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A General Algorithm for Local Error Control  
in the RKrGLm Method 

Justin S. C. Prentice 
Department of Applied Mathematics, University of Johannesburg, Johannesburg,  

South Africa 

1. Introduction    

Simulation of physical systems often requires the solution of a system of ordinary 

differential equations, in the form of an initial-value problem. Usually, a Runge-Kutta 

method is used to solve such a system numerically. Recently, we examined how the 

computational efficiency of a Runge-Kutta method could be improved through the 

mechanism of the RKrGLm algorithm, in the context of global error control via reintegration 

(Prentice, 2009). The RKrGLm method for solving the d-dimensional system 

 ( ) ( )0 0,           
dy

f x y y x y a x b
dx

= = ≤ ≤  (1.1) 

is based on an explicit Runge-Kutta method of order r (RKr), and m-point Gauss-Legendre 

quadrature (GLm). The method has a global error of order 1r + , which is the same order as 

the local order of the underlying RKr method, provided that r  and m  are chosen such that 

1 2r m+ ≤  (Prentice, 2008). Of course, any method designed for solving IVPs must facilitate 

local error control. In this paper we describe an effective algorithm for controlling the local 

relative error in RKrGLm. 

2. Terminology and relevant concepts 

In this section we describe terminology and concepts relevant to the paper, including a brief 

description of the RKrGLm method. Note that, throughout this paper, overbar, as in v , 

indicates an 1d× vector, and caret, as in «M , denotes an d d× matrix. 

2.1 Explicit Runge-Kutta methods 

We denote an explicit RK method for solving (1.1) by 

 ( )1 ,i i i i iw w h F x y+ = +  (2.1) 

where 1i i ih x x+≡ −  is a stepsize, iw  denotes the numerical approximation to ( )iy x , and 

( ),F x y  is a function associated with the particular RK method (indeed, ( ),F x y  could be 

regarded as the function that defines the method). 
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2.2 Local and global errors 

We define the global error in any numerical solution at ix  by 

 i i iw yΔ ≡ −  (2.2) 

and, specifically, the RK local error at ix  by 

 ( )1 1 1 1,i i i i i iy h F x y yε − − − −⎡ ⎤≡ + −⎣ ⎦  (2.3) 

In the above, 1iy −  and iy  are the true solutions at 1ix − and ix , respectively. Note that the 

true value 1iy −  is used in the bracketed term in (2.3). 

Note also that for the derivative ( )' ,y f x y=  we have 

 ( ) ( ) ( ) « ( ), , , ,i i i i i i i y i ii
f x w f x y f x y f x ϑ= + Δ = + Δ  (2.4) 

In the above we use the symbol iϑ  in « ( ),y i i ixf ϑ Δ  simply to denote an appropriate set of 

constants such that « ( ),y i i ixf ϑ Δ  is the residual term in the first-order Taylor expansion  

of ( ),i i if x y + Δ . Furthermore, «yf  is the Jacobian 

 «

1 1

1

1

d

y

d d

d

f f

y y

f

f f

y y

∂ ∂⎡ ⎤
⎢ ⎥∂ ∂⎢ ⎥
⎢ ⎥=
⎢ ⎥
∂ ∂⎢ ⎥

⎢ ⎥∂ ∂⎣ ⎦

A

B D B

A

 (2.5) 

where { }1 2, , , df f f…  are the components of f , and d  is the dimension of the system (1.1). 

Clearly, a global error of iΔ  in iw  implies an error of ( )
i

O Δ  in the derivative ( ),i if x w . 

2.3 Gauss-Legendre quadrature 

Gauss-Legendre quadrature on ,u v⎡ ⎤⎣ ⎦  with m nodes is given by (Kincaid & Cheney, 2002) 

 ( ) ( ) ( )2 1

1

, ,

m
m

i i

v

u

i

i

f x y dx h C f x y O h +

=

= +∑∫  (2.6) 

where the nodes ix  are the roots of the Legendre polynomial of degree m on ,u v⎡ ⎤⎣ ⎦ . Here, h 

is the average separation of the nodes on ,u v⎡ ⎤⎣ ⎦ , a notation we will adopt from now on, and 

the iC  are appropriate weights. The average node separation h on ,u v⎡ ⎤⎣ ⎦  is defined by 

 .
1

v u
h

m

−
≡

+
 (2.7) 

The nodes on [ 1,1]− , denoted ix# , are mapped to corresponding nodes ix  on ,u v⎡ ⎤⎣ ⎦  via 

 
1

( ) ,
2

i ix v u x u v= − + +⎡ ⎤⎣ ⎦#  (2.8) 
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and the weights iC  are constants on any interval of integration. We have referred to the 

interval [ 1,1]−  above because the nodes ix#  on this interval are extensively tabulated. 

2.4 The RKrGLm algorithm 

We briefly describe the general RKrGLm algorithm on the interval ,a b⎡ ⎤⎣ ⎦ , with reference to 

Figure 1.  
 

a= x0 x1 xm xp

R K G L

. . .

R K G L

xp+ 1 x2pxp+m.  .  .

H 1 H 2

b.   .   .

 

Fig. 1.  Schematic depiction of the RKrGLm algorithm. 

Subdivide ,a b⎡ ⎤⎣ ⎦  into N subintervals jH . At the RK nodes on jH  we use RKr: 

 ( ) ( ) ( ){ }1 ,      1 , , 1 1 .i i i i iw w h F x w i j p j p m+ = + ∈ − − + −…  (2.9) 

At the GL nodes we use m-point GL quadrature: 

 ( ) ( )1

1

, .

m

p i i p i pp

i

w w h C f x wμ μ μμ + ++
=

= + ∑  (2.10) 

where 0,1,2,μ = … . Note that 1p m≡ + . 
The GL component is motivated by 

 

( )
( )

( ) ( )

( ) ( )

1

1

1

1

1

, ,

         , .

p

p

x

p i i p i pp

ix

p i i p i p

m

m

i

p

f x y dx y y h C f x y

y y h C f x y

μ

μ

μ μ μμ

μ μ μμ

+

+ ++
=

+
=

++

= −

⇒ +

≈

≈

∑∫

∑
 (2.11) 

The RKrGLm algorithm has been shown to be consistent, convergent and zero-stable 
(Prentice, 2008). 

2.5 Local error at the GL nodes 
The local error at the GL nodes is defined in a similar way to that for an RK method: 

 

( )
( )

( )

( ) ( )

( ) ( ) ( ) ( )

1 1

1

2 1

1

2
1 1

1

1

1

, ,

                    , .

p m p

pp

x x

m
p m p i i p i p

x

m

i

m
p i i p i p

i

p

m

p

f x y dx y y h C f x y O h

y h C f x y y O h

μ μ

μμ

μ μ μ μ

μ μ μμ με

+ + +

+

=

+
+ + + +

+
+ +

=

+ +
=

= − = +

⎡ ⎤
⎢ ⎥⇒ ≡ + − =
⎢ ⎥⎣ ⎦

∑∫

∑

'*(*)
 (2.12) 
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We remind the reader that in RKrGLm we choose r and m such that 1 2r m+ ≤ , which 

ensures that RKrGLm has a global error of ( )1rO h +  (Prentice, 2008). 

2.6 Implementation of RKrGLm 

There are a few points regarding the implementation of RKrGLm that need to be discussed: 
a. If we merely sample the solutions at the GL nodes, treating the computations at the RK 

nodes as if they were the stages of an ordinary RK method, then RKrGLm would be 
reduced to an inefficient one-step method. This is not the intention behind the 
development of RKrGLm; rather, RKrGLm represents an attempt to improve the 
efficiency of any RKr method, simply by replacing the computation at every (m + 1)th 
node by a quadrature formula which does not require evaluation of any of the stages in 
the underlying RKr method. 

b. Of course, it is clear from the above that on H1 the RK nodes are required to be 

consistent with the nodes necessary for GL quadrature. If, however, the RK nodes are 

located differently (as would be required by a local error control mechanism, for 

example) then it is a simple matter to construct a Hermite interpolating polynomial of 

degree 2 1m +  (which has an error of order 2 2m + ) using the solutions at the nodes 

0 }, ,{ mx x… . Then, assuming 0x  maps to 1−  and mx  maps to the largest Legendre 

polynomial root x on [ 1,1]− , the position of the other nodes * *
1 1, ,{ }mx x −…  suitable for 

GL quadrature may be determined, and the Hermite polynomial may be used to find 

approximate solutions of order 1r +  at these nodes, thus facilitating the GL component 

of RKrGLm. A similar procedure is carried out on the next subinterval 1H , and so on. 

Indeed, we will see that the Hermite polynomial described here will play an important 

role in our error control process, and is described in more detail in the next subsection. 
c. If the underlying RKr method possesses a continuous extension it would not be 

necessary to construct the Hermite polynomial described above. However, there is no 

guarantee that a continuous extension of appropriate order (at least 2 1m + ) will be 

available, and it is generally true that determining a continuous extension for a RK 
method requires additional stages in the RK method, which would most likely 
compromise the gain in efficiency offered by RKrGLm. Note that the construction of the 

Hermite polynomial only requires one additional evaluation of ( , )f x y , at mx . 

2.7 The Hermite interpolating polynomial 

If the data { }, , : 0, ,i i ix y y i m′ = …  are available, then a polynomial ( )PH x , of degree at most 

2 1m + , with the interpolatory properties 

     ( ) ( ) P i i P i iH x y H x y′ ′= =  (2.13) 

for each i, may be constructed. If the nodes ix  are distinct, then ( )PH x  is unique. This 

approximating polynomial is known as the Hermite interpolating polynomial (Burden & 

Faires, 2001) and has an approximation error given by 

 
( )( )

( ) ( )
(2 2)

2

0

( ) ( )
2 2 !

m m

P i

i

y x
y x H x x x

m

ξ+

=

− = −
+ ∏  (2.14) 
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where 0 ( ) mx x xξ< < . If h is the average separation of the nodes on 0 , mx x⎡ ⎤⎣ ⎦ , it is possible to 

write i ix x hσ− = , where iσ  is a suitable constant, and hence 

 2 2( ) ( ) ( ).m
Py x H x O h +− =  (2.15) 

The algorithm for determining the coefficients of HP(x) is linear, as in 

 1−=c A b  (2.16) 

where c  is a vector of the coefficients of ( )PH x , A  is the relevant interpolation matrix, and 

b  is a vector containing iy  and iy′ . The details of these terms need not concern us here; 

rather, if an error ( )O Δ  exists in each of iy  and iy′ , then an error of ( )O Δ  will exist in each 

component of c . Moreover, since ( )PH x  is linear in its coefficients, then an error of ( )O Δ  

will also exist in any computed value of ( )PH x . Consequently, we may write 

 2 2( ) ( ) ( ) ( )m
Py x H x O h O+− = + Δ  (2.17) 

where the ( )O Δ  term arises from errors in iy  and iy′ . We have assumed, of course, that the 
errors in iy  and iy′  are of the same order, which is the situation that we will encounter later.  

3. Local error control in RKrGLm 

3.1 The order of the tandem method 
The idea behind the use of a tandem method is that it must be of sufficiently high order such 
that, relative to the approximate solution generated by RKrGLm, the tandem method yields 
a solution that may be assumed to be essentially exact. This solution is propagated in both 
RKrGLm and the tandem method itself, and the difference between the two solutions is 
taken as an estimate of the local error in RKrGLm. This amounts to so-called local 
extrapolation and is not dissimilar in spirit to error estimation techniques employed using 
Runge-Kutta embedded pairs (Hairer et al., 2000; Butcher, 2003). Generally speaking, 
though, the tandem method is not embedded. 
To decide on an appropriate order for the tandem method we consider the local error at the 
GL nodes 

 
( ) ( ) ( )

( ) ( ) ( ) ( )( )

1 1

1

, , 1 ,

1

, , , 1

,

,

m

p i i p i pp p

i

p t p t i i p i p t i p t p t t

m

p

i

y h C f x y y

w h C f x w w

μ μ μμ μ

μ μ μ μ μ μ μ

ε + ++ +
=

+ + + + +
=

= + −

= − Δ + − Δ − − Δ

∑

∑
 (3.1) 

where ( ),tw •  is the solution from the tandem method at ( )x • , and ( ),t•Δ  is the global error in 

( ),tw • . Expanding the term in the sum in a Taylor series gives 

 
( ) ( ) ( )

( )
«

, ,1 1 ,

, , ,1

1

,

1

,

               ( , )

p t i i p i p tp p t

p t i y i p i p t i p tp

i

t

m

m

i

w h C f x w w

h C f x

μ μ μμ μ

μ μ μ μμ

ε

ζ

+ ++ +

+ + +

=

+
=

= + −

− Δ + Δ + Δ

∑

∑
 (3.2) 
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and so 

 

( ) ( )

( ) ( )
«

, , 1 ,

, , ,1 1 ,

1

1

   ,

( , )

p t i i p i p t p t

p t i y i p i p t i p tp

m

i

p t

m

i

w h C f x w w

h C f x

μ μ μ μ

μ μ μ μμ με ζ

+ + +

+ + ++

=

+
=

+ −

⎛ ⎞
⎜ ⎟= + Δ − Δ − Δ
⎜ ⎟
⎝ ⎠

∑

∑
 (3.3) 

where ,i p tμζ +  is analogous to iϑ  in (2.4). The sum on the RHS of (3.3) is of higher order 

than ( ), 1 ,p t p tμ μ+Δ − Δ , because of the multiplication by h, and since we cannot expect, in 

general, that ( ), 1 , 0p t p tμ μ+Δ Δ =− , the term in parentheses must be ( )qO h , where q is the 

global order of the tandem method. Since ( ) ( )2 1
1

m
p O hμε +

+ =  in the RKrGLm method, we 

require 2 1q m> +  in order for 

 ( ) ( ) ( ), ,

1

1 , 1,p t i i p i p t p t p

m

i

w h C f x w wμ μ μ μ με+ +
=

+ ++ − ≈∑  (3.4) 

to be a good (and asymptotically ( )0h →  correct) estimate for the local error in RKrGLm. 

The first two terms on the LHS of (3.4) arise from RKrGLm with the tandem solution as 

input, while ( )1 ,p tw μ+  is the tandem solution at ( )1 px μ+ . 

The implication, then, is that the tandem method must have a global order of at least 

2 2m + , which implies 2q r> + , since we already have 1 2r m+ =  in RKrGLm. We 

acknowledge that our choice of q differs from conventional wisdom (which would choose 

1q r> +  so that the local order of the tandem method is one greater than the RK local 

order), but it is clear from (3.3) that the propagation of the tandem solution requires the 

global order of the tandem method to be greater than the order of ( )1 pμε + . Of course, at the 

RK nodes the local order is 1r + , so the tandem method with global order 2q r> +  is more 

than suitable at these nodes. 

3.2 The error control algorithm 

We describe the error control algorithm on the first subinterval 1 0[ ( ), ]pH x a x= =  (see Figure 

1). The same procedure is then repeated on subsequent subintervals. 

Solutions 1,rw  and 1,qw  are obtained at 1x  using RKr and RKq, respectively. We assume 

 1
1, 1 1 0 1, 1,

r
r r qw y L h w w+− = −≈  (3.5) 

where 0 1 0h x x≡ −  and 1L  is a vector of local error coefficients (we will discuss the choice of 

a value for 0h  later). The exponent of 1r +  indicates the order of the local error in RKr. We 

find the maximum value of 

 1, , 1, ,1, , 1,

1, 1, ,

    1, ,
r i q ir i i

i q i

w ww y
i d

y w

−−
≈ = …  (3.6) 
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where the index i refers to the components of the indicated vectors (so 1, ,r iw  is the ith 

component of 1,rw , etc). Call this maximum 1M  and say it occurs for i k= . Hence, 

 
1, , 1, ,

1
1, ,

r k q k

q k

w w
M

w

−
=  (3.7) 

is the largest relative error in the components of 1,rw . Note that k may vary from node to 

node, but at any particular node we will always intend for k to denote the maximum value 

of (3.6). We now demand that 

 1 1, , 1, , 1, ,      R r k q k R q kM w w wδ δ≤ ⇒ − ≤  (3.8) 

where Rδ  is a user-defined relative tolerance. If this inequality is violated we find a new 

stepsize *
0h  such that 

 ( )
1

1
11, ,* *

0 1, 0 1, ,
1,

0.9         

r
rR q k

k R q k
k

w
h L h w

L

δ
δ

+ +⎛ ⎞ ⎛ ⎞⎜ ⎟= ⇒ <⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 (3.9) 

where 1,kL  is the kth component of 1L , and then we find new solutions 1,rw  and 1,qw  

using *
0h  ( 1L  is determined from (3.5)). The factor 0.9 in (3.9) is a safety factor allowing for 

the fact that 1,qw  is not truly exact. To cater for the possibility that any component of 1,qw  

is close to zero we actually demand 

 { }1, , 1, , 1, ,max ,r k q k A R q kw w wδ δ− ≤  (3.10) 

 

where Aδ  is a user-defined absolute tolerance. We then set *
1 0h h=  and proceed to the node 

2x , where the error control process is repeated, and similarly for 3x  up to mx . The process 

of recalculating a solution using a new stepsize is known as a step rejection. 

In the event that the condition in (3.10) is satisfied, we still calculate a new stepsize *
0h  

(which would now be larger than 0h ) and set *
1 0h h= , on the assumption that if *

0h  satisfies 

(3.10) at 1x , then it will do so at 2x  as well (however, we also place an upper limit on *
0h  of 

02h , although the choice of the factor two here is somewhat arbitrary). In the worst-case 

scenario we would find that 1h  is too large and a new, smaller value *
1h  must be used. The 

exception occurs when 1, , 1, , 0r k q kw w− = . In this case we simply set 1 02h h=  and proceed 

to 2x . 

The above is nothing more than well-known local relative error control in an explicit RK 

method using local extrapolation. It is at the GL node px  that the algorithm deviates from 

the norm. A step-by-step description of the procedure at px  follows: 

1. Once error control at { }1 2, , , mx x x…  has been effected (which necessarily defines the 

positions of { }1 2, , , mx x x…  due to stepsize modifications that may have occurred), the 

location of px  must be determined such that the local relative error at px  is less than 

{ }, ,max ,A R p q kwδ δ , in which k has the meaning discussed earlier. 
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2. To this end, we utilize the map (2.8), demanding that ( )0x u=  corresponds to 1−  on the 

interval 1,1−⎡ ⎤⎣ ⎦ , and mx  corresponds to the largest root mx#  of the mth-degree Legendre 

polynomial in 1,1−⎡ ⎤⎣ ⎦ . This allows ( )px v=  to be found, where px  corresponds to 1 on 

1,1−⎡ ⎤⎣ ⎦ , and so new nodes { }* * *
1 2 1, , , mx x x −…  can be determined such that 

{ }* * *
1 2 1, , , ,m mx x x x−…  are consistent with the GL quadrature nodes on 0 , px x⎡ ⎤

⎣ ⎦ . 

3. We wish to perform GL quadrature, using the nodes { }* * *
1 2 1, , , ,m mx x x x−… , on 0 , px x⎡ ⎤

⎣ ⎦ , 

but we do not have the approximate solutions { }* *
1, 1,, ,q m qw w −…  at { }* * *

1 2 1, , , mx x x −… . 

4. Hence, we construct the Hermite interpolating polynomial ( )PH x  on 0 , mx x⎡ ⎤⎣ ⎦  using 

the original nodes { }1 2, , , mx x x…  and the solutions that have been obtained at these 

nodes; of course, the derivative of ( )y x  at these nodes is given by ( ),f x y . Note that a 

Hermite polynomial must be constructed for each of the s components of the system, so 

if 1d > , ( )PH x  is actually a 1d×  vector of Hermite polynomials. 

5. We use the qth-order solutions that are available, so that we expect the approximation 

error in each ( )PH x  to be ( )qO h , as shown in (2.4) and (2.17). 

6. The solutions { }* *
1, 1,, ,q m qw w −…  at { }* * *

1 2 1, , , mx x x −…  are then obtained from 

( ) ( ){ }* *
1 1, ,P P mH x H x −… . 

7. GL quadrature then gives pw  with local error ( )2 1mO h + , as per (2.12). 

8. The tandem method RKq is used to find ,p qw , and ,p p qw w−  is then used for error 

control: 

a.  we know that the local error in pw  is ( )2 1mO h + , where h here is the average node 

separation on 0 , px x⎡ ⎤
⎣ ⎦ ; 

b. if the local error is too large then a new average node separation *h  is determined; 

using *h , a new position for px , denoted *
px , is found from * *

0px x ph= + ; 

c. if *
p mx x> , we redefine the nodes { }* * *

1 2 1, , , ,m mx x x x−… , find qth-order solutions at 

these new nodes using ( )PH x , and then find solutions at *
px  using GL quadrature 

and RKq; 

d. if *
p mx x≤ , we reject the GL step since there is now no point in finding a solution at 

*
px . 

9. After all this, the node *
px  or mx  (if *

p mx x≤ ) defines the endpoint of the subinterval 

1H ; the stepsize h is set equal to the largest separation of the nodes on 1H , and the 

www.intechopen.com



A General Algorithm for Local Error Control in the RKrGLm Method   
 

 

483 

entire error control procedure is implemented on the next subinterval 2H . Note also 

that it is the qth-order solution at the endpoint of 1H  that is propagated in the RK 

solution at the next node. 

3.3 Initial stepsize 

To find a stepsize 0h  to begin the calculation process, we assume that the local error 

coefficient 1, 1kL =  and then find 0h  from 

 { }( )
1

1
0 0,max , r

A R kh yδ δ +=  (3.11) 

Solutions obtained with RKr and RKq using this stepsize then enable a new, possibly larger, 

0h  to be determined, and it is this new 0h  that is used to find the solutions 1,rw  and 1,qw  

at the node 1x . 

3.4 Final node 

We keep track of the nodes that evolve from the stepsize adjustments, until the end of the 

interval of integration b has been exceeded. We then backtrack to the node on ,a b⎡ ⎤⎣ ⎦  closest 

to b (call it 1fx − ), determine the stepsize 1 1f fh b x− −≡ − , and then find ,b rw  and ,b qw , the 

numerical solutions at b using RKr and RKq, with 1fh − , 1fx −  and 1,f qw −  as input for both 

RKr and RKq. This completes the error control procedure. 

4. Comments on embedded RK methods and continuous extensions 

Our intention has been to develop an effective local error control algorithm for RKrGLm, 
and we believe that the above-mentioned algorithm achieves this objective. Moreover, the 
algorithm is general in the choice of RKr and RKq. These two methods could be entirely 
independent of each other, or they could constitute an embedded pair, as in RK(r,q). This 
latter choice would require fewer stage evaluations at each RK node, and so would be more 
efficient than if RKr and RKq were independent. Nevertheless, the use of an embedded pair 
is not necessary for the proper functioning of our error control algorithm. 

The option of constructing ( )PH x  using the nodes 1 2 1{ , , , }m p p px x x x− −= …  for error control 

at 2px  (as opposed to using 2 1{ , , }p px x −… ) is worth considering. Such a polynomial, 

together with the Hermite polynomial constructed on 0 1{ , , , }mx x x… , forms a piecewise 

continuous approximation to ( )y x  on 0 2 1[ , ]px x − . Of course, this process is repeated at the 

nodes 2 2 1 3 1{ , , , }p p px x x+ −… , and so on. In this way the Hermite polynomials, which must be 

constructed out of necessity for error control purposes, become a piecewise continuous (and 

smooth) extension of the approximate discrete solution. Such an extension is not constructed 

a posteriori; rather, it is constructed on each subinterval iH  as the RKrGLm algorithm 

proceeds, and so may be used for event trapping. 

5. Numerical examples 

We will use RK5GL3 to demonstrate the error control algorithm. In RK5GL3 we have 

5, 3r m= =  so that the tandem method must be an eighth-order RK method, which we 
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denote RK8. The RK5 method in RK5GL3 is due to Fehlberg (Hairer et al., 2000), as is RK8 
(Hairer et al., 2000; Butcher, 2003). 
By way of example, we solve 

 2
2

1
' 2

1
y y

x
= −

+
 (5.1) 

on 0,5⎡ ⎤⎣ ⎦  with ( )0 0y = , and 

 ' 1
4 20

y y
y

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 (5.2) 

on 0,30⎡ ⎤⎣ ⎦  with ( )0 1y = . The first of these has a unimodal solution on the indicated interval, 

and we will refer to it as IVP1. The second problem is one of the test problems used by Hull 

et al (Hull et al., 1972), and we will refer to it as IVP2. These problems have solutions 

 

( )

( )

2

/4

IVP1:     
1

20
IVP2:     

1 19 x

x
y x

x

y x
e−

=
+

=
+

 (5.3) 

In Table 1 we show the results of implementing our local error control algorithm in solving 
both test problems. The absolute tolerance Aδ  was always 1010− , except for IVP1 with 

1010Rδ
−= , for which 1210Aδ

−=  was used. 
 

IVP1      

Rδ  410−  610− 810− 1010−

RK step rejections 2 2 0 2 

GL step rejections 2 5 10 19 

nodes 12 20 37 79 

RKGL subintervals 4 6 12 25 

     

IVP2     

Rδ  410−  610− 810− 1010−

RK step rejections 2 2 4 5 

GL step rejections 2 3 5 9 

nodes 10 19 39 87 

RKGL subintervals 3 6 11 24 

Table 1. Performance data for error control algorithm applied to IVP1 and IVP2. 

In this table, RK step rejections is the number of times a smaller stepsize had to be determined 

at the RK nodes; GL step rejections is the number of times that 4 3x x∗ ≤ , as described in the 

previous section; nodes is the total number of nodes used on the interval of integration, 

including the initial node 0x ; and RKGL subintervals is the total number of subintervals iH  

used on the interval of integration. It is clear that as Rδ  is decreased so the number of nodes 

and RKGL subintervals increases (consistent with a decreasing stepsize), and so there is 
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more chance of step rejections. There are not many RK step rejections for either problem. 

When 1010Rδ
−=  the GL step rejections for IVP1 are 19 out a possible 25 (almost 80%), but 

for IVP2 the GL step rejections number only about 38%). In both cases the GL step rejections 

arise as a result of relatively large local error coefficients at the GL nodes, which necessarily 

lead to relatively small values of h, the average node separation, so that the situation *
4 3x x≤  

is quite likely to occur. 

Figures 2 and 3 show the RK5GL3 local error for IVP1 and IVP2. The curve labelled tolerance 

in each figure is R iyδ , which is the upper limit placed on the local error. 
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Fig. 2.  RKGL local error for IVP1, with 610Rδ
−= . 
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Fig. 3.  RKGL local error for IVP2, with 810Rδ
−= . 

In Figure 2 we have used 610Rδ
−= , and in Figure 3 we have used 810Rδ

−= . It is clear that 

in both cases the tolerance has been satisfied, and the error control algorithm has been 

successful. In Figure 4, for interest's sake, we show the stepsize variation as function of node 

index (#) for these two problems. 
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Fig. 4.  Stepsize h vs node index (#) for IVP1 and IVP2. 

To demonstrate error control in a system, we use RK5GL3 to solve 

 

( ) ( )

1 2

2
2 1 2

1 2

sin 2 2

2 3
0 ,   0

5 5

x

y y

y e x y y

y y

′ =

′ = − +

= − = −

 (5.4) 

on 0,3⎡ ⎤⎣ ⎦ . The solution to this system, denoted SYS1, is 

 
( )

( )

2

1

2

2

sin 2 cos
5

4sin 3cos
5

x

x

e
y x x

e
y x x

= −

= +

 (5.5) 

The performance table for RK5GL3 local error control applied to this problem is shown in 
Table 2. 
 

SYS1      

Rδ  410−  610− 810− 1010−

RK step rejections 3 5 6 9 

GL step rejections 3 4 8 8 

nodes 10 25 52 115 

RKGL subintervals 3 7 15 31 

Table 2. Performance data for error control algorithm applied to SYS1. 

The performance is similar to that shown in Table 1. In all calculations reflected in Table 2, 

we have used 1210Aδ
−= . The error in the components y1 and y2 of SYS1 is shown in Figures 

5 and 6. 
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Fig. 5. Error in component y1 of SYS1. 
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Fig. 6. Error in component y2 of SYS1. 

7. Conclusion and scope for further research 

We have developed an effective algorithm for controlling the local relative error in RKrGLm, 

with 1r m+ ≤ . The algorithm utilizes a tandem RK method of order 3r + , at least. A few 

numerical examples have demonstrated the effectiveness of the error control procedure. 

7.1 Further research 

Although the algorithm is effective, it is somewhat inefficient, as evidenced by the large 
number of step rejections shown in the tables. Ways to improve efficiency might include : 
a. The use of an embedded RK pair, such as DOPRI853 (Dormand & Prince, 1980), to 

reduce the total number of RK stage evaluations, 
b. Using a high order RKGL method as the tandem method, since the RKGL methods 

were originally designed to improve RK efficiency, 
c. Error control per subinterval Hj, rather than per node, which might require 

reintegration on each subinterval, 
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d. Optimal stepsize adjustment, so that stepsizes that are smaller than necessary are not 
used. Smaller stepsizes implies more nodes, which implies greater computational effort. 
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