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Instrumental Chemical Analysis of 
 Magnesium and Magnesium Alloys 

Michihisa Uemoto 
Tokyo Metropolitan Industrial Technology Research Institute, Jonan Branch 

Japan 

1. Introduction 

Magnesium is the lightest of all the commonly used metals. It is one of the most abundant 
elements in the earth's surface, amounting to a mass fraction of c.a. 2.5 %. It has been prepared 
for industry as metal and alloy ingots; the latter are most often made with aluminum. Various 
magnesium-based alloys have been developed and mainly applied to transport facilities and 
mobile electric devices because they have the best strength-to-weight ratio of any of the 
commonly used structural alloys. Practically, they are used for housing of laptop computers, 
mobile phones, and digital cameras, moreover, materials for acoustic diaphragm, units of 
vehicles, nursing-care equipments, anode for sacrificial protection, etc. Some special alloys 
with rare earth metals, which show high strength properties at elevated temperatures 
(Rokhlin, 2003), have been recently applied to aircraft and space machinery, automobile and 
railcar products. Accordingly, the chemical composition of magnesium and its alloys have 
already been standardized from major to trace quantities. International Organization for 
Standardization (ISO 8287, 2000; ISO 16220, 2005), American Society for Testing and Materials 
(ASTM B92/B92M-07, 2007; ASTM B93/B93M-07, 2007), and Japan Industrial Standard (JIS 
H2150, 2006; JIS H2221, 2006; JIS H2222, 2006) provide the standards of metal ingots, wrought 
alloys, and casting alloys separately, where vast kinds of designation, chemical constituents 
with permissible ranges, and chemical impurity with maximal allowable limits are denoted 
therein. Moreover, the wrought alloys with extruded or forged shapes to make sheets, bars, 
pipes, tubes, wires, etc have been specialized in ISO (ISO 3116, 2007), ASTM (ASTM 
B107/B107-07, 2007), and JIS as several particular standards. Table 1 shows the chemical 
composition of unalloyed magnesium with different purities denoted in ISO 8287. 
However, standardization of analytical methods to determine metal elements therein is 
quite insufficient. In 2006, ISO confirmed five old standards for minor analyses with 
gravimetry and titrimetry, and eleven ones for trace analyses with photometry and atomic 
absorption spectrometry, all of which were established in the 1970s and 1981. On the 
contrary, in 2008 ASTM withdrew the standard test methods for chemical analysis in view 
of a lack of information on reliability therein (ASTM E35-88, 2002), where a chill cast 
specimen can only be affordable to be analyzed with the ASTM test method using spark 
source atomic emission spectrometry (ASTM B95435-07, 2007). JIS denotes most plentiful 
standard methods that feature classical wet techniques and instrumental analyses 
corresponding with concentrations in the materials and accuracy needed, but they are 
standardized mostly in 1990’s with flame atomic absorption spectrometry for trace analyses. 
Consequently in all cases, there existed no methods for the determination of trace amounts 
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of metals with inductively coupled plasma atomic emission spectrometry (ICP-AES), which is 
nowadays one of the most conventional de facto standard instrumental methods for the trace 
analysis of metal elements. Table 2 shows a list of the analytical methods made up from ISO 
and JIS standards. In this Table, some new standards of JIS by the author and his members 
using ICP-AES are also shown in the last four lines, details of which are described below. 
 

Material designation Chemical composition  
% mass fraction 

In accordance 
with ISO 2092 

In accordance 
with EN 12421

min. or 
max. Al Mn Si Fe Cu Ni Pb Sn Na Ca Zn 

Others 
(each) Mga 

ISO Mg 99.5 EN-MB 10010
min. or 

max. 
- 

0.1 
- 

0.1 
- 

0.1 
- 

0.1 
- 

0.1 
- 

0.01
- 
- 

- 
- 

- 
0.01

- 
0.01

- 
- 

- 
0.05 

99.5 
- 

ISO Mg 
99.80A EN-MB 10020

min. or 
max. 

- 
0.05

- 
0.05

- 
0.05

- 
0.05

- 
0.02

- 
0.001

- 
0.01

- 
0.01

- 
0.003

- 
0.003

- 
0.05 

- 
0.05 

99.80 
- 

ISO Mg 99.80B EN-MB 10021
min. or 

max. 
- 

0.05
- 

0.05
- 

0.05
- 

0.05
- 

0.02
- 

0.002
- 

0.01
- 

0.01
- 
- 

- 
- 

- 
0.05 

- 
0.05 

99.80 
- 

ISO Mg 
99.95A EN-MB 10030

min. or 
max. 

- 
0.01

- 
0.006

- 
0.006

- 
0.003

- 
0.005

- 
0.001

- 
0.005

- 
0.005

- 
0.003

- 
0.003

- 
0.005 

- 
0.005 

99.95 
- 

ISO Mg 99.95B EN-MB 10031
min. or 

max. 
- 

0.01
- 

0.01
- 

0.01
- 

0.005
- 

0.005
- 

0.001
- 

0.005
- 

0.005
- 
- 

- 
- 

- 
0.01 

- 
0.005 

99.95 
- 

a By difference                               

Table 1. Chemical composition of unalloyed magnesium denoted in ISO 8287 

This chapter outlines instrumental methods of the analysis and especially focuses on ICP-
AES. The methods of trace analyses in magnesium and its alloys by ICP-AES are described 
with results of interlaboratory testing of the analyses, which have been put into practice 
prior to standardization by the author. The concept of the testing protocol, which must be 
acceptable for practical technicians with various environments and skills, will be 
emphasized in the chapter. The protocols evaluated in the testing have been provided as 
recently established JIS standards, which are the first standardized analytical methods on 
magnesium and its alloys by ICP-AES. 

2. Instrumental methods of analysis 

2.1 Outline of the instruments for material analysis 

In material analysis, verification and evaluation of chemical components and impure 
elements mostly designated in standards are indispensable. Hence elemental quantification 
is first needed with high reliability, which allows atomic spectroscopy to rank first for this 
kind of analysis.  
Atomic spectroscopy has undoubtedly become a major tool on trace analysis of metals in 
materials, where inductively coupled plasma atomic emission spectrometry (ICP-AES) and 
atomic absorption spectrometry (AAS) have been widely used as archetypal methods 
around laboratories. They observe atomic spectra on measurement, which are generated in 
ultraviolet and visible region due to radiative transitions of outer orbital electrons between 
the ground state and excited state of an atom. The spectra are elementally specific and their 
signal intensities relate to the concentrations of the elements, thus allowing selective 
qualification and quantification. Samples must be dissolved with acids to prepare as 
solutions prior to determination. When the sample solutions are introduced into the 
instruments, they are made to aerosols with nebulizers, subsequently desolvated and 
dissociated to atoms with heat sources such as plasmas and flames. In general, obtainable 
spectra in the atomic spectroscopy can be classified into three categories: (a) spontaneous 
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emission from a higher excited state to a lower state; (b) absorption of radiation 
corresponding with a transition from a lower state to a higher state; and (c) induced 
resonant emission for the transition from a higher state to a lower state just after the 
absorption of external distinctive radiation. ICP-AES utilizes the spectra of type (a), because 
high temperature of 5000-6000 K generated in argon ICP makes almost all the atoms in a 
higher excited state. On the other hand, AAS does the ones of type (b) because kinds of 
flames generated with acetylene premixed with air or nitrous oxide and electrical furnaces, 
which are typically suitable as excitation sources for AAS, can reach relatively low 
temperature in the region of 2000-3000 K only to make them in a lower state. The last 
category of type (c) is applied to atomic fluorescence spectrometry, which is neither less 
popular in practical laboratories nor commercially available than ICP-AES and AAS. 
 

element ISO JIS 

  method number:year
dynamic 
range (%) method number:year dynamic range (%) 

Al gravimerty 791:1973 1.5-12.0 gravimetry H1332:1999 1.5-12.0 

  colorimetry 3255:1974 0.01-0.20 titrimetry H1332:1999 2.0-11.0 

       colorimetry H1332:1999 0.01-0.20 

        flame AAS H1332:1999 
0.0005-0.05,  
0.001-0.05 

Zn titrimetry 1783:1973 0.10-8.0 titrimetry H1333:1999 0.1-7.0, 0.4-7.0 

  flame AAS 4194:1981 0.1-6 flame AAS H1333:1999 0.0002-8.0, 0.1-6.0 

Mn colorimetry 809:1973 0.01-0.8 colorimetry H1334:1999 
0.02-1.0, 0.01-0.8, 
0.0002-0.1 

  colorimetry 810:1973 <0.01 flame AAS H1334:1999 0.0005-0.5 

  colorimetry 2353:1973 0.02-0.2 *       

Si colorimetry 1975:1973 0.01-0.6 colorimetry H1335:1998 
0.02-0.50, 0.001-0.05, 
0.01-0.6 

Cu colorimetry 794:1976 0.002-0.4 colorimetry H1336:1999 
0.0005-0.5, 0.002-0.4, 
0.0003-0.03 

        flame AAS H1336:1999 0.005-0.4 

Ni colorimetry 4058:1977 0.0005-0.05 flame AAS H1337:1999 0.0002-0.04 

Fe colorimetry 792:1973 0.002-0.05 colorimetry H1338:1999 
0.002-0.05, 0.0005-
0.05 

        flame AAS   0.001-0.08 

Zr(soluble) colorimetry 1178:1976 0.1-1.0 colorimetry H1340:1998 0.05-1.0 

Zr(insoluble) colorimetry 2354:1976 0.02-0.3 colorimetry H1340:1998 0.02-0.3 

Th gravimetry 5196-1:1980 0.2-5.0 - -   

  titrimetry 5196-2:1980 0.2-5.0       

Rare Earths gravimetry 2355:1972 0.2-10 gravimetry H1345:1998 0.2-10.0 

Ca - -   flame AAS H1341:1990 0.01-0.1 

Sn - -   ICP-AES H1342:2008 0.0005-0.01 

Pb - -   ICP-AES H1343:2008 0.0005-0.01 

Cd - -   ICP-AES H1344:2010 0.00005-0.001 

Be - -   ICP-AES H1339:2010 
0.00005-0.001, 
0.00005-0.002 

        flame AAS H1339:2010 >0.001 

 *  the method for alloys containing Zr, rare earths, Th, & Ag  

Table 2. List of standardized analytical methods for magnesium and magnesium alloys in 
ISO and JIS 
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Transitions of electrons take place not only between the outer shells but also from the outer 
to an inner as a result of external excitation. When X-ray or one of the related beams such as 
accelerated electron and heavy charged particle (proton or -particle in usual) is irradiated 
to an atom, an electron in the inner may be ejected to have a vacancy, producing an excited 
ion. An electron from the outer shell almost immediately fills it, emitting elementally 
specific X-ray corresponding to a difference of the two energy levels. This refers to as one of 
X-ray spectroscopy. Instrumentation with electrically operated X-ray tubes is most 
conventional and sophisticated as X-ray fluorescence spectrometry(XRF).  It needs no 
dissolution as pretreatment step and allows direct measurements on materials. 
Atoms generated in the ICP are easy to lose electrons to become positively charged ions 
owing to its high temperature, which are feasible to be detected with mass analyzers. 
Actually major part of elements in the plasma is not atomic but ionic, where the emissions 
from the transitions in the atoms and ions are both utilized in ICP-AES. Consequently 
inductively coupled plasma mass spectrometry (ICP-MS) has been developed, combining 
the ICP and mass analyzers for ultra trace analysis of metals.  
Further explanation on the outline should be directed to recently published books on atomic 
and X-ray spectroscopy including ICP-MS. (Broekaert, 2005; Welz & Borges, 2009) Another 
book on ICP-AES and ICP-MS is also convenient for Japanese users. (Uemoto, 2008) 

2.2 Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) 
Atomic emission spectrometry (AES) is the oldest atomic spectrometric technique capable of 
multi-elemental detection. Chemical flames and plasmas generated on arc, spark, and glow 
discharges have been used as excitation sources. However, appearance of high frequency 
plasma has transformed this technique into the cutting-edge one, which is capable of 
determining trace metals selectively below ppm levels over larger dynamic ranges than any 
other spectrometric technique. This method is often called as inductively coupled plasma 
optical emission spectrometry (ICP-OES). The plasma, an ionized gas of argon at very high 
temperature (5000-6000K), is generated at high frequency (usually 27 or 40 MHz) under 
argon gas flow in three concentric quartz tubes known as a plasma torch. The torch is 
encircled at the top by an induction coil connected to a generator, where the magnetic field 
induced in the gas stream forms the plasma. Its concentrically toroidal structure allows 
sample solution as an aerosol into the center of the plasma, thus enabling its efficient 
desolvation, vaporization, atomization, excitation, and ionization. These characteristics of 
the argon ICP applicable to a wide variety of elements lead to sensitive multi-elemental 
determination relatively independent of matrix elements. Figure 1 shows a schematic view 
of the inductively coupled plasma.  
ICP-AES consists of simple units as shown in Figure 2. The electromagnetic energy 
necessary to sustain the plasma is transferred from the high frequency generator unit to the 
emission unit that consists of the torch and the induction coil. Sample aerosols are carried 
with argon gas into the plasma, where the emission lights from the plasma are introduced 
into the spectrometer unit and intensities of monochromated lines are measured in the 
detector unit, a whole of which is fully regulated by the controller unit.  
Device technology in ICP-AES has further been designed and now the instruments have 
some selectable specifications in relation to the adaptability and performance of the system. 
The principal innovations to be mentioned are described as follows; Although the ICP can 
be originally viewed radially (side-on), an alignment for axial (end-on) viewing with 
horizontally generated plasma has been devised in order to gain sensitivity due to longer 
path length than the radial viewing. In the former, the plasma is positioned at a 90 deg angle  
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Fig. 1. Schematic view of the inductively coupled plasma 

with the detector, while in the latter, the ICP and detector are positioned in the same optical 
axis. The latter certainly brings higher sensitivity but interferences due to coexisting 
elements are known to be severe; the spectrometer could be originally divided into two 
categories; monochromator and polychromator. The former is used to build up sequential 
scanning system, while the latter is for simultaneous detection system with one detector by 
one element, both of which utilize the first-order light despersion. Another spectrometer 
with so-called ‘echelle’ grating and a prism to spread all the dispersed lights with high 
orders on a plane has been developed. It seems preferable to set up this spectrometer with 
the axial viewing system because emission lights dispersed by wavelength with the echelle 
spectrometer is darker than those with other spectrometers. Detectors to convert lights to 
electrical currents have greatly been developed. Photomultiplier tube (PMT), consists of a 
photocathode and a dynode, had been an unique device for receiving photons, efficient 
amplification of electrons, and generating electrical currents on measurement. Solid-state 
detectors, all of which are categorized under the term charge transfer device (CTD), are 
modern types of detectors having state-of-the-art technology. As the PMT is restricted to 
assess the signal at only one point, it costs not a few time to scan over spectral vicinity 
around an analyte line. Recent CTDs have several tens of squared micrometers in size, so are 
feasible to be spread over the area of a focal plane to obtain a two-dimensional picture of the 
spectra at once. They are called as array detectors and the smallest pictorial unit of a solid-
state detector is called pixel. The CTDs are subcategorized in proportion to its 
characteristics; photodiode array (PDA), charge injection device (CID), charge coupled 
device (CCD), and segmented charge coupled device (SCCD), where the PDA were only 
installed in research instruments before development of the other ones. Their selection and 
usage is up to the vendors of ICP-AES in accordance with their developments.  
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Fig. 2. Components of ICP-AES  

In material analysis, a type of the radial viewing is recommended because effects of matrix 
elements with the radial viewing (magnesium and other minor elements in this case) are 
lighter than those with the axial one. Another reason can be claimed that damage of the 
outer tube in the torch during measurement is more severe when plasma turns on 
horizontally, which is the normal position of the axial viewing geometry. 
A practical guide that links with theory and applications has been available to all levels of 

users (Nölte, 2003). 

2.3 Atomic Absorption Spectrometry (AAS) 

Another conventional method for determination of trace metals in materials is surely atomic 

absorption spectrometry. Chemical flames made from acetylene premixed with air or 

nitrous oxide is typically used for atomization. Electrical furnaces are also used, but all of 

them have maximum temperatures of c.a. 3000 K as the thermal sources, which cannot allow 

sufficient atomization for all elements. In addition, matrix interferences are more severe 

compared to ICP-AES due to relatively low temperatures. Sample solutions are usually 

aspirated and introduced as aerosols into a laminar flame, through which the specific light 

beam of an element passes to be absorbed by the atoms. Different from atomic emission, 

External radiation source is needed for atomic absorption. A hollow-cathode lamp (HCL) is 

widely used for an intense line source of individual element, which is a glass container with 

a hollow cylinder as cathode and a ring as anode filled in an inert gas under low pressure. 

The metal atoms sputtered with the inert gas are excited by collisions with electrons and 

emit the characteristic atomic emission lines. The bandwidth of the line from HCL is narrow 

enough that a spectrometer with higher resolution is not required than that of ICP-AES. 

Another invention in AAS is the modulation system of signal amplification. In all cases, 

voltage is applied to HCL in an alternating or a pulsing mode, thus emitting intermittent 

radiation. A detected absorption signal is magnified with a lock-in (phase-sensitive) 

amplifier that detect signal based on modulation at the same frequency as that of the line 

source. Consequently AAS can be equipped in relatively low costs and allows easier 

operation than other techniques on atomic spectrometry. A disadvantage of the AAS is of 

course on the requirement of setting of single elemental HCL one by one, although 

continuum source AAS with high resolution optics has recently been appeared on the 

market. Another disadvantage is the non-linearity of calibration curves due to self-

absorption when absorbance becomes higher than 0.5 to 1, where a dynamic range more 

than one order of magnitude should not be expected.  
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AAS has a few more techniques on atomization and background correction; they should be 
referred to a tutorial and technical textbook for further understanding of the characteristics 
and practices of the AAS. (Vandescasteele & Block, 1993). 

2.4 Inductively Coupled Plasma Mass Spectrometry (ICP-MS) 

ICP-MS is definitely one of the prior tools for ultra trace analysis of metals in materials 

although sensitive types of modern ICP-AES can afford to measure the metals to a level of 

ng cm-3 (ppb) or so. For example, unalloyed magnesium with high purities must contain less 

than 0.001 % of lead and 0.00005 % of cadmium as denoted in the ASTM standard, hence 

measurements to a level of ppb or below in sample solutions are necessarily required for 

proper evaluation. ICP-MS will surely play a more important role on ultra trace analysis. 

Several types of mass spectrometers to combine ICP, which are not only quadrupole 

spectrometer but also magnetic sector, time of flight, ion trap ones etc, have been developed. 

Among ICP-MS equipments those with quadrupole mass analyzer are most popular and 

often called ICP-QMS. One drawback of ICP-MS in material analysis is that it is not an 

optical analysis but a particle one, i.e. matrix elements introduced to the instrument are 

stored and accumulated on the mass analyzers and detectors different from the cases of ICP-

AES. In ICP-AES, contamination of the matrix elements is restricted to the sample 

introduction unit that is demountable and easy to clean out. Consequently in ICP-MS, the 

background levels of matrix elements that appear in a historical record of measurements 

surely increase gradually due to contamination, which must be unavoidable especially in 

material analysis. At last, ratios of the concentration of an analyte to the tolerable 

concentrations of matrix elements to be loaded in the instruments are critical for 

measurements, not absolute concentration of the analyte. ICP-MS is remarkably more 

sensitive in the measurements but tolerable maximal concentration is also lower than ICP-

AES. Modern technology may reveal that currently equipped ICP-AES should have priority 

even in the ultra trace analysis of materials. 

A comprehensive handbook specialized on ICP-MS should be noticed. (Nelms, 2005) 

2.5 Spark source Atomic (optical) Emission Spectrometry  

Arc and spark excitation techniques are very common and have been used especially in 

metallurgical laboratories even now. Direct current arc, which consists of a continuous 

discharge between a pair of metal or graphite electrodes, is beneficial for sensitive 

qualification in spite of relatively poor precision. Sparks, intermittent electrical discharges of 

a few microseconds under high electrical potentials, are used for quantification in spite of 

poor sensitivity because of relatively high precision. Spark source AES requires no 

dissolution of a sample and only applies to conductive materials, therefore it especially suits 

metallic samples with flat surfaces, and is utilized for daily routine analysis in industrial 

laboratories. 

One of the great disadvantages of spark source AES is the need of reference materials that 

must be exactly matched as possible in concentrations of both matrixes and analytes with the 

samples, which is a consequence that the method has strong matrix effects and no chemical 

preparation can be employed. As a matter of fact, this method is significantly effective in 

evaluation laboratories dealing with metallic materials connected with productive lines on 

condition that they can afford to have working reference materials verified with the other 

www.intechopen.com



Magnesium Alloys - Corrosion and Surface Treatments 

 

334 

techniques such as ICP-AES. Of course certified reference materials commercially available are 

valid, but vast kinds of them must be lined up before measurement. 

2.6 X-ray Fluorescence spectrometry (XRF) 

Identical to the atomic spectroscopy, X-ray spectroscopy is based on the measurements of 

emission, absorption, and fluorescence of electromagnetic radiation as well as its scattering 

and diffraction. Fluorescent spectrum of elements, accompanied by an electron transition 

from an outer shell to an inner one of the electron orbital, is specific on wavelength, i.e. 

energy of its own. It can be detected with two types of the instrument that has a 

wavelength-dispersive spectrometer and an energy-dispersive one. The latter allows 

relatively simple design without driving units. Moreover portable and handheld 

instruments of this type have recently been commercially available for in situ analysis. XRF 

has a big merit that allows direct measurements by contacting the device onto materials 

without dissolution processes. However if quantification is needed, XRF is highly 

dependent on the matrixes just like the spark source AES. Furthermore it depends on the 

flatness, roughness and coating conditions of a sample, thus reference materials that is 

exactly close to the sample in concentrations of matrixes, analytes, and surface conditions 

are required for determination. Fundamental parameter approaches for analysis of bulk and 

multilayer samples without standards have been investigated, where theoretical calculation 

of signal intensities originated from constituent elements seems to be successful to no small 

extent. Although the analytical results cannot be comparable in accuracy with atomic 

spectrometric techniques followed by dissolution, rough determination of metallic 

constituents in materials and identification of alloys are considered to be available using the 

fundamental parameter method.  

3 Analytical procedures with ICP-AES 

3.1 Concept of the testing and protocol 

The analytical method to be proposed as a standard seems to be acceptable for practical 

technicians with various environments and skills because a committee for drafting standard 

methods must consists of the interested manufacturers and users of the material, and also 

independent staffs as advisers; namely, the standard method should be held in common 

between manufacturers, distributors, users, consumers, and researchers. In this study, 

prerequisites for the methods were concluded as follows: the methods involving 

experienced handling, such as separation and concentration procedure should be avoided as 

much as possible; commercial ICP-AES instruments are almost suitable for measurements in 

this method; reagents and glassware are commercially available and easily obtainable 

among laboratories; the methods satisfy routine analysis requirements. Therefore 

procedures involving simple dissolution with acids and volumetric preparation, sample 

nebulization, and matrix matched assay standards for calibration were developed as a 

protocol for the tests. On the other hand, details on pretreatment operations were left to the 

various styles of the participants. 

3.2 Interlaboratory testing 

The participants concerning the testing were technical staff members belonging to chemical 
laboratories of the organizations in Japan, organizations that make up one of the committees 
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of the Japan Magnesium Association. Another participant assisted in testing by spark source 
atomic emission spectrometry. 
Two certified reference materials (CRM) and four real samples of magnesium and 
magnesium alloys were used. Two CRMs, a magnesium (No.C61XMgP20A) and a 
magnesium alloy (No.C65XMGA50) supplied as chippings, were purchased from MBH 
Analytical Ltd. (Barnet, England), where the latter contains c.a. 8 % of aluminum, 0.4 % of 
zinc and 0.4 % of manganese in mass fraction. One of the real alloys named ‘AZ91D’ in the 
ASTM standard contains c.a. 9 % of aluminum, 0.7 % of zinc, and 0.3 % of manganese. 
Another one, ‘AM60B’, contains 6 % of aluminum and 0.4 % of manganese. All of the real 
samples were prepared by one of the participants, where the ingots were bored with drills 
and the drilled pieces were separately packed and sealed under an airtight condition using 
argon gas, which had ca. 20 g in mass per bag to be sent to the participants as test samples. 
The participants were requested to determine tin and lead in these samples by a following 
protocol of the analyses. In a second test they were requested to determine cadmium and 
beryllium by a similar protocol. The calibration procedure with matrix matching must be 
made using high-pure magnesium oxide with 99.99% (Kanto Chemicals, Tokyo), aluminum, 
and zinc. The analytical results must be reported as an average of the individually duplicate 
or triplicate runs. 
The interlaboratory testing for determination of tin and lead had three series, the first of 
which is to check the validity of a protocol using the CRM and following determination of a 
real magnesium sample. The second series was to optimize matrix concentration of the 
sample solutions, which is indispensable to achieve for sample nebulization. Three matrix 
concentrations of 1, 2, and 4 % were prepared and measured separately. The last one was 
used to analyze real magnesium alloys with a matrix matching procedure under the 
optimized concentration. 
All reagents used were of analytical grade or further highly purified grade, which were 
commercially available, and used without special designation. 
Participants in eight organizations totally used nine ICP-AES equipments with eight 
different types in the testing, as shown in Table 3. Several different characteristics listed in 
the Table were useful in this study, considering that the standard methods to be constructed 
must be suitable for various types of equipments.  
 

Model Vendor 
Viewing 
position

Nebulizer 
Spray 
chamber 

Spectrometer Detector 

(ICP-AES)       

PS-1000UV LeemanLabs. Radial Hildebrand Grid Scott  Echelle+Prism PMT 

SPS-1700HVR Seiko Radial Concentric  Scott  Monochrometer PMT 

SPS1500VR Seiko Radial Concentric  Scott  Monochrometer PMT 

SPS3000 Seiko Radial Concentric  Cyclonic  Monochrometer PMT 

SPS4000 Seiko Radial Concentric  Scott  Monochrometer PMT 

SPS7800 Seiko Radial Concentric  Scott  Monochrometer PMT 

Vista-MPX Varian Axial Concentric  Cyclonic  Echelle+Prism CCD 

Vista-Pro Varian Axial Concentric  Cyclonic  Echelle+Prism CCD 

(Spark Source AES)      

PDA-5500 II Shimadzu - - - Polychromator PMT 

Table 3. Instruments of ICP-AES and Spark AES used in the interlaboratory testing 
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3.3 Protocol for the testing 

A protocol for the dissolution of a sample as preparation was documented as follows: 
1. One gram of a sample was weighed to a digit of 0.1mg and transferred to a borosilicate 

beaker of an appropriate size (200~300 cm3).  
2. Concentric nitric and hydrochloric acids of high purity were diluted twice with water, 

respectively, to make their stock solutions, i.e. 6.0 mol dm-3 of hydrochloric acid and 6.8 
mol dm-3 of nitric acid. 

3. Water as well as the twice-diluted nitric and hydrochloric acid solutions were poured 

into a beaker, which was subsequently covered with a watch glass, and the sample was 

dissolved through conventional heating after a vigorous reaction with the evolution of 

nitrogen dioxide gas. The dissolution process was gentle on heating so as to suppress 

the volatilization of acids. 

4. The sample was prepared to a solution to 50 cm3 with a volumetric flask, which 

contained a matrix concentration of 2 %.  

5. The prepared solutions were made to finally have 0.4 mol dm-3 of nitric acid and 0.1 

mol dm-3 of hydrochloric acid. The volumes and orders of the acids to be added are up 

to the participants. 

6. To weigh 2 g of a sample and to prepare a solution to 100 cm3 was also acceptable as an 
alternative operation. 

7. A sample had to be pretreated in duplicate or triplicate runs. 
In the second series, the above-mentioned protocol was modified so as to prepare sample 

solutions of 4%, i.e. 2 g (4 g) of a sample was weighed to dissolve and prepare a solution of 

50 cm3 (100 cm3), thereby allowing subsequent dilution to those of 2 and 1 %. 

A protocol for the preparation of standard solutions was documented as follows: 

1. Magnesium oxide (99.99 % or higher in purity) was dissolved with a nitric acid 
solution, to prepare a 4 % solution of magnesium(II) in 0.4 mol dm-3 of nitric acid and 
0.1 mol dm-3 of hydrochloric acid. 

2. Aluminum (99.99 % or higher in purity) was dissolved with the nitric and hydrochloric 
acid solutions by five to one in volume, to prepare 0.36 % solution of aluminum(III) in 
0.5 mol dm-3 of nitric acid. 

3. Zinc (99.99 % or higher in purity) was dissolved with the nitric acid solutions, to 
prepare a 0.1 % solution of zinc(II) in 0.5 mol dm-3 of nitric acid. 

4. A series of standard assay solutions of tin and lead having concentrations of 0, 0.5, and 1.0 

μg cm-3 for metal samples and 0, 1.0, and 2.0 μg cm-3 for alloy ones were prepared, by 

diluting commercially available 1 mg cm-3 standard solutions of the metals or their 

solutions of the same concentrations prepared by dissolving high pure metals. Another 

series of cadmium and beryllium of 0, 0.5, and 1.0 μg cm-3 were prepared separately for 

the second test. The concentrations of matrix components had to be identical with the 

samples, by diluting the stock solutions of the elements as stated: Mg 2 % (unalloyed 

metal), Mg 1.8 %-Al 0.18 %- Zn 0.02 % (AZ91D alloy), Mg 1.88 % -Al 0.12 % (AZ60B alloy). 

The calibration ranges could vary appropriately according to the contents of the samples. 

A Protocol for a measurement with ICP-AES was documented as follows: 

The sample solutions were nebulized to be introduced directly into the plasma. Atomic 

emission spectra, free from spectral interferences, should be visually identified at two 

affordable wavelengths, where the background wavelengths are pointed out at both ends of  

each peak. After introducing the assay standard solutions to make a calibration line, the 
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sample solutions are aspirated. If repeated measurements (usually in triplicate) showed a 

descending tendency, the sample and standard solutions had to be prepared with an 

internal standard element, such as cobalt(II), thus suppressing the influence of any clogging 

at the orifice of a nebulizer.  

4. Results of the interlaboratory testing 

4.1 Results of tin and lead in the testing 

Table 4 gives results of interlaboratory testing in the first series, analytical values of tin and 
lead of the CRM, magnesium. Each laboratory reported average values of independent 
duplicate or triplicate runs with adequate repeatability. The data by different analysts, 
dates, or equipment in the same laboratory were regarded as independent data sources. 
Fairly good accuracy, i.e. trueness and precision, was achieved by comparing the average 
values with the certified values of the CRM and the standard deviations with their 
uncertainties, respectively. Moreover, comparable data with spark source atomic emission 
spectrometry using an identical CRM supplied as a disk could be obtained to show that the 
concentration of tin and lead were 71 and 59 μg g-1, respectively, which confirmed the 
accuracy of the data and the validity of the protocol.  
 

Data No. CSn CPb 

1 70 55 
2 74 57  
3 68 56  
4 70 52  
5 81 59  
6 72 57  
Average 73 56  
SD 4.6 2.4  
RSD, % 6.4  4.2   
n 6 6  
95% confidence interval 4.9  2.5   
Certified values 73 61 

Uncertaintya 6 7 

Unit: μg g-1 

a. Noted in the certificate as the 95% confidence interval 
derived from the analysis results 

Table 4. Tin and lead concentrations in the certified reference material of magnesium as the 
interlaboratory testing 

Table 5 gives the effect of the matrix concentrations and the type of nebulizers, as well as the 

results in the second series of testing. The decreased number of available data is due to not 

only troublesome operations, but also the fact that the nebulizers for high salt concentrations 

were already installed into the ICP-AES instruments in the laboratories of the participants. 
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 C Pb /μg g-1 

 Standard nebulizer High salts nebulizer 

 C Mg ,% C Mg ,% 

Data No. 1 2 4 1 2 4 
1 4.0 4.7 4.7 6.0 6.3 6.0 
2 6.0 6.7 7.3 5.3 7.3 6.7 
3 ー ー ー 6.0 5.1 4.0 
4 ー ー ー 5.8 5.7 5.7 

Average 5.0 5.7 6.0 5.8 6.1 5.6 
SD 1.4 1.4 1.9 0.3 1.0 1.1 

RSD, % 28 25 31 5 16 20 
n 2 2 2 4 4 4 

Table 5. Effect of matrix concentrations and type of nebulizers on lead concentrations in the 
real sample of magnesium 

The data of No.1 and No.2 could be compared in detail, as shown in Table 6. In the former, 
concentric nebulizers of standard (‘TR-30-A2’) and high salts (‘TR-30-C2’) made by 
Meinhard Glass Products (Colorado, USA) and SPS4000 were used for measurements. In the 
latter, those of standard (‘Conical’) and high salts (‘SeaSpray’) made by Glass Expansion 
(West Melbourne, Australia) and Vista-Pro were used. In both Tables, the data seem to be 
independent of the matrix concentrations, but their precision obtained using nebulizers for 
high salt concentrations was better than those using standard ones. It is noteworthy to 
mention that there occurred a certain type of damage onto the outer tube and clogging of 
the inner tube in a plasma torch due to the introduction of solutions of 4 % for hours, 
especially into a horizontally aligned torch for axial viewing. Solutions of 1 % may have had 
insufficient emission peaks on insensitive instruments. Hence, the preparation of a sample 
solution to a matrix concentration of 2 % and measurements using nebulizers for high salt 
concentrations were considered to be preferable. Besides, another type of nebulizers for high 
salt concentrations, named Hildebrand grid nebulizer (Teledyne Leeman Labs., New 
Hampshire, USA) is also available. 
Table 7 gives the results of interlaboratory testing in the first and third series on the real 
samples of magnesium and magnesium alloys, which were also average values of 
independent duplicate or triplicate runs with severally adequate repeatability. In the third 
series, a concentric nebulizer for high salt concentrations, ‘SeaSpray’ nebulizer was 
distributed to each participant in advance for acquiring better precision. Slight atomic 
emission peaks could only be observed for measurements of tin in all the real samples, 
which led to determinations with poor precision. But the results were adequate as JIS 
standards because the corresponding material standards describe upper limits of 50 μg g-1 

for tin. The concentrations of lead in the samples were fairly good on reproducibility, as 
shown in the table. Although some more information on reliability may well be reported as 
measurement uncertainty, validity of the protocol using the CRM and dispersive 
characteristics expressed as standard deviations were separately taken into account for 
discussion. The reasons are as follows: many practical problems about measurement 
uncertainty encountered by accredited testing laboratories have been claimed; (Visser, 2004) 
the participants in industry were reluctant to make use of the available measurement 
uncertainties owing to their unfamiliarity. Also, the reproducibility of the analytical data 
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used in this study is one of the major factors that contribute to the total measurement 
uncertainty, considering that the analytical data coincided well with their certified values. 
 

  C Pb /μg g-1 

 Type of nebulizer Matrix 
concentration, 

% 
Run Standard ('TR-30-A2') High salts ('TR-30-C2') 

1 1st 5 5 

 2nd 4 6 

 3rd 3 7 

 Average 4.0 6.0 

 SD 1.0 1.0 

 RSD, % 25 17 

2 1st 5 6 

 2nd 4 7 

 3rd 5 6 

 Average 4.7 6.3 

 SD 0.6 0.6 

 RSD, % 12 9 

4 1st 5 6 

 2nd 4 6 

 3rd 5 6 

 Average 4.7 6.0 

 SD 0.6 0.0 

 RSD, % 12 0 

a. Meinhard nebulizers of standard (“TR-30-A2“) and high salt concentrations (“TR-30-C2“)  
and ICP-AES (SPS-4000) were used (data No.1 in Table 5) 

  C Pb /μg g-1 

 Type of nebulizer Matrix 
concentration, 

% 
Run Standard ('Conikal') High salts('SeaSpray') 

1 1st 6 6 

 2nd 7 5 

 3rd 5 5 

 Average 6.0 5.3 

 SD 1.0 0.6 

 RSD, % 17 11 

2 1st 6 8 

 2nd 8 8 

 3rd 6 6 

 Average 6.7 7.3 

 SD 1.2 1.2 

 RSD, % 17 16 

4 1st 6 7 

 2nd 8 7 

 3rd 8 6 

 Average 7.3 6.7 

 SD 1.2 0.6 

 RSD, % 16 9 

b. Glass Expansion nebulizers of standard (“Conikal“) and high salt concentrations 
(“SeaSpray“)  and ICP-AES (Vista-Pro) were used (data No.2 in Table 5) 

Table 6. Effect of matrix concentrations and type of nebulizers on lead concentrations in the 
real sample of magnesium 

www.intechopen.com



Magnesium Alloys - Corrosion and Surface Treatments 

 

340 

Data No. Unalloyed Mg 'AZ91D' alloy a 'AM60B' alloy b 

  Sn Pb Sn Pb Sn Pb 

1 2 7.5 4 44 0 9 

2 ― ― 5 39 -1 c 10 

3 0.5 6.5 1 44 0 11 

4 1 5 <1 53 <1 11 

5 <1 2 c <1 53 <1 12 

6 3.1 9.7 1.4 41 2.5 10 

7 ― ― 2 40 1 8 

8 ― ― 2 41 1 9 

9 1 6 2 41 1 9 

10 1 6 ― ― ― ― 

Average 1.6 6.8 2.5 44 0.9 9.9 

SD 1.0 1.6 1.5 5.4 0.9 1.3 

RSD, % 59 24 59 12 100 13 

n 6 6 7 9 6 9 

Unit: μg g-1.     

a. Al, 9%; Zn, 0.7%; Mn, 0.3%     

b. Al, 6%; Mn, 0.4%      

c. Statistically omitted.     

Table 7. Tin and lead concentrations  in the real samples of magnesium and magnesium 
alloys as the interlaboratory testing 

 

Data No. CCd CBe 

1 36 13 

2 36 13 

3 36 15 

4 35 12 

5 36 12 

6 37 12 

Average 36 13 

SD 0.6 1.2 

RSD, % 1.8 9.1 

n 6 6 

95% confidence interval 0.7 1.2 

Certified values 35 13 

Uncertaintya 3 1 

Unit: μg g-1. 

a. Noted in the certificate as the 95% confidence interval 
derived from the analysis results. 

Table 8. Cadmium and beryllium concentrations in the certified reference material of 
magnesium alloy as the interlaboratory testing 
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The influences of some characteristics of ICP-AES listed in Table 3 concerning the analytical 
data were investigated by sorting these data, which revealed no significant tendency. The 
average values of lead in the magnesium and magnesium alloys were almost independent 
of the type of chambers, viewing positions, and type of detectors studied. This may be 
natural, but is an important fact to be confirmed for constructing standards, especially on 
trace determination in coexisting matrices.  

4.2 Results of cadmium and beryllium in another testing 

Table 8 gives the results of another separate interlaboratory testing, determination of 

cadmium and beryllium of the CRM, magnesium alloy. The remarks of the values in the 

table were almost the same as those in Table 4. Fairly good accuracy was also achieved in 

the case of the magnesium alloy. Cadmium and beryllium are more sensitive than tin and 

  

 

 
  

Data No. Unalloyed Mg-1 Unalloyed Mg-2 'AZ91D' alloy a 'AM60B' alloy b 
  Cd Be Cd Be Cd Be Cd Be 

1 0 0 0 0 0.4 8 0 11 
2 0.1 0 0 0 0.5 8 0 11 
3 0 0 0 0 0.6 8 0 11 
4 0.1 0 0.1 0 0.6 6 0.1 4.6 
5 <1 <1 <1 <1 0.6 12 <1 9 
6 -0.06 c -0.12 c 0.16 -0.05 c 0.6 13 4 8.5 
7 0.01 0.02 0 0 0.6 11 0.06 8.6 
8 <2 <0.2 <2 <0.2 <2 11 <2 8.8 
9 <6 <0.1 <6 <0.1 <6 11 <6 8.6 

         
Average 0.0 0.0 0.0 0.0 0.6 10 0.7 9.1 

SD 0.1 0.0 0.1 0.0 0.1 2.3 1.6 2.1 

RSD, % - - - - 14 24 234 23 

n 5 5 6 5 7 9 6 9 

Unit: μg g-1.      

a. Al, 9%; Zn, 0.7%; Mn, 0.3%      

b. Al, 6%; Mn, 0.4%       

c. Statistically omitted.       
 

Table 9. Cadmium and beryllium concentrations in the real samples of magnesium and 
magnesium alloys as the interlaboratory testing 
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lead, therefore easier to determine with ICP-AES. Table 9 gives the results on the real 
samples of magnesium and magnesium alloys, where concentrations of cadmium were too 
low to show significant values. In most cases, beryllium is added to magnesium alloy ingots 
for die castings to enhance their incombustibility; hence it could be naturally determined to 
ca. 10 μg g-1. Beryllium is denoted in JIS H 2222 and allowed to use as an additive element to 
mass fraction of 0.0005-0.0015 %, but is very toxic as well as cadmium. It should be 
monitored not to exceed the permissive levels in the material.  

5. Standardization of the analytical methods 

The protocols evaluated in the testing were acceptable for not only the participants but also 

whom it might concern in Japan. They were fleshed out, formatted and submitted to an 

analytical committee of the magnesium industry, Japan Magnesium Association, as the 

original drafts for JIS standards. After an interview by Japan Industrial Standards 

Committee (JISC), they have been revised and provided as JIS standards. The three of them 

(JIS H1342, 2008; JIS H1343, 2008; JIS H1344, 2010) are newly established standards with 

ICP-AES, while the remainder (JIS H1339, 2010) is an updated one with ICP-AES, in 

addition to the flame AAS already denoted in an earlier version. 

In ISO, there has been a recent action for standardization of the analytical method in the 

material. A standard named ‘determination of lead and cadmium’ is now under the level of 

Draft International Standard (ISO/DIS 11707, 2010), where a technical comittee 

/subcommittee named TC79/SC5, the title of which is ’magnesium and alloys of cast and 

wrought magnesium’, deals with this standard. The author commits himself to this standard 

with the achievement of the ICP-AES techniques as mentioned in this study. He has also 

proposed to standardize new methods for determination of another hazardous trace metals 

in magnesium and magnesium alloys as a future work in ISO.  

6. Conclusion 

This study was designed in order to obtain an analytical basis for the concerned new 

standard methods with ICP-AES. In order to put excellent evaluation of the materials into 

practice, we must continuously know much about the analytical instruments and their 

characteristics. Magnesium alloys will further be developed in a wider variety as special 

lightweight materials; moreover a forecoming ‘sound material-cycle society’ will require 

another evaluation for used materials. Material development and its analysis as evaluation 

should be forwarded in a body. Furthermore, international standardization must be 

accompanied with its advance in order to obtain better performance in production and 

distribution of the material.  
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