can regulate how fast the enzyme acts. Any substance 
that tends to unfold the enzyme, such as an organic solvent or detergent, will act as an 
inhibitor. Some inhibitors act by reducing the -S-S- bridges that stabilize the enzyme's 
structure. Many inhibitors act by reacting with side chains in or near the active site to 
change its shape or block it. Many well-known poisons such as potassium cyanide and 
curare are enzyme inhibitors that interfere with the active site of critical enzymes.  

2.3 Enzyme inhibition 

A number of substances may cause a reduction in the rate of an enzyme catalysed reaction. 

Some of these are non-specific protein denaturants. Others, which generally act in a fairly 

specific manner, are known as inhibitors. Loss of activity may be either reversible, where 

activity may be restored by the removal of the inhibitor, or irreversible, where the loss of 

activity is time dependent and cannot be recovered during the timescale of interest.  Many 

drugs and poisons are enzyme inhibitors. If the inhibited enzyme is totally inactive, 

irreversible inhibition behaves as a time-dependent loss of enzyme concentration, in other 

cases, involving incomplete inactivation, there may be time-dependent changes in both Km 

and Vmax. More important for most enzyme-catalysed processes is the effect of reversible 

inhibitors. These are generally discussed in terms of a simple extension to the Michaelis-

Menten reaction scheme (Michaelis & Menten, 1913).  

 

E + S

EI

ES

ESI

P

+I Ki

k+1 k+2

k-1

+IKi'

 

Fig. 1. Reaction scheme E: enzyme, S: substrate, I: inhibitor, P: product 

I represents the reversible inhibitor and the inhibitory (dissociation) constants Ki and Ki' are 
given by 

K i

[E][I]

[EI ]                        

K i'
[ES] [I]

[ESI]  

For the present purposes, it is assumed that neither EI nor ESI may react to form product. 

Equilibrium between EI and ESI is allowed, but makes no net contribution to the rate 

equation as it must be equivalent to the equilibrium established through:  

EI + S E + S + I ES + I ESI
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In competitive inhibition, Ki' is much greater than the total inhibitor concentration and the 
ESI complex is not formed. This occurs when both the substrate and inhibitor compete for 
binding to the active site of the enzyme. The inhibition is most noticeable at low substrate 
concentrations but can be overcome at sufficiently high substrate concentrations as the 
Vmax remains unaffected. Normally the competitive inhibitor bears some structural 
similarity to the substrate, and often is a reaction product (product inhibition), which may 
cause a substantial loss of productivity when high degrees of conversion are required. A 
similar effect is observed with competing substrates, quite a common state of affairs in 
industrial conversions, and especially relevant to macromolecular hydrolyses where a 
number of different substrates may coexist, all with different kinetic parameters. The 
reaction involving two co-substrates may be modelled by the scheme (Cornish-Bowden, 1974). 
 

E + S1

ES2

K-3

k+1

k-1

+S2

K+3

P1
k+2

ES1

P2
k+4

 

Fig. 2. Reaction scheme for two substrates 

Both substrates compete for the same catalytic site and, therefore, their binding is mutually 
exclusive and they behave as competitive inhibitors of each others reactions. In, 
uncompetitive inhibition Ki is much greater than the total inhibitor concentration and the EI 
complex is not formed. This occurs when the inhibitor binds to a site which only becomes 
available after the substrate (S1) has bound to the active site of the enzyme (Cornish-
Bowden, 1976). This inhibition is most commonly encountered in multi-substrate reactions 
where the inhibitor is competitive with respect to one substrate (e.g. S2) but uncompetitive 
with respect to another (Cornish-Bowden et al., 1978) (e.g. S1), where the reaction scheme 
may be represented by: 

E + S1 ES1 + S2 ES1S2 product

E + S1 ES1 + I ES1I X
 

The inhibition is most noticeable at high substrate concentrations (i.e. S1 in the scheme 
above) and cannot be overcome as both the Vmax and Km are equally reduced (Cornish-
Bowden & Endrenyi, 1986). A special case of uncompetitive inhibition is substrate inhibition 
which occurs at high substrate concentrations in about 20% of all known enzymes (e.g. 
invertase is inhibited by sucrose). It is primarily caused by more than one substrate 
molecule binding to an active site meant for just one, often by different parts of the substrate 
molecules binding to different subsites within the substrate binding site (Crompton & 
Waley, 1986; Fersht, 1985). If the resultant complex is inactive this type of inhibition causes a 
reduction in the rate of reaction, at high substrate concentrations. It may be modelled by the 
following scheme: 
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E + S ES

ESS

P
k+1 k+2

k-1

+SKs

 

Fig. 3. Reaction scheme for high substrate concentrations 

In noncompetitive inhibition, both the EI and ESI complexes are formed equally well (i.e. Ki 
equals Ki'). This occurs when the inhibitor binds at a site away from the substrate binding 
site, causing a reduction in the catalytic rate. It is quite rarely found as a special case of 
mixed inhibition (Henley & Sadana, 1985; Hill et al., 1977; Koshland, 1962). The fractional 
inhibition is identical at all substrate concentrations and cannot be overcome by increasing 
substrate concentration due to the reduction in Vmax.  

3. Fungicides 

3.1 Description 

Fungicides are chemical compounds or biological organisms used to kill or inhibit fungal 
spores or fungi which can cause serious damage in agriculture, resulting in critical losses of 
yield, quality and profit. They are used both in agriculture and to fight fungal infections in 
animals. Fungicides can either be contact, translaminar or systemic. Contact fungicides are 
not taken up into the plant tissue, only protect the plant where the spray is deposited; 
translaminar fungicides redistribute the fungicide from the upper, sprayed leaf surface to 
the lower, unsprayed surface; systemic fungicides are taken up and redistributed through 
the xylem vessels to the upper parts of the plant. New leaf growth is protected for a short 
period. Most fungicides that can be bought retail are sold in a liquid form. The most 
common active ingredient is sulfur, present at 0.08% in weaker concentrates, and as high as 
0.5% for more potent fungicides. Fungicides in powdered form are usually around 90% 
sulfur and are very toxic. Other active ingredients in fungicides include neem oil, rosemary 
oil, jojoba oil, and the bacterium Bacillus subtilis. Fungicide residues have been found on 
food for human consumption, mostly from post-harvest treatments (Brooks & Roberts, 
1999). Some fungicides are dangerous to human health.  

3.2 Structure activity relationship 

The advent of organic fungicides was an important milestone in the quest for antifungal 
compounds capable of exerting a selective effect without damaging the host plant. 
Selectivity may depend upon differences in biochemistry, cytology, or on differential 
accumulation. The criticality of the latter process is obvious from the narrow division 
between fungitoxicity and phytotoxicity in many classes of organic compounds. Protectant 
fungicides often act through selective accumulation within the pathogen, and many are 
potentially toxic to both fungal and plant cells, but the latter are protected by the cuticle 
which acts as a barrier to the passage of foreign chemicals. However, damage can still arise 
by exceeding a recommended dosage rate or through abnormal climatic conditions 
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favouring increased absorption. The organic chemist designing candidate fungicides, is also 
able to achieve a selective margin between fungitoxicity and phytotoxicity by structural 
modifications affecting partition through barriers such as cuticular and cytoplasmic 
membranes, by altering molecular size and shape or the lipophilic / hydrophilic balance or 
hydrogen-bonding capacity. The multiplicity of structural and conformational arrangements 
of groups of key atoms which are possible in organic compounds has led to important 
advances in antifungal specificity. This is nowhere more true than with systemic fungicides 
where it has been variously attributed to structural features of the entire molecule, or to 
some biologically active centre interacting with specific receptors. Differential fungitoxicity 
between stereoisomers is known. In griseofulvin, one of the first compounds shown to have 
systemic antifungal activity (Crowdy et al., 1955), the stereochemistry is critical . Of four 
isomers resulting from asymmetric centres at carbon atoms 2 and 6', only griseofulvin is 
active, and the racemic form has only half of the activity of (+)-griseofulvin. The 
diastereoisomer known as epi(+)-griseofulvin (II) and all transformation products therefrom 
are inactive.  
 

O

O

Cl

O

O

O

O

I    

O

Cl

O

O

O

O

O

II      

NH

O

O

O

HO

III  

Fig. 4. Structures of the stereoisomers  

Cycloheximide (III) has four asymmetric centres (Fig. 4) (at C-2, C-4, C-6 and C-2'), the 
compound produced by Streptomyces griseus being 2,6-trans. Probably the simplest 
example of selective fungitoxicity is that of secbutylamine which has a narrow antifungal 
spectrum involving a few Penicillium spp. (Eckert et al., 1975), The (-) isomer is considerably 
more active than the (+) isomer, a fact which cannot be related to selective accumulation by 
sensitive fungi, and it seems that this selectivity is due to factors closely associated with the 
mitochondria or pyruvic dehydrogenase which is the site of action. Reasons for the 
contrasting selectivity of structural isomers are not always obvious. In addition to differing 
partition parameters, stereochemical or hydrogen-bonding factors are almost certainly 
involved; additionally special features of the molecule involving particular reactions such as 
hydrolysis and oxidation are often of considerable importance. Hydrogen bonding is 
certainly involved in the striking differences that are shown by substituted 2,4- and 2,6-
dinitrophenols. Almost without exception the former tend to have high intra- and inter-
molecular hydrogen-bonding strengths leading to greater cuticular and epidermal 
penetration and greater consequent risk of phytotoxicity, whilst the 2,6-isomers are 
exclusively retained by cuticular waxes. The influence of chemical structure manipulation 
on biological activity has a fascination for the synthetic organic chemists. Interest in 
substituted formamides was stimulated after the systemic fungicidal activity of triforine (IV, 
R=H) was discovered (Ost et al., 1969). Carter et al. (1972) showed that the piperazine 
moiety was not essential for systemic activity and found that the compound (V, R=methoxy) 
controlled E. graminis when applied to roots although it was poorly fungistatic or 
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protectant. They subsequently tested about a hundred related compounds and found that 
the alkoxy and alkylamino analogues (VI, R=alkoxy or alkylamino) were more active 
systemically than the corresponding alkylthio compounds, and that activity appeared to be 
greater with the C3 and C4 members than with the methyl and ethyl analogues (Fig. 5). 
 

N

N

N
H

Cl3C

Cl3C
H
N R

O

R

O

IV

Cl3C
H
N H

OR

NH

Cl3C
H
N H

O

Cl

Cl

V VI  

Fig. 5. Structures of the analogues  

The work of Brown and Woodcock (1975) revealed further structural specificities. Thus the 

basic structure (XVI, R=H) was inactive in both leaf-spray and root-drench tests against E. 

graminis on barley (EDs0 >400 x I0 "s M) but the phytotoxicity at the leaf tips of root-

drenched plants suggested that translocation was not prevented. The tribromomethyl 

analogue exhibited some activity in the root-drench test which suggested that the 

trihalomethyl group contributed to fungitoxicity by way of lipophilic or inductive-electronic 

effects rather than through specific receptors. In general their results indicated little 

correlation between activity in leaf-spray and root-drench tests, thus emphasising that these 

modes of application had different structural requirements. One structural feature common 

to the triforine and chloraniformethan molecules that seems significant is the imino group. 

That the imino hydrogen atom does not appear to be critical , however, seems likely from 

the comparisons, although steric and conformational factors could account for inactivity . 

The structures of some widely used fungicides are provided below (Fig. 6, Fig.7).  
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Fig. 6. Structures of some widely used fungicides  
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Fig. 7. Structures of some widely used fungicides  
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4. Pesticides 

4.1 Description 

Pesticides are substances or mixtures of substances used for preventing, destroying, 
repelling or mitigating any pest. A pesticide may be a chemical substance, biological agent 
(such as a virus or bacterium), antimicrobial, disinfectant or device used against any pest. 
Pests include insects, plant pathogens, weeds, molluscs, birds, mammals, fish, nematodes, 
and microbes that destroy property, spread disease or are a vector for disease or cause a 
nuisance.  

4.2 Structure activity relationship 

Pesticides can be grouped according to chemical structure. Pesticides with similar structures 
have similar characteristics and usually have a similar mode of action. Most pesticide active 
ingredients are either inorganic or organic pesticides. From a scientific view, inorganic 
pesticides do not contain carbon and are usually derived from mineral ores extracted from 
the earth. Examples of inorganic pesticides include copper sulphate, ferrous sulphate, 
copper and sulphur. Organic pesticides contain carbon in their chemical structure. Most 
organic compounds are created from various compounds, but a few are extracted from plant 
material and are called 'botanicals'. Examples of organic pesticides include: captan, 
pyrethrin, and glyphosate. Organic pesticides with similar structures are grouped into 
families of chemicals. Prominent insecticide families incorporates organochlorines, 
organophosphates, and carbamates. Organochlorine hydrocarbons (e.g. DDT) could be 
separated into dichlorodiphenylethanes, cyclodiene compounds, and other related 
compounds. They operate by disrupting the sodium/potassium balance of the nerve fiber, 
forcing the nerve to transmit continuously. Their toxicities vary greatly, but they have been 
phased out because of their persistence and potential to bioaccumulate (Kamrin, 1997) 
Organophosphate and carbamates largely replaced organochlorines. Both function through 
inhibiting acetylcholinesterase enzyme, allowing acetylcholine to transfer nerve impulses 
indefinitely and causing a variety of symptoms such as weakness or paralysis. 
Organophosphates are quite toxic to vertebrates, and have in some cases been replaced by 
less toxic carbamates (Kamrin, 1997). Thiocarbamate and dithiocarbamates are subclasses of 
carbamates. Prominent families of herbicides include phenoxy and benzoic acid herbicides 
(e.g. 2,4-D), triazines (e.g. atrazine), ureas (e.g. diuron), and Chloroacetanilides (e.g. 
alachlor). Phenoxy compounds tend to selectively kill broadleaved weeds rather than 
grasses. The phenoxy and benzoic acid herbicides function similar to plant growth 
hormones, and grow cells without normal cell division, crushing the plants nutrient 
transport system Triazines interfere with photsynthesis (Kamrin, 1997). The structures of 
some widely used pesticides are provided below (Fig. 8). 

5. Interactions of fungicides and pesticides with enzymes 

5.1 Modulation of the enzyme activity 

Many chemicals affect the activity of specifif enzymes both in vitro and in vivo (Coban et al., 
2008). For instance, medical drugs (Alici et al., 2008; Ekinci et al., 2007a ), metal ions (Ekinci 
et al., 2007b; Tekman et al., 2008), pesticides and fungicides (Senturk et al., 2009; Ceyhun et 
al., 2010a) generally inhibit the enzymes at very low concentrations (Ekinci & Beydemir, 
2010a). These inhibitions could be very dangerous in some cases (Gulcin et al., 2008; Ekinci  
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Fig. 8. Structures of some widely used pesticides  
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& Beydemir 2009a,b) whereas some enzyme inhibitors could be used for the treatment of 
several diseases (Bayram et al., 2008; Senturk et al., 2009a,b; Coban et al., 2009; Ekinci et al., 
2010; Alp et al., 2010). Although investigation of the alterations in the activity of several 
enzymes have gained considerable attention over the past years (Coban et al., 2007; Ciftci et 
al., 2008), there is still a deep need of understanding the influences of pesticides and 
fungicides on specific enzyme systems. We have recently investigated the inhibitory effects 
of mancozeb, cypermethrin, deltamethrin and dinocap on the pH regulatory enzyme 
carbonic anhydrase (CA) from rainbow trout (Ekinci & Beydemir, 2010b).The physiological 
function of the CA isozymes is to facilitate the interconversion of CO2 and HCO3-; therefore, 
they play key roles in diverse processes, such as physiological pH control and gas balance, 
calcification, and photosynthesis. In addition, CA plays an important role in ion transport 
and pH regulation in eye, kidney, central nervous system (CNS) and inner ear. Our findings 
indicated that pesticides and fungicides dose-dependently decreased in vitro carbonic 
anhydrase activity at micromolar concentrations and that deltamethrin, dinocap, mancozeb 
and cypermethrin are potent inhibitors for fish carbonic anhydrase enzymes, and might 
cause undesirable effects with uncontrolled usage by disrupting acid-base regulation as well 
as salt transport in freshwater or seawater adapted fish. Our results showed that 
deltamethrin interestingly has a much lower IC50 value than cypermethrin, which has a Cl 
atom instead of a Br. Carbonic anhydrase has Zn+2 ion in its active site and it is assumed that 
electronegative atoms in the inhibitors coordinate to the zinc site at low concentrations. 
Thus, we concluded that carbonic anyhdrase is very susceptible to alterations in 
electronegativity of  interacting groups. Because deltamethrin was the most powerful 

inhibitor in in vitro experiments, we used it for in vivo tests in different doses (0.25 μg/L, 1 

μg/L and 2.5 μg/L) and the activities were measured at different time intervals (6th,12th,24th 
and 48th hours) for the CA enzymes in rainbow trout tissues (muscle, liver, kidney). For each 
tissue, inhibition values were calculated and compared with each other. Consequently, 
deltamethrin inhibited the CA enzymes of rainbow trout tissues with the rank order of 
muscle > kidney > liver. The pesticides and fungicides were determined to inhibit the CA 
enzymes of rainbow trout tissues at very low concentrations. The lowest inhibition effect 
was observed on liver carbonic anhydrase enzyme and we therefore proposed that the 
inhibitory impact of deltamethrin might be reduced by detoxification enzymes in the liver 
because detoxification occurs mainly in liver for all living systems (Ekinci & Beydemir, 
2010b).  
In another study, we aimed to determine the alterations in enzymatic activity of fish 
antioxidant metabolism in response to deltamethrin administration (Ceyhun et al., 2010b). 
To this end, three different deltamethrin concentrations (0.25, 1.0, 2.5 μg/L) were 
administrated to rainbow trout (Oncorhynchus mykiss) for different time intervals (6, 12, 24, 
48 and 72 h) in order to observe the influences of the pesticide on the activities of 
glutathione reductase, glucose-6-phosphate dehydrogenase, 6-ghosphogluconate 
dehydrogenase. Glucose-6-phosphate dehydrogenase (G6PD) is a cytosolic enzyme in the 
pentose phosphate pathway, a metabolic pathway that supplies reducing energy to cells 
(such as erythrocytes) by maintaining the level of the co-enzyme nicotinamide adenine 
dinucleotide phosphate (NADPH). The NADPH in turn maintains the level of glutathione in 
these cells that helps protect the red blood cells against oxidative damage. (Corpas et al., 
1998). Glucose-6-phosphate dehydrogenase deficiency is an X-linked recessive hereditary 
disease. Individuals with the disease may exhibit nonimmune hemolytic anemia in response 
to a number of causes, most commonly infection or exposure to certain medications or 
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chemicals. G6PD deficiency is the most common human enzyme defect (Frank, 2005). 6-
Phosphogluconate dehydrogenase (6PGD) is the third enzyme of the pentose phosphate 
metabolic pathway, catalyzing the conversion of 6-PGA (6-phosphogluconate) to D-
riboluse-5-phosphate in the presence of NADP+. The reaction, catalyzed by 6PGD, yields 
NADPH, which protects the cell against oxidant agents by producing reduced glutathione 
(GSH) (Bianchi et al., 2001; Lehninger et al., 2000). Glutathione reductase (GR; NADPH: 
oxidized glutathione oxidoreductase, EC 1.6.4.2), a flavoprotein, is an important enzyme 
which catalizes convertion of oxidized glutathione into reduced glutathione. The enzyme 
uses NADPH as electron donor for the reduction of GSSG. GR enables several vital 
functions of the cell such as the detoxification of free radicals and reactive oxygen species as 
well as protein and DNA biosynthesis by maintaining a high ratio of GSH/GSSG (Schirmer 
et al., 1989; Rendón et al., 2004). We observed that the activities of the enzymes decreased 
with increasing deltamethrin concentrations and exposure time. The pesticide had greater 
inhibitory effect on gill enzymes than on muscle, liver and kidney enzymes.  
Many environmental pollutants including fungicides and pesticides are capable of inducing 

oxidative stress in aquatic animals. Oxidative stress occurs as a result of the effect of 

xenobiotics causing disturbances in antioxidant enzyme systems and, as a result, the 

oxidative stress resulting from the production of reactive oxygen species (ROS) has gained 

considerable interest in the field of ecotoxicology (Kappus, 1987; Lemaire et al., 1996). The 

induction of antioxidant expression by the fungicides and pesticides reflects the activation of 

defense mechanisms in organisms to counteract ROS toxicity. Antioxidant enzymes, such as 

GR, G6PD and 6PGD, have major direct or indirect effects on antioxidant systems and they 

are useful biomarkers because they are involved in regenerating reduced glutathione (GSH) 

from glutathione disulfide (GSSG). Glucose-6-phosphate dehydrogenase and 6-

phosphogluconate dehydrogenase are indirect antioxidant enzymes in the pentose 

phosphate pathway and responsible for NADPH production. Because fish tend to adapt to 

oxidative conditions when exposed to pesticides, fungicides or other pollutants, relatively 

high levels of GR, G6PD and 6PGD enzymes are expressed in the muscle, liver, kidney, and 

gills of fish (Stephensen et al., 2000).  Nevertheless, because of complex interactions and 

interrelationships among individual components, the physiological role of these enzymes in 

the cells is poorly understood. On the other hand, inhibited activity of enzymes caused by 

exposure to fungicide or pesticide may be due to several reasons; first is production of O2− 

(Bagnasco et al., 2000), second is direct action of fungicides and pesticides on the synthesis 

of the enzyme (Bainy et al., 1993; Oruç & Uner, 2000), and finally through direct inhibition of 

enzyme activity both in vivo and in vitro. 

Teisseire and Vernet (2001) showed that the specific activities of enzymes of the Halliwell–

Asada pathway, namely ascorbate peroxidase and glutathione reductase, increased after 24 

h of exposure to folpet, reaching 155 and 273% of the control level at 96 h, respectively. A 

fast induction of glutathione S-transferase activity was observed after 6 h of folpet exposure. 

They were unable to discern whether glutathione S-transferase was involved in folpet 

metabolism or in peroxide scavenging. The fungicide was also found to stimulate activities 

of two H2O2-scavenging enzymes, catalase and pyrogallol peroxidase. They found the 

stimulation of catalase was rapid (as early as 12 h after exposure) and strong, since the 

activity was 252% of the control after 48 h of exposure. According to their data, induction of 

pyrogallol peroxidase was less important; although it reached 66% at 96 h. The fungicide 

did not affect guaiacol peroxidase activity. As suggested by the simultaneous and significant 

www.intechopen.com



 Fungicides 

 

396 

induction (55 to 173%) of antioxidative enzyme defenses of L. minor, generation of reactive 

oxygen species by the fungicide and involvement of oxidative stress was proposed as a 

possible mechanism in the  phytotoxicity of folpet (Teisseire & Vernet, 2001). 

Wu and Tiedemann (2002) reported that two modern fungicides, a strobilurin, azoxystrobin 

(AZO), and a triazole, epoxiconazole (EPO), as foliar spray on spring barley (Hordeum 

vulgare L. cv. Scarlett) 3 days prior to fumigation with injurious doses of ozone (150–250 

ppb; 5 days; 7 h/day) induced a 50–60% protection against ozone injury on leaves. 

Fungicide treatments of barley plants at growth stage (GS) 32 significantly increased the 

total leaf soluble protein content. Additionally, activities of antioxidant enzymes superoxide 

dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase 

(GR) were increased by both fungicides at maximal rates of 16, 75, 51 and 144%, 

respectively. Guiacol-peroxidase (POX) activity was elevated by 50–110% only in AZO 

treated plants, while this effect was lacking after treatments with EPO. This coincided with 

elevated levels of hydrogen peroxide (H2O2) only in EPO and not in AZO treated plants. The 

enhancement of the plant antioxidant system by the two fungicides significantly reduced the 

level of superoxide (O2-) in leaves. Fumigation of barley plants for 4 days with non-injurious 

ozone doses (120–150 ppb, 7 h/day) markedly and immediately stimulated O2- 

accumulation in leaves, while H2O2 was increased only after the third day of fumigation. 

Therefore, O2- itself, or as precursor of more toxic oxyradicals, appears to be more indicative 

for ozone-induced leaf damage than H2O2. Ozone also induced significant increases in the 

activity of antioxidant enzymes (SOD, POX and CAT) after 2 days of fumigation in 

fungicide untreated plants, while after 4 days of fumigation these enzymes declined to a 

level lower than in unfumigated plants, due to oxidative degradation of leaf proteins. This 

was the first report demonstrating marked enhancement of plant antioxidant enzymes and 

enhanced scavenging of potentially harmful O2- by fungicides as a mechanism of protecting 

plants against noxious oxidative stress from the environment (Wu & Tiedemann, 2002). 

Kara and Çelik (1997) investigated the effects of benlate, penncozep, bayleton, cupravit and 

dithane on human serum enzymes, myocardial creatine kinase (CK-MB), amylase, creatine 

kinase (CK), aspartate amino transferase (AST), serum glutamyl pruvic transferase (SGPT), 

alkaline phosphatase (ALK-P), δ-glutamyl transferase (GGT-P) and lactate dehydrogenase 

(LDH), in vitro. They reported that bayleton inhibited only SGPT and it was ineffective on 

the other seven enzymes. Benlate, penncozep, cupravit and dithane inhibited some 

enzymes, but activated the others. Benlate was the strongest inhibitor for CK-MB, cupravit 

for amylase, dithane for ALK-P, penncozep for CK, AST, SGPT and GGT-P. No inhibition 

was occurred in LDH. Of the fungicides they tested, the most effective one was penncozep 

whereas the least effective was Bayleton. The most inhibition was shown in SGPT and CK. 

They considered cupravit as an activator rather than inhibitor (Kara & Çelik, 1997). 

5.2 Impact on gene expression 

The levels and localization of expression of specific genes is very important for metabolism 

(Cankaya et al., 2007). In addition to altering enzyme activity, pesticides and fungicides 

have also strong impacts on expression of several proteins. We demonstrated that 

deltamethrin causes a significant elevation in the mRNA levels of  stress related protein Hsp 

70 (heat shock protein 70) in rainbow trout muscles (Ceyhun et al., 2010b). These stress 

proteins comprise a set of abundant and inducible proteins involved in the protection and 
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repair of the cell against stress and harmful conditions (Sanders, 1993), therefore, they are 

very useful biomarkers that have been used to monitor the impact of environmental factors 

on various animal species, including fish (Lewis et al., 1999). Elevated levels of various heat 

shock proteins have been measured in tissues of fish exposed to environmental 

contaminants, such as heavy metals (Williams et al., 1996; Duffy et al., 1999), industrial 

effluents (Janz et al., 1997; Vijayan et al., 1998), and polycyclic aromatic hydrocarbons 

(Vijayan et al., 1997; Vijayan et al., 1998). Thus, we evidenced the stress causing effect of 

deltamethrin.  

We have very recently reported the acute and long term influences of deltamethrin on the 

expression of insulin-like growth factor-I (IGF-I), insulin-like growth factor-II (IGF-II) and 

growth hormone (GH-I) in rainbow trout muscles (Aksakal et al., 2010). We treated rainbow 

trouts with different concentrations of deltamethrin (0.25 µg/L, 1 µg/L, 2.5 µg/L) and 

observed the alterations in mRNA expression levels of IGF-I, IGF-II and GH-I at different 

time intervals (at 6th, 12th, 24th, 48th, 72th hours and 30th day). The mRNA levels 

significantly decreased with increasing deltamethrin concentrations thus we demonstrated 

that deltamethrin has a powerfull impact on the expression of IGF-I, IGF-II and GH-I in 

rainbow trout which might cause undesirable outcomes not only in growth, but also in 

development and reproduction. There are similar studies in the literature. Nieves-Puigdoller 

et al. 2007 reported that exposure to hexazinone (HEX) and atrazine (ATZ), highly mobile 

and widely used herbicides along rivers in the United States, reduced feeding after 10 days 

of exposure and had an impaired growth rate in Atlantic salmon. They stated that HEX and 

ATZ at 10µg l−1 exposure had no effect on plasma levels of cortisol, growth hormone (GH), 

insulin growth factor I (IGF-I). Eder et al. (2008) demonstrated that treatment of juvenile 

Chinook salmon with chlorpyrifos (CP) and esfenvalerate (EV) led to significantly decreased 

IGF-I transcription in spleen on days 20 and 60, whereas a short-term increase was seen after 

CP exposure (day 4). The impact of commonly used pesticides, endosulfan and 

deltamethrin, on the molecular stress level in black tiger shrimp Penaeus monodon, was 

investigated using classical oxidative stress biomarkers, protein carbonylation profiles, and 

levels of heat shock proteins. Results showed that 4 days exposure to 0.1 μg L−1 

deltamethrin significantly (p < 0.05) increased lipid peroxidation (LPO) level in gills (Dorts 

et al., 2009). 

We also examined whether metallothionein-A (MT-A), metallothionein-B (MT-B) and 

cytochrome P450 1A (CYP 1A) expressions are induced in response to pesticide 

administration. For this purpose, we produced muscle metallothionein-A, metallothionein-B 

and cytochrome P450 1A cDNAs and used quantitative RT-PCR to assay mRNAs in 

rainbow trout exposed to acute and long-term deltamethrin administration. We observed 

that deltamethrin exposure significantly (p<0.05) increased the expression levels of Cyp1A, 

MT-A and MT-B in time and dose dependent manner. Polycyclic and halogenated aromatic 

hydrocarbons (PAHs and HAHs) can enhance the generation of reactive oxygen species 

(ROS) by inducing cytochrome P450 1A (CYP 1A) in vivo and in vitro. Metallothionein has 

been recognised as a useful biomarker for quantifying exposure to heavy metal pollution. 

Each molecule readily chelates up to seven metal ions through the formation of thiolate 

bonds with the cysteine residues. It is induced by heavy metals (Cherian & Nordberg, 1983) 

and its role in the sequestration and detoxification of heavy metals is widely accepted 

(Vallee, 1979). Metallothionein has been assayed in a range of animals, including many 
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aquatic organisms, in various tissues. Recently, increased interest has been directed towards 

the mRNA levels in addition to the levels of the protein itself (Hayes et al., 2004). Although 

MTs have been widely utilized to identify specific responses to heavy metal pollution, there 

is now a body of evidence demonstrating that in vertebrates (mammals and fish) MT 

synthesis is stimulated by different endogenous and exogenous agents (Kägi & Schäffer, 

1988), e.g. glucocorticoid hormones, various kinds of stres (cold, heat, extreme exercise), 

cytokines and in particular compounds leading to production of reactive oxygen species 

(ROS) (Dalton et al., 1994). Therefore, in mammals and fish, not only inorganic pollutants 

such as heavy metals but also organic contaminants may activate MT neosynthesis 

(Wormser & Calp, 1988; Sato et al., 1989; Baumann et al., 1991; Pedrajas et al., 1995). Our 

study supported the theory that deltamethrin causes a great amount of oxidative stress such 

that induction of the CYP 1A increases generation of reactive oxygen species (ROS), such as 

superoxide anion, hydroxyl radical, and hydrogen peroxide, and MT synthesis is stimulated 

by different endogenous and exogenous agents in particular compounds leading to 

production of reactive oxygen species (ROS). Our study also contributed to determination of 

pesticide pollution impact in the freshwater environment and identification of novel 

inducers of such genes in addition to well known agents (Unpublished data). 

6. Conclusion 

It is unfeasible to forbid the use of fungicides and pesticides against harmful fungi and pests 

because of product loss today.  Fungicides kill or inhibit fungi or fungal spores which can 

cause serious damage in agriculture, resulting in critical losses of yield, quality and profit. In 

addition to agriculture, fungicides are also used to fight fungal infections in animals. 

Similarly, pesticides are used against any pest including insects, plant pathogens, weeds, 

molluscs, birds, mammals, fish, nematodes (roundworms), and microbes that destroy 

property, spread disease or are a vector for disease or cause a nuisance. Although there are 

benefits to the use of fungicides and pesticides, there are also drawbacks, such as potential 

toxicity to humans and other animals. It is clear from above discussion that some fungicides 

and pesticides have useful effects on specific organisms, whereas others have significantly 

hazardous influences. Therefore, the impacts of fungicides and pesticides must be well 

defined in order to use the best agents in terms of greater effectiveness and less side effects. 

It is critically important to explore further interactions of biocides in order to detect 

compounds with different mechanism of action profiles as compared to dangerous ones, 

and to find novel applications for the usage of these widespread fungicides and pesticides. 

On the other hand, due to the complexity and immensity of world-wide pollution, there is a 

compelling need to develop rapid and sensitive screening methods for monitoring the 

effects and presence of fungicides and pesticides. 
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