
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

21

A General Algorithm for Local Error Control
in the RKrGLm Method

Justin S. C. Prentice
Department of Applied Mathematics, University of Johannesburg, Johannesburg,

South Africa

1. Introduction

Simulation of physical systems often requires the solution of a system of ordinary

differential equations, in the form of an initial-value problem. Usually, a Runge-Kutta

method is used to solve such a system numerically. Recently, we examined how the

computational efficiency of a Runge-Kutta method could be improved through the

mechanism of the RKrGLm algorithm, in the context of global error control via reintegration

(Prentice, 2009). The RKrGLm method for solving the d-dimensional system

 () ()0 0,
dy

f x y y x y a x b
dx

= = ≤ ≤ (1.1)

is based on an explicit Runge-Kutta method of order r (RKr), and m-point Gauss-Legendre

quadrature (GLm). The method has a global error of order 1r + , which is the same order as

the local order of the underlying RKr method, provided that r and m are chosen such that

1 2r m+ ≤ (Prentice, 2008). Of course, any method designed for solving IVPs must facilitate

local error control. In this paper we describe an effective algorithm for controlling the local

relative error in RKrGLm.

2. Terminology and relevant concepts

In this section we describe terminology and concepts relevant to the paper, including a brief

description of the RKrGLm method. Note that, throughout this paper, overbar, as in v ,

indicates an 1d× vector, and caret, as in «M , denotes an d d× matrix.

2.1 Explicit Runge-Kutta methods

We denote an explicit RK method for solving (1.1) by

 ()1 ,i i i i iw w h F x y+ = + (2.1)

where 1i i ih x x+≡ − is a stepsize, iw denotes the numerical approximation to ()iy x , and

(),F x y is a function associated with the particular RK method (indeed, (),F x y could be

regarded as the function that defines the method).

www.intechopen.com

 Numerical Simulations - Applications, Examples and Theory

476

2.2 Local and global errors

We define the global error in any numerical solution at ix by

 i i iw yΔ ≡ − (2.2)

and, specifically, the RK local error at ix by

 ()1 1 1 1,i i i i i iy h F x y yε − − − −⎡ ⎤≡ + −⎣ ⎦ (2.3)

In the above, 1iy − and iy are the true solutions at 1ix − and ix , respectively. Note that the

true value 1iy − is used in the bracketed term in (2.3).

Note also that for the derivative ()' ,y f x y= we have

 () () () « (), , , ,i i i i i i i y i ii
f x w f x y f x y f x ϑ= + Δ = + Δ (2.4)

In the above we use the symbol iϑ in « (),y i i ixf ϑ Δ simply to denote an appropriate set of

constants such that « (),y i i ixf ϑ Δ is the residual term in the first-order Taylor expansion

of (),i i if x y + Δ . Furthermore, «yf is the Jacobian

 «

1 1

1

1

d

y

d d

d

f f

y y

f

f f

y y

∂ ∂⎡ ⎤
⎢ ⎥∂ ∂⎢ ⎥
⎢ ⎥=
⎢ ⎥
∂ ∂⎢ ⎥

⎢ ⎥∂ ∂⎣ ⎦

A

B D B

A

 (2.5)

where { }1 2, , , df f f… are the components of f , and d is the dimension of the system (1.1).

Clearly, a global error of iΔ in iw implies an error of ()
i

O Δ in the derivative (),i if x w .

2.3 Gauss-Legendre quadrature

Gauss-Legendre quadrature on ,u v⎡ ⎤⎣ ⎦ with m nodes is given by (Kincaid & Cheney, 2002)

 () () ()2 1

1

, ,

m
m

i i

v

u

i

i

f x y dx h C f x y O h +

=

= +∑∫ (2.6)

where the nodes ix are the roots of the Legendre polynomial of degree m on ,u v⎡ ⎤⎣ ⎦ . Here, h

is the average separation of the nodes on ,u v⎡ ⎤⎣ ⎦ , a notation we will adopt from now on, and

the iC are appropriate weights. The average node separation h on ,u v⎡ ⎤⎣ ⎦ is defined by

 .
1

v u
h

m

−
≡

+
 (2.7)

The nodes on [1,1]− , denoted ix# , are mapped to corresponding nodes ix on ,u v⎡ ⎤⎣ ⎦ via

1

() ,
2

i ix v u x u v= − + +⎡ ⎤⎣ ⎦# (2.8)

www.intechopen.com

A General Algorithm for Local Error Control in the RKrGLm Method

477

and the weights iC are constants on any interval of integration. We have referred to the

interval [1,1]− above because the nodes ix# on this interval are extensively tabulated.

2.4 The RKrGLm algorithm

We briefly describe the general RKrGLm algorithm on the interval ,a b⎡ ⎤⎣ ⎦ , with reference to

Figure 1.

a= x0 x1 xm xp

R K G L

. . .

R K G L

xp+ 1 x2pxp+m. . .

H 1 H 2

b. . .

Fig. 1. Schematic depiction of the RKrGLm algorithm.

Subdivide ,a b⎡ ⎤⎣ ⎦ into N subintervals jH . At the RK nodes on jH we use RKr:

 () () (){ }1 , 1 , , 1 1 .i i i i iw w h F x w i j p j p m+ = + ∈ − − + −… (2.9)

At the GL nodes we use m-point GL quadrature:

 () ()1

1

, .

m

p i i p i pp

i

w w h C f x wμ μ μμ + ++
=

= + ∑ (2.10)

where 0,1,2,μ = … . Note that 1p m≡ + .
The GL component is motivated by

()
()

() ()

() ()

1

1

1

1

1

, ,

 , .

p

p

x

p i i p i pp

ix

p i i p i p

m

m

i

p

f x y dx y y h C f x y

y y h C f x y

μ

μ

μ μ μμ

μ μ μμ

+

+ ++
=

+
=

++

= −

⇒ +

≈

≈

∑∫

∑
 (2.11)

The RKrGLm algorithm has been shown to be consistent, convergent and zero-stable
(Prentice, 2008).

2.5 Local error at the GL nodes
The local error at the GL nodes is defined in a similar way to that for an RK method:

()
()

()

() ()

() () () ()

1 1

1

2 1

1

2
1 1

1

1

1

, ,

 , .

p m p

pp

x x

m
p m p i i p i p

x

m

i

m
p i i p i p

i

p

m

p

f x y dx y y h C f x y O h

y h C f x y y O h

μ μ

μμ

μ μ μ μ

μ μ μμ με

+ + +

+

=

+
+ + + +

+
+ +

=

+ +
=

= − = +

⎡ ⎤
⎢ ⎥⇒ ≡ + − =
⎢ ⎥⎣ ⎦

∑∫

∑

'*(*)
 (2.12)

www.intechopen.com

 Numerical Simulations - Applications, Examples and Theory

478

We remind the reader that in RKrGLm we choose r and m such that 1 2r m+ ≤ , which

ensures that RKrGLm has a global error of ()1rO h + (Prentice, 2008).

2.6 Implementation of RKrGLm

There are a few points regarding the implementation of RKrGLm that need to be discussed:
a. If we merely sample the solutions at the GL nodes, treating the computations at the RK

nodes as if they were the stages of an ordinary RK method, then RKrGLm would be
reduced to an inefficient one-step method. This is not the intention behind the
development of RKrGLm; rather, RKrGLm represents an attempt to improve the
efficiency of any RKr method, simply by replacing the computation at every (m + 1)th
node by a quadrature formula which does not require evaluation of any of the stages in
the underlying RKr method.

b. Of course, it is clear from the above that on H1 the RK nodes are required to be

consistent with the nodes necessary for GL quadrature. If, however, the RK nodes are

located differently (as would be required by a local error control mechanism, for

example) then it is a simple matter to construct a Hermite interpolating polynomial of

degree 2 1m + (which has an error of order 2 2m +) using the solutions at the nodes

0 }, ,{ mx x… . Then, assuming 0x maps to 1− and mx maps to the largest Legendre

polynomial root x on [1,1]− , the position of the other nodes * *
1 1, ,{ }mx x −… suitable for

GL quadrature may be determined, and the Hermite polynomial may be used to find

approximate solutions of order 1r + at these nodes, thus facilitating the GL component

of RKrGLm. A similar procedure is carried out on the next subinterval 1H , and so on.

Indeed, we will see that the Hermite polynomial described here will play an important

role in our error control process, and is described in more detail in the next subsection.
c. If the underlying RKr method possesses a continuous extension it would not be

necessary to construct the Hermite polynomial described above. However, there is no

guarantee that a continuous extension of appropriate order (at least 2 1m +) will be

available, and it is generally true that determining a continuous extension for a RK
method requires additional stages in the RK method, which would most likely
compromise the gain in efficiency offered by RKrGLm. Note that the construction of the

Hermite polynomial only requires one additional evaluation of (,)f x y , at mx .

2.7 The Hermite interpolating polynomial

If the data { }, , : 0, ,i i ix y y i m′ = … are available, then a polynomial ()PH x , of degree at most

2 1m + , with the interpolatory properties

 () () P i i P i iH x y H x y′ ′= = (2.13)

for each i, may be constructed. If the nodes ix are distinct, then ()PH x is unique. This

approximating polynomial is known as the Hermite interpolating polynomial (Burden &

Faires, 2001) and has an approximation error given by

()()

() ()
(2 2)

2

0

() ()
2 2 !

m m

P i

i

y x
y x H x x x

m

ξ+

=

− = −
+ ∏ (2.14)

www.intechopen.com

A General Algorithm for Local Error Control in the RKrGLm Method

479

where 0 () mx x xξ< < . If h is the average separation of the nodes on 0 , mx x⎡ ⎤⎣ ⎦ , it is possible to

write i ix x hσ− = , where iσ is a suitable constant, and hence

 2 2() () ().m
Py x H x O h +− = (2.15)

The algorithm for determining the coefficients of HP(x) is linear, as in

 1−=c A b (2.16)

where c is a vector of the coefficients of ()PH x , A is the relevant interpolation matrix, and

b is a vector containing iy and iy′ . The details of these terms need not concern us here;

rather, if an error ()O Δ exists in each of iy and iy′ , then an error of ()O Δ will exist in each

component of c . Moreover, since ()PH x is linear in its coefficients, then an error of ()O Δ

will also exist in any computed value of ()PH x . Consequently, we may write

 2 2() () () ()m
Py x H x O h O+− = + Δ (2.17)

where the ()O Δ term arises from errors in iy and iy′ . We have assumed, of course, that the
errors in iy and iy′ are of the same order, which is the situation that we will encounter later.

3. Local error control in RKrGLm

3.1 The order of the tandem method
The idea behind the use of a tandem method is that it must be of sufficiently high order such
that, relative to the approximate solution generated by RKrGLm, the tandem method yields
a solution that may be assumed to be essentially exact. This solution is propagated in both
RKrGLm and the tandem method itself, and the difference between the two solutions is
taken as an estimate of the local error in RKrGLm. This amounts to so-called local
extrapolation and is not dissimilar in spirit to error estimation techniques employed using
Runge-Kutta embedded pairs (Hairer et al., 2000; Butcher, 2003). Generally speaking,
though, the tandem method is not embedded.
To decide on an appropriate order for the tandem method we consider the local error at the
GL nodes

() () ()

() () () ()()

1 1

1

, , 1 ,

1

, , , 1

,

,

m

p i i p i pp p

i

p t p t i i p i p t i p t p t t

m

p

i

y h C f x y y

w h C f x w w

μ μ μμ μ

μ μ μ μ μ μ μ

ε + ++ +
=

+ + + + +
=

= + −

= − Δ + − Δ − − Δ

∑

∑
 (3.1)

where (),tw • is the solution from the tandem method at ()x • , and (),t•Δ is the global error in

(),tw • . Expanding the term in the sum in a Taylor series gives

() () ()

()
«

, ,1 1 ,

, , ,1

1

,

1

,

 (,)

p t i i p i p tp p t

p t i y i p i p t i p tp

i

t

m

m

i

w h C f x w w

h C f x

μ μ μμ μ

μ μ μ μμ

ε

ζ

+ ++ +

+ + +

=

+
=

= + −

− Δ + Δ + Δ

∑

∑
 (3.2)

www.intechopen.com

 Numerical Simulations - Applications, Examples and Theory

480

and so

() ()

() ()
«

, , 1 ,

, , ,1 1 ,

1

1

 ,

(,)

p t i i p i p t p t

p t i y i p i p t i p tp

m

i

p t

m

i

w h C f x w w

h C f x

μ μ μ μ

μ μ μ μμ με ζ

+ + +

+ + ++

=

+
=

+ −

⎛ ⎞
⎜ ⎟= + Δ − Δ − Δ
⎜ ⎟
⎝ ⎠

∑

∑
 (3.3)

where ,i p tμζ + is analogous to iϑ in (2.4). The sum on the RHS of (3.3) is of higher order

than (), 1 ,p t p tμ μ+Δ − Δ , because of the multiplication by h, and since we cannot expect, in

general, that (), 1 , 0p t p tμ μ+Δ Δ =− , the term in parentheses must be ()qO h , where q is the

global order of the tandem method. Since () ()2 1
1

m
p O hμε +

+ = in the RKrGLm method, we

require 2 1q m> + in order for

 () () (), ,

1

1 , 1,p t i i p i p t p t p

m

i

w h C f x w wμ μ μ μ με+ +
=

+ ++ − ≈∑ (3.4)

to be a good (and asymptotically ()0h → correct) estimate for the local error in RKrGLm.

The first two terms on the LHS of (3.4) arise from RKrGLm with the tandem solution as

input, while ()1 ,p tw μ+ is the tandem solution at ()1 px μ+ .

The implication, then, is that the tandem method must have a global order of at least

2 2m + , which implies 2q r> + , since we already have 1 2r m+ = in RKrGLm. We

acknowledge that our choice of q differs from conventional wisdom (which would choose

1q r> + so that the local order of the tandem method is one greater than the RK local

order), but it is clear from (3.3) that the propagation of the tandem solution requires the

global order of the tandem method to be greater than the order of ()1 pμε + . Of course, at the

RK nodes the local order is 1r + , so the tandem method with global order 2q r> + is more

than suitable at these nodes.

3.2 The error control algorithm

We describe the error control algorithm on the first subinterval 1 0[(),]pH x a x= = (see Figure

1). The same procedure is then repeated on subsequent subintervals.

Solutions 1,rw and 1,qw are obtained at 1x using RKr and RKq, respectively. We assume

 1
1, 1 1 0 1, 1,

r
r r qw y L h w w+− = −≈ (3.5)

where 0 1 0h x x≡ − and 1L is a vector of local error coefficients (we will discuss the choice of

a value for 0h later). The exponent of 1r + indicates the order of the local error in RKr. We

find the maximum value of

 1, , 1, ,1, , 1,

1, 1, ,

 1, ,
r i q ir i i

i q i

w ww y
i d

y w

−−
≈ = … (3.6)

www.intechopen.com

A General Algorithm for Local Error Control in the RKrGLm Method

481

where the index i refers to the components of the indicated vectors (so 1, ,r iw is the ith

component of 1,rw , etc). Call this maximum 1M and say it occurs for i k= . Hence,

1, , 1, ,

1
1, ,

r k q k

q k

w w
M

w

−
= (3.7)

is the largest relative error in the components of 1,rw . Note that k may vary from node to

node, but at any particular node we will always intend for k to denote the maximum value

of (3.6). We now demand that

 1 1, , 1, , 1, , R r k q k R q kM w w wδ δ≤ ⇒ − ≤ (3.8)

where Rδ is a user-defined relative tolerance. If this inequality is violated we find a new

stepsize *
0h such that

 ()
1

1
11, ,* *

0 1, 0 1, ,
1,

0.9

r
rR q k

k R q k
k

w
h L h w

L

δ
δ

+ +⎛ ⎞ ⎛ ⎞⎜ ⎟= ⇒ <⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 (3.9)

where 1,kL is the kth component of 1L , and then we find new solutions 1,rw and 1,qw

using *
0h (1L is determined from (3.5)). The factor 0.9 in (3.9) is a safety factor allowing for

the fact that 1,qw is not truly exact. To cater for the possibility that any component of 1,qw

is close to zero we actually demand

 { }1, , 1, , 1, ,max ,r k q k A R q kw w wδ δ− ≤ (3.10)

where Aδ is a user-defined absolute tolerance. We then set *
1 0h h= and proceed to the node

2x , where the error control process is repeated, and similarly for 3x up to mx . The process

of recalculating a solution using a new stepsize is known as a step rejection.

In the event that the condition in (3.10) is satisfied, we still calculate a new stepsize *
0h

(which would now be larger than 0h) and set *
1 0h h= , on the assumption that if *

0h satisfies

(3.10) at 1x , then it will do so at 2x as well (however, we also place an upper limit on *
0h of

02h , although the choice of the factor two here is somewhat arbitrary). In the worst-case

scenario we would find that 1h is too large and a new, smaller value *
1h must be used. The

exception occurs when 1, , 1, , 0r k q kw w− = . In this case we simply set 1 02h h= and proceed

to 2x .

The above is nothing more than well-known local relative error control in an explicit RK

method using local extrapolation. It is at the GL node px that the algorithm deviates from

the norm. A step-by-step description of the procedure at px follows:

1. Once error control at { }1 2, , , mx x x… has been effected (which necessarily defines the

positions of { }1 2, , , mx x x… due to stepsize modifications that may have occurred), the

location of px must be determined such that the local relative error at px is less than

{ }, ,max ,A R p q kwδ δ , in which k has the meaning discussed earlier.

www.intechopen.com

 Numerical Simulations - Applications, Examples and Theory

482

2. To this end, we utilize the map (2.8), demanding that ()0x u= corresponds to 1− on the

interval 1,1−⎡ ⎤⎣ ⎦ , and mx corresponds to the largest root mx# of the mth-degree Legendre

polynomial in 1,1−⎡ ⎤⎣ ⎦ . This allows ()px v= to be found, where px corresponds to 1 on

1,1−⎡ ⎤⎣ ⎦ , and so new nodes { }* * *
1 2 1, , , mx x x −… can be determined such that

{ }* * *
1 2 1, , , ,m mx x x x−… are consistent with the GL quadrature nodes on 0 , px x⎡ ⎤

⎣ ⎦ .

3. We wish to perform GL quadrature, using the nodes { }* * *
1 2 1, , , ,m mx x x x−… , on 0 , px x⎡ ⎤

⎣ ⎦ ,

but we do not have the approximate solutions { }* *
1, 1,, ,q m qw w −… at { }* * *

1 2 1, , , mx x x −… .

4. Hence, we construct the Hermite interpolating polynomial ()PH x on 0 , mx x⎡ ⎤⎣ ⎦ using

the original nodes { }1 2, , , mx x x… and the solutions that have been obtained at these

nodes; of course, the derivative of ()y x at these nodes is given by (),f x y . Note that a

Hermite polynomial must be constructed for each of the s components of the system, so

if 1d > , ()PH x is actually a 1d× vector of Hermite polynomials.

5. We use the qth-order solutions that are available, so that we expect the approximation

error in each ()PH x to be ()qO h , as shown in (2.4) and (2.17).

6. The solutions { }* *
1, 1,, ,q m qw w −… at { }* * *

1 2 1, , , mx x x −… are then obtained from

() (){ }* *
1 1, ,P P mH x H x −… .

7. GL quadrature then gives pw with local error ()2 1mO h + , as per (2.12).

8. The tandem method RKq is used to find ,p qw , and ,p p qw w− is then used for error

control:

a. we know that the local error in pw is ()2 1mO h + , where h here is the average node

separation on 0 , px x⎡ ⎤
⎣ ⎦ ;

b. if the local error is too large then a new average node separation *h is determined;

using *h , a new position for px , denoted *
px , is found from * *

0px x ph= + ;

c. if *
p mx x> , we redefine the nodes { }* * *

1 2 1, , , ,m mx x x x−… , find qth-order solutions at

these new nodes using ()PH x , and then find solutions at *
px using GL quadrature

and RKq;

d. if *
p mx x≤ , we reject the GL step since there is now no point in finding a solution at

*
px .

9. After all this, the node *
px or mx (if *

p mx x≤) defines the endpoint of the subinterval

1H ; the stepsize h is set equal to the largest separation of the nodes on 1H , and the

www.intechopen.com

A General Algorithm for Local Error Control in the RKrGLm Method

483

entire error control procedure is implemented on the next subinterval 2H . Note also

that it is the qth-order solution at the endpoint of 1H that is propagated in the RK

solution at the next node.

3.3 Initial stepsize

To find a stepsize 0h to begin the calculation process, we assume that the local error

coefficient 1, 1kL = and then find 0h from

 { }()
1

1
0 0,max , r

A R kh yδ δ += (3.11)

Solutions obtained with RKr and RKq using this stepsize then enable a new, possibly larger,

0h to be determined, and it is this new 0h that is used to find the solutions 1,rw and 1,qw

at the node 1x .

3.4 Final node

We keep track of the nodes that evolve from the stepsize adjustments, until the end of the

interval of integration b has been exceeded. We then backtrack to the node on ,a b⎡ ⎤⎣ ⎦ closest

to b (call it 1fx −), determine the stepsize 1 1f fh b x− −≡ − , and then find ,b rw and ,b qw , the

numerical solutions at b using RKr and RKq, with 1fh − , 1fx − and 1,f qw − as input for both

RKr and RKq. This completes the error control procedure.

4. Comments on embedded RK methods and continuous extensions

Our intention has been to develop an effective local error control algorithm for RKrGLm,
and we believe that the above-mentioned algorithm achieves this objective. Moreover, the
algorithm is general in the choice of RKr and RKq. These two methods could be entirely
independent of each other, or they could constitute an embedded pair, as in RK(r,q). This
latter choice would require fewer stage evaluations at each RK node, and so would be more
efficient than if RKr and RKq were independent. Nevertheless, the use of an embedded pair
is not necessary for the proper functioning of our error control algorithm.

The option of constructing ()PH x using the nodes 1 2 1{ , , , }m p p px x x x− −= … for error control

at 2px (as opposed to using 2 1{ , , }p px x −…) is worth considering. Such a polynomial,

together with the Hermite polynomial constructed on 0 1{ , , , }mx x x… , forms a piecewise

continuous approximation to ()y x on 0 2 1[,]px x − . Of course, this process is repeated at the

nodes 2 2 1 3 1{ , , , }p p px x x+ −… , and so on. In this way the Hermite polynomials, which must be

constructed out of necessity for error control purposes, become a piecewise continuous (and

smooth) extension of the approximate discrete solution. Such an extension is not constructed

a posteriori; rather, it is constructed on each subinterval iH as the RKrGLm algorithm

proceeds, and so may be used for event trapping.

5. Numerical examples

We will use RK5GL3 to demonstrate the error control algorithm. In RK5GL3 we have

5, 3r m= = so that the tandem method must be an eighth-order RK method, which we

www.intechopen.com

 Numerical Simulations - Applications, Examples and Theory

484

denote RK8. The RK5 method in RK5GL3 is due to Fehlberg (Hairer et al., 2000), as is RK8
(Hairer et al., 2000; Butcher, 2003).
By way of example, we solve

 2
2

1
' 2

1
y y

x
= −

+
 (5.1)

on 0,5⎡ ⎤⎣ ⎦ with ()0 0y = , and

 ' 1
4 20

y y
y

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 (5.2)

on 0,30⎡ ⎤⎣ ⎦ with ()0 1y = . The first of these has a unimodal solution on the indicated interval,

and we will refer to it as IVP1. The second problem is one of the test problems used by Hull

et al (Hull et al., 1972), and we will refer to it as IVP2. These problems have solutions

()

()

2

/4

IVP1:
1

20
IVP2:

1 19 x

x
y x

x

y x
e−

=
+

=
+

 (5.3)

In Table 1 we show the results of implementing our local error control algorithm in solving
both test problems. The absolute tolerance Aδ was always 1010− , except for IVP1 with

1010Rδ
−= , for which 1210Aδ

−= was used.

IVP1

Rδ 410− 610− 810− 1010−

RK step rejections 2 2 0 2

GL step rejections 2 5 10 19

nodes 12 20 37 79

RKGL subintervals 4 6 12 25

IVP2

Rδ 410− 610− 810− 1010−

RK step rejections 2 2 4 5

GL step rejections 2 3 5 9

nodes 10 19 39 87

RKGL subintervals 3 6 11 24

Table 1. Performance data for error control algorithm applied to IVP1 and IVP2.

In this table, RK step rejections is the number of times a smaller stepsize had to be determined

at the RK nodes; GL step rejections is the number of times that 4 3x x∗ ≤ , as described in the

previous section; nodes is the total number of nodes used on the interval of integration,

including the initial node 0x ; and RKGL subintervals is the total number of subintervals iH

used on the interval of integration. It is clear that as Rδ is decreased so the number of nodes

and RKGL subintervals increases (consistent with a decreasing stepsize), and so there is

www.intechopen.com

A General Algorithm for Local Error Control in the RKrGLm Method

485

more chance of step rejections. There are not many RK step rejections for either problem.

When 1010Rδ
−= the GL step rejections for IVP1 are 19 out a possible 25 (almost 80%), but

for IVP2 the GL step rejections number only about 38%). In both cases the GL step rejections

arise as a result of relatively large local error coefficients at the GL nodes, which necessarily

lead to relatively small values of h, the average node separation, so that the situation *
4 3x x≤

is quite likely to occur.

Figures 2 and 3 show the RK5GL3 local error for IVP1 and IVP2. The curve labelled tolerance

in each figure is R iyδ , which is the upper limit placed on the local error.

x

0 1 2 3 4 5

E
rr

o
r

1 0 - 9

1 0 - 8

1 0 - 7

1 0 - 6

t o l e r a n c e

a c t u a l e r r o r

I V P 1

Fig. 2. RKGL local error for IVP1, with 610Rδ
−= .

x

0 5 1 0 1 5 2 0 2 5 3 0

E
rr

o
r

1 0 - 9

1 0 - 8

1 0 - 7

a c t u a l e r r o r

t o l e r a n c e

I V P 2

Fig. 3. RKGL local error for IVP2, with 810Rδ
−= .

In Figure 2 we have used 610Rδ
−= , and in Figure 3 we have used 810Rδ

−= . It is clear that

in both cases the tolerance has been satisfied, and the error control algorithm has been

successful. In Figure 4, for interest's sake, we show the stepsize variation as function of node

index (#) for these two problems.

www.intechopen.com

 Numerical Simulations - Applications, Examples and Theory

486

#

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0

h

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

1 .2

IV P 1

IV P 2

Fig. 4. Stepsize h vs node index (#) for IVP1 and IVP2.

To demonstrate error control in a system, we use RK5GL3 to solve

() ()

1 2

2
2 1 2

1 2

sin 2 2

2 3
0 , 0

5 5

x

y y

y e x y y

y y

′ =

′ = − +

= − = −

 (5.4)

on 0,3⎡ ⎤⎣ ⎦ . The solution to this system, denoted SYS1, is

()

()

2

1

2

2

sin 2 cos
5

4sin 3cos
5

x

x

e
y x x

e
y x x

= −

= +

 (5.5)

The performance table for RK5GL3 local error control applied to this problem is shown in
Table 2.

SYS1

Rδ 410− 610− 810− 1010−

RK step rejections 3 5 6 9

GL step rejections 3 4 8 8

nodes 10 25 52 115

RKGL subintervals 3 7 15 31

Table 2. Performance data for error control algorithm applied to SYS1.

The performance is similar to that shown in Table 1. In all calculations reflected in Table 2,

we have used 1210Aδ
−= . The error in the components y1 and y2 of SYS1 is shown in Figures

5 and 6.

www.intechopen.com

A General Algorithm for Local Error Control in the RKrGLm Method

487

x

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0

E
rr

o
r

1 0 - 1 2

1 0 - 1 1

1 0 - 1 0

1 0 - 9

1 0 - 8

1 0 - 7

1 0 - 6

1 0 - 5

a c t u a l e r r o r

t o l e r a n c e

S Y S 1
c o m p o n e n t y 1

Fig. 5. Error in component y1 of SYS1.

x

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0

E
rr

o
r

1 0 - 1 1

1 0 - 1 0

1 0 - 9

1 0 - 8

1 0 - 7

1 0 - 6

1 0 - 5

a c t u a l e r r o r

t o l e r a n c e

S Y S 1
c o m p o n e n t y

2

Fig. 6. Error in component y2 of SYS1.

7. Conclusion and scope for further research

We have developed an effective algorithm for controlling the local relative error in RKrGLm,

with 1r m+ ≤ . The algorithm utilizes a tandem RK method of order 3r + , at least. A few

numerical examples have demonstrated the effectiveness of the error control procedure.

7.1 Further research

Although the algorithm is effective, it is somewhat inefficient, as evidenced by the large
number of step rejections shown in the tables. Ways to improve efficiency might include :
a. The use of an embedded RK pair, such as DOPRI853 (Dormand & Prince, 1980), to

reduce the total number of RK stage evaluations,
b. Using a high order RKGL method as the tandem method, since the RKGL methods

were originally designed to improve RK efficiency,
c. Error control per subinterval Hj, rather than per node, which might require

reintegration on each subinterval,

www.intechopen.com

 Numerical Simulations - Applications, Examples and Theory

488

d. Optimal stepsize adjustment, so that stepsizes that are smaller than necessary are not
used. Smaller stepsizes implies more nodes, which implies greater computational effort.

8. References

Burden, R.L. and Faires, J.D., (2001), Numerical analysis, 7th ed., Brooks/Cole, 0-534-38216-9,
Pacific Grove.

Butcher, J.C., (2003), Numerical methods for ordinary differential equations, Wiley, 0-471-96758-
0, Chichester.

Dormand, J.R. and Prince, P.J., A family of embedded Runge-Kutta formulae, Journal of
Computational and Applied Mathematics, 6 (1980) 19-26, 0377-0427.

Hairer, E., Norsett, S.P. and Wanner, G., (2000), Solving ordinary differential equations I:
Nonstiff problems, Springer-Verlag, 3-540-56670-8, Berlin.

Hull, T.E., Enright, W.H., Fellen, B.M. and Sedgwick, A.E., Comparing numerical methods
for ordinary differential equations, SIAM Journal of Numerical Analysis, 9, 4 (1972)
603-637, 0036-1429.

Kincaid, D. and Cheney, W., (2002), Numerical Analysis: Mathematics of Scientific Computing,
3rd ed., Brooks/Cole, 0-534-38905-8, Pacific Grove.

Prentice, J.S.C., The RKGL method for the numerical solution of initial-value problems,
Journal of Computational and Applied Mathematics, 213, 2 (2008) 477-487, 0377-0427.

Prentice, J.S.C.,Improving the efficiency of Runge-Kutta reintegration by means of the RKGL
algorithm, (2009), In: Advanced Technologies, Kankesu Jayanthakumaran, (Ed.), 677-
698, INTECH, 978-953-307-009-4, Vukovar.

www.intechopen.com

Numerical Simulations - Applications, Examples and Theory

Edited by Prof. Lutz Angermann

ISBN 978-953-307-440-5

Hard cover, 520 pages

Publisher InTech

Published online 30, January, 2011

Published in print edition January, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book will interest researchers, scientists, engineers and graduate students in many disciplines, who make

use of mathematical modeling and computer simulation. Although it represents only a small sample of the

research activity on numerical simulations, the book will certainly serve as a valuable tool for researchers

interested in getting involved in this multidisciplinary ï¬eld. It will be useful to encourage further experimental

and theoretical researches in the above mentioned areas of numerical simulation.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Justin Prentice (2011). A General Algorithm for Local Error Control in the RKrGLm Method, Numerical

Simulations - Applications, Examples and Theory, Prof. Lutz Angermann (Ed.), ISBN: 978-953-307-440-5,

InTech, Available from: http://www.intechopen.com/books/numerical-simulations-applications-examples-and-

theory/a-general-algorithm-for-local-error-control-in-the-rkrglm-method

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

