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1. Introduction  

The characterization of the mechanical behaviour of structural materials, with the exception 

of material hardness, is a destructive procedure which requires direct extraction of test 

specimens from the component to analyse. Because this component needs to be operative, 

these specimens have to be as small as possible, in order not to affect the behaviour of the 

component and in order to allow easy reparation of the ‘damaged’ component. However, 

tests with miniaturized specimens are not defined in standards. Thus, the results obtained 

with these tests have to be interpreted in order to obtain the actual properties of the 

components from which the specimens have been extracted (Lucas et al., 2002). The small 

punch test (SPT) is very useful in all applications that require the characterization of the 

mechanical behaviour of structural materials or operational components without 

compromising their service (Lucon, 2001), as in the case of nuclear or thermal plants. 

Another application is the study of small testing zones. Thus, this test has been recently 

applied to the mechanical characterization of metallic coatings (Peñuelas et al, 2009) or the 

heat affected zone of welds (Rodriguez et al, 2009), which are practically impossible to 

characterize by means of the conventional mechanical tests. 

Advance constitutive models frequently include parameters that have to be identified 

through numerical simulation of tests and mathematical optimization of variables, because 

they cannot often be directly measured in laboratory. In this paper, an inverse methodology 

for the identification of the mechanical and damage properties of structural steels has been 

developed. Thus, from the load-displacement curves obtained during the non-standard SPT, 

the mechanical and damage properties will be obtained. Moreover, this methodology also 

allows simulating the SP test with numerical methods. 
Structural steels may exhibit creep behaviour and behave according to the Hollomon’s law 
(σ = K·εpn). Besides, ductile fracture of metallic materials involves micro-void nucleation and 
growth, and final coalescence of neighbouring voids to create new surfaces of a macro-crack. 
The ductile failure process for porous materials is often modelled by means of the Gurson 
model (Gurson, 1977), which is one of the most widely known micro-mechanical models for 
ductile fracture, and describes the progressive degradation of material stress capacity. In 
this model, which is a modification of the von Mises one, an elastic–plastic matrix material is 
considered and a new internal variable, the void volume fraction, f, is introduced. Although 
the original Gurson model was later modified by many authors, particularly by Tvergaard 
and Needleman (Tvergaard, 1981; Tvergaard, 1982; Tvergaard & Needleman, 1984), the 
resultant model is not intrinsically able to predict coalescence, and is only capable of 
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simulating micro-void nucleation and growth. This deficiency is solved by introducing an 
empirical void coalescence criterion: coalescence occurs when a critical void volume 
fraction, fc, is reached (Tvergaard, 1982; Koplik & Needleman, 1998; Sun et al. 1992). 
Combining these models, it is possible to simulate the behaviour of materials from the 
elastic behaviour until their total fracture. The macromechanical and micromechanical 
parameters relate with different zones of the load-displacement curve obtained with the 
SPTs. These zones will be described below. 
In the inverse procedure considered here, most data are pseudo-experimental data, that is, 

they are obtained from the numerical simulation of the test for a prescribed set of material 

parameters. Notwithstanding, many real experimental data are also considered in order to 

validate the numerical model and the inverse methodology developed. 

2. Inverse methodology 

The methodology used in this paper is based on inverse methods (Stravroulakis et al., 2003), 

design of experiments (Kuehl, 2000; Montgomery, 1997), numerical simulations of tests, 

least-squares polynomial regression for curve fitting and evolutionary genetic algorithms 

(Deb, 2001; Seshadri, 2006). Inverse problems lead to difficult optimization problems whose 

solutions are not always straightforward with current numerical optimization techniques. 

Therefore, one should consider semi-empirical methods and experimental testing techniques 

as well (Bolzon et al., 1997). Design of experiments (DOE) is the methodology of how to 

conduct and plan experiments in order to extract the maximum amount of information in 

the fewest number of runs. The statistical experiment designs most widely used in 

optimization experiments are termed response surface designs (Myers & Montgmomery, 

1995). In addition to trials at the extreme level settings of the variables, response surface 

designs contain trials in which one or more of the variables is set at the midpoint of the 

study range (other levels in the interior of the range may also be represented). Thus, these 

designs provide information on direct effects, pair wise interaction effects and curvilinear 

variable effects. Properly designed and executed experiments will generate more precise 

data while using substantially fewer experimental runs than alternative approaches. They 

will lead to results that can be interpreted using relatively simple statistical techniques. If 

there are curvilinear effects the factorial design can be expanded to allow estimation of the 

response surface. One way to do this is to add experimental points. The central composed 

design uses the factorial design as the base and adds what are known as star points. Special 

methods are available to calculate these star points, which provide desirable statistical 

properties to the study results. 

In the inverse methodology, for the numerical and experimental tests, the different zones of 

the load-displacement curve have to be fitted. Data fitting is usually done by means of an 

error minimization technique, where the distance between parameterized predictions of the 

mechanical model (parameterized by the unknown parameters) and measurements of the 

corresponding experiment is minimized. This formulation is known as an output error 

minimization procedure for the inverse problem (Stravroulakis et al., 2003). In order to 

choose the best fitting model for all of them, for each fitting model, different statistical 

coefficients have been analysed: 

1. The coefficient of multiple determination, also called proportion of variance explained 
R2, that indicates how much better the function predicts the dependent variable than 
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just using the mean value of the dependent variable (the closer to 1.0 (100%), the best 
the function predicts the observed data); 

2. The adjusted coefficient of multiple determination Ra2 that is an R2 statistic adjusted for 
the number of parameters in the equation and the number of data observed (the closer 
to 1.0 the best the function predicts the observed data); 

3. The Durbin–Watson statistic, used to detect the presence of autocorrelation in the 
residuals from the regression analyses (a value less than 0.8 usually indicates that 
autocorrelation is likely (autocorrelation should be avoid)); 

4. The t-ratio, that is a measure of the likelihood that the actual value of the parameter is 
not zero (the larger the absolute value of t, the less likely that the actual value of the 
parameter could be zero) and  

5. The prob(t) value that is the probability of obtaining the estimated value of the 
parameter if the actual parameter value is zero (the smaller the value of prob(t), the 
more significant the parameter and the less likely that the actual parameter value is 
zero). 

 

 

Fig. 1. Scheme for the inverse procedure 

Inverse procedure finishes with the determination of the set of variable values that are 
associated to certain target values, obtained from the load-displacement curve of a 
laboratory SPT. That is, it have to be searched the set of variable values that simultaneously 
minimize a certain number of objective functions. This is a multiobjective optimization 
problem that can be solved using different procedures. In this paper, the Pareto front has 
been obtained by means of the evolutionary genetic algorithm NSGA-II (Seshadri, 2006). 
Pareto front produces non-dominated set of solutions with regard to all objectives and all 
solutions on the Pareto front are optimal. Besides, NSGA-II is non-domination based genetic 
algorithm which incorporates elitism (only the best individuals are selected) and that does 
not requires choosing a priori sharing parameters. This algorithm is run in MATLAB. First of 
all the population is initialized based on the problem range and constraints if any. This 
population is sorted based on no domination (an individual is said to dominate another if 
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the objective functions of it, is no worse than the other and at least in one of its objective 
functions it is better than the other). Once the non-dominated sort is complete, a crowding 
distance, that is a measure of how close and individual is to its neighbours, is assigned. 
Parents are selected from the population by using binary tournament selection based on the 
rank and crowding distance. The selected population generates offspring from crossover 
and mutation operators. The population with the current population and current offspring 
is sorted again based on non-domination and only the best N individuals are selected, where 
N is the population size. Fig. 1 shows the scheme for the inverse procedure used for the 
material characterisation. 

3. Small punch test (SPT) 

By virtue of the small size of the specimens required for testing, the Small Punch Test can be 
considered a non-destructive test. Usually, the specimens used for the SPT are square plates 
of 10 × 10 mm2 and just 0.5 mm thickness, although lower or higher thickness can also be 
used. In comparison with other non-destructive techniques such as ultrasonic or magnetic 
techniques and X-Rays, that are based on indirect measures for the determination of the 
above mentioned properties, the SPT allows obtaining directly the main mechanical 
properties of the materials.  
 

Punch

Upper die

Lower die

Fixer

Specimen
Extensometer

Specimen

Punch

Section: 10 x10 mm2

Thickness: t=0.5mm
d=2.5 mm

r=0.5 mm t=4 mm

v=0.2 mm/min

Lower die

Upper die

 

Fig. 2. Dispositive and geometry of the small punch test  

In laboratory, the SPTs have been carried out with a low speed tensile test machine. Test 
consists of fixing the periphery of the specimen, embedding it between two dies (upper and 
lower dies) by means of four screws and a tightening torque of 2 N·m, and then deforming 
the specimen until its fracture by means of a small semi-spherical punch with a head of 2.5 
mm of diameter. The test is speed controlled with a punching speed v = 0.2 mm/min. In this 
way, the specimen is bounded to deform quasi-statically inside a 4 mm diameter hole 
(biaxial expansion) up to failure (Fig. 2). The data sampling rate during the experiment is 20 
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samples/s. Moreover, the test is finalized when load decreases the 50% of the maximum 
load. 
By means of an extensometer, the displacement of the punch is obtained, and after 
correction of the flexibility of the testing device, the displacement of the central point of the 
specimen is calculated. Thus, from test is obtained the characteristic curve of material. This 
curve represents the force exerted from punch against the specimen (i.e. the load reaction) 
versus the displacement of the punch (Fig. 3). In the case of ductile materials, six different 
zones can be distinguished in these load-displacement curves obtained by means of the 
SPTs: zone I (elastic deformation), zone II (elastoplastic transition), zone III (generalized 
plastic deformation), zone IV (plastic instability and fracture initiation), zone V (fracture 
softening zone) and zone VI (final fracture). 
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Fig. 3. Load-displacement curve for the SPT and Finite Element simulation at each zone 

4. Numerical simulation of the SPT 

Different models have been developed in order to reproduce the SPTs by means of 
numerical methods. These models were compared with the aim of choosing the optimum 
model from the point of view of the relation between the precision and the computational 
cost. The numerical simulations have been carried out with the finite element commercial 
code ABAQUS (ABAQUS 6.7, 2008). In order to simulate the fracture behaviour of isotropic 
and anisotropic materials, two different meshes have been used (2D and 3D meshes, 
respectively). As it was pointed out before, the specimens for laboratory are squared 
specimens. However, because the hollow between the die and the specimen is a cylinder, 
the problem can be considered axisymmetric in the isotropic model, and the model can be 
solved by 2D axisymmetric meshes. Besides, for isotropic materials the 3D model has been 
compared with the axisymmetric one (2D) in order to justify the use of the axisymmetric 
model for the sake of simplicity. In the 2D-Axysim model, the specimens were discretised by 
means of an axisymmetric mesh of four-node reduced integration hybrid elements. 
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Notwithstanding, since many structural steels are obtained from lamination processes, they 
exhibit anisotropic behaviour. In these cases, three-dimensional meshes which reproduced a 
quarter of the specimen were used (Fig. 4). Although geometries of Fig. 4 appear to be 
different, the applied boundary conditions allow using both of them for isotropic materials. 
In this figure, upper die is not represented in order to improve the visualization of the 
model. In all cases, die and punch were modelled as rigid bodies. Besides, contact between 
surfaces, quasistatic analysis and large displacements were taken into account. 
 
 
 

symm
symm

 

Fig. 4. Axysimmetric and Three-dimensional models used for the simulation of the SPT 

From sensitivity analyses, it is observed that the elastic and elastoplastic transition zones 

(zones I and II of the load-displacement curve) are enough to characterize the 

macromechanical behaviour of steels that exhibit creep behaviour and follow the 

Hollomon’s law (σ=K εnp), whereas the remaining zones allow to characterize the 

micromechanical behaviour of the material and the coefficient of friction to be used in 

simulations. 

In order to choose a value for the coefficient of friction, different simulations of known 

materials have been carried out. A good approximation has been obtained with Ǎ = 0.1, 

which is also an adequate value for steel–steel contact under partial lubrication. In the case 

of tests carried out with no lubrication, better results have been obtained with Ǎ = 0.25–0.35. 

These values have been obtained by comparing the experimental curve for an already 

known material (characterized by means of standard tests) with numerical ones obtained by 

means of the test simulation of this material with different values of coefficient of friction. 

To describe the evolution of void growth and subsequent macroscopic material softening, 

the yield function of Gurson modified by and Tvergaard and Needleman (Tvergaard & 

Needleman, 1984) was used in this work. This modified yield function is defined by an 

expression in the form 

 ( ) ( )
2

* *22
1 3

q 3 q pΦ q,p,σ, f = + 2 q f cosh - - 1 + q f = 0
σ 2 σ

⋅ ⋅⎛ ⎞ ⎛ ⎞⋅ ⋅ ⋅ ⋅⎜ ⎟ ⎜ ⎟⋅⎝ ⎠ ⎝ ⎠
 (1) 
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where σ  is flow stress of the matrix material which relates with the equivalent plastic strain, 

f is the current void volume fraction, p=-σm with σm the macroscopic mean stress and q is 
the macroscopic von Mises effective stress given by 

 ( )ij ij

3
q = S S

2
⋅ ⋅  (2) 

where Sij denotes the deviatoric components of the Cauchy stress tensor. Constants q1, q2 
and q3 are fitting parameters introduced by Tvegaard (Tvergaard, 1981; Tvergaard, 1982) to 
provide better agreement with results of detailed unit cell calculations. The modified void 
volume fraction, f*, was introduced by Tvergaard and Needleman (Tvergaard & Needleman, 
1984) to predict the rapid loss in strength that accompanies void coalescence, and is given by 

 
( )

c

* *
u c

c c c

F c

f si f f

f = f - f
f + f - f si f > f

f - f

≤⎧
⎪
⎨ ⋅⎪
⎩

, (3) 

where fc is the critical void volume fraction, fF is the void volume fraction at final failure 
which is usually fF=0.15 and f*u=1/q1  is the ultimate void volume fraction. 

The internal variables of the constitutive model are σ   and f. Thus the evolution law for the 

void volume fraction is given in the model by an expression in the form 

 growth nucleationf = f + f$ $ $  (4) 

The void nucleation law implemented in the current model takes into account nucleation of 
both small and large inclusions. The nucleation of larger inclusions is stress controlled, and 
it is assume that larger inclusions are nucleated at the beginning of the plastic deformation, 
being considered as initial void volume fraction. The nucleation of smaller inclusions is 
strain controlled and, accordingly to Chu and Needleman (Chu & Needleman, 1980) the 
nucleation rate is assume to follow a Gaussian distribution, that is 

 
small particles

p
nucleationf = A ε⋅$ $  (5) 

where pε$  is the equivalent plastic strain rate, and 

 

2p
n n

nn

f 1 ε - ε
A = exp -

2 SS 2 π

⎛ ⎞⎛ ⎞⎜ ⎟⋅ ⋅ ⎜ ⎟⎜ ⎟⋅ ⋅ ⎝ ⎠⎝ ⎠
 (6) 

where Sn is the standard deviation, εn is the mean strain and fn is the void volume fraction of 
nucleating particles. 
The growth rate of the existing voids can expressed as a function of the plastic strain rate in 
the form 

 ( ) p
growth kkf = 1 - f ε⋅$ $ , (7) 

where p
ijε$  is the plastic strain rate tensor. 
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5. Model calibration and sensitivity analysis 

Prior to the inverse procedure is the direct adjustment of the numerical simulation and the 
experimental test for a small number of materials previously characterized by standard 
tests. That is the model calibration and it requires the determination of the unknown 
parameters of the model, especially of the ones relevant to defects and damage, by 
comparing the results of the model with experimental measurements. Afterwards, the load-
displacement curves obtained from laboratory SPT and from FE simulation of the test for a 
material previously characterized from standard specimens, are compared. Fig 5 shows the 
qualitative comparison of the experimental and numerical deformation shape and fracture 
zones of the axisymmetric model at the final fracture of the specimen. 
 

 

Fig. 5. Comparison of the experimental and numerical deformation shape and fracture zones 
of a SPT specimen 
 

 

Fig. 6. Comparison of the experimental and numerical deformation shape and fracture zones 
of a notched SPT specimen 

Moreover, Fig. 6 shows the comparison of deformation and overall appearance of the 
fracture zone obtained by a laboratory test and the numerical simulation, for SPT specimen 
with a longitudinal notch. In the case of notched specimens, 3D models has been used. It has 
been found very good correlation between tests and simulations, not only for the un-
notched specimens but  also for the notched specimens. 
After setting the model, and before beginning the process of characterization, it is necessary 
to study which variables influence each of the zones of the load-displacement curve. For this 
purpose, several numerical simulations have been carried out. Fig. 7 shows the material 
parameters (variables to determine) that affect each zone of the load-displacement curve, 
obtained by means of SP tests. 
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Fig. 7. Load-displacement curve of the SPT and parameters that affect each zone 

From sensitivity analyses (±10%), it has been shown that load-displacement curves are very 

sensitive to variations in n and K (along the entire curve) and less sensible to variations in σ0 

(which mainly affects zone II). Moreover, since the SPT specimens reach the elastoplastic 
regime in the early stages of testing, the effect of Young’s modulus is very small, so that E 
can be considered a constant reference value for all materials tested (analysed). Although 
the thickness of the specimen is a variable that has considerable influence on the load-
displacement curve, in order to characterize the material is desirable using constant 
thickness. Therefore in Figure 7 is not shown the variable thickness-of-the-specimen. On the 
other hand, since the database has been obtained from pseudo-experimental data (numerical 
simulations), the technical problem of cutting all the specimens to the same small thickness 
(0.5 mm) is eliminated. Thus, for all simulations has been considered a fixed thickness. 

6. Characterization methodology and results 

As it was pointed out before, prior to the inverse procedure is the model calibration and the 
sensitivity analysis for the main variables. Afterwards, the inverse characterization scheme 
is applied. The complete material characterization requires the determination of a high 
number of parameters: coefficient of friction (Ǎ), Young’s modulus or elastic modulus (E), 
Poisson’s ratio (ǎ), yield stress (σ0), strain hardening exponent (n), Hollomon’s factor (K), 
fitting parameters introduced by Tvergaard and Needleman for the GTN yield potential (q1, 
q2 and q3), initial void volume fraction (f0), mean strain in the Gaussian distribution of the 
nucleation rate (εn), standard deviation in the Gaussian distribution of the nucleation rate 
(Sn), void volume fraction of nucleating particles in the Gaussian distribution of the 
nucleation rate (fn), critical void volume fraction (fc) and void volume fraction at final failure 
(fF). However, some of them can be obtained from literature or from previous works. This is 
the case for the Ǎ, E, ǎ, q1, q2, q3, f0, Sn parameters. For metallic materials (structural steels) 
usual values of these constants are: E=2e5 MPa, ǎ = 0.3, q1 = 1.5, q2 = 1.0, q3 = q12 = 2.25 and 
Sn = 0.01 (small values of Sn relate to quite homogeneous materials). From metallographic 
observation of experimental specimens, the initial porosity has been considered f0 = 0. And 
finally, from previous adjustments Ǎ=0.1. Once the previous parameters are set, the number 
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of parameters to determine has been strongly reduced from 15 to 7: σ0, n, K, εn, fn, fc and fF. 
The first three parameters are macromechanic ones, the rest are micromechanic parameters 
for the damage model.  
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Fig. 8. Comparison of the Load-displacement curves with and without taking into account 
the damage of material 

Since the damage parameters have no influence in the elastic and elastoplastic transition 
zones of the load-displacement curve (zones I and II), is possible to uncouple the 
macromechanical and the micromechanical characterizations. For this reason two different 
phases have been used for the macro- and micromechanical characterizations. First of all, 
the material has been macromechanically characterized by means of the analysis of zones I 
and II of the load-displacement curve. Then, the micromechanical parameters for the 
previously macro-characterized material have been determined using the remaining zones 
of the curve. Figure 8 shows the comparison between two numerical simulations for the 
same material with and without consideration of the damage model. 

6.1 Macromechanical characterization 
All inverse procedure requires a sufficiently large number of experimental data or pseudo-
experimental data (numerical simulations). These data consist on sets of input variables for 
the macromechanical characterization (E, ǎ, σ0, n, K) and output data obtained from the 
load-displacement curves. As it was pointed out before, the elastic modulus and the 
Poisson’s ratio can be considered forehand known. Thus for a certain fixed values of the 
elastic modulus E = 2e5 MPa and the Poisson’s ratio ǎ = 0.3, different combinations of (σ0, n, 
K) have to be defined. In this paper, two different types of input variables have been taken 
into account. On the one hand, the design of experiments has been applied in order to define 
a small set of tests to simulate (15 tests). Thus, in order to identify the values of these sets of 
variables to simulate, it has been used design of experiments central composed centred on 
body, based on quadratic response surfaces. On the other hand, a wide battery of numerical 
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simulations (180 simulations) has been used not only to characterize the material 
macromechanically but also to quantify the effect of the simplifications inherent to the 
design of experiments. Besides, this battery is suitable for a wide range of structural steels. 
In both cases, the input variables vary within the following ranges 

 0σ = 200 - 700 MPa, n = 0.1 - 0.3  (8) 

 

0 0

0 0

0 0

0 0

1.5 σ - 3.5 σ if 0.1 n 0.15

2.0 σ - 4.0 σ if 0.15 n 0.2
K =  

2.5 σ - 4.5 σ if 0.2 n 0.25

3.0 σ - 5.0 σ if 0.25 n 0.3

⋅ ⋅ ≤ <⎧
⎪ ⋅ ⋅ ≤ <⎪
⎨ ⋅ ⋅ ≤ <⎪
⎪ ⋅ ⋅ ≤ <⎩

 (9) 

In the case of using the battery of numerical simulations, the maximum variation of (σ0, n) is 

Δ(σ0, n)max=(50 MPa, 0.01). 

In the design of experiments, it was considered a new variable K* in order to correctly define 

the sets of values for simulation. This variable K* varies from 1.5 to 3.5 and is given by 

 *

0

K
K = - 0.5 i

σ
⎛ ⎞

⋅⎜ ⎟
⎝ ⎠

 (10) 

where i is defined by 

 

0 if 0.1 n 0.15

1 if 0.15 n 0.2
i =  

2 if 0.2 n 0.25

3 if 0.25 n 0.3

≤ <⎧
⎪ ≤ <⎪
⎨ ≤ <⎪
⎪ ≤ <⎩

 (11) 

The output data were obtained from the curve fitting of zones I and II of the load-
displacement curve in a two stage procedure which consists of: 
1. First, fixing the range of displacement for the analyze. For all the structural steels 

simulated (180 steels with mechanical properties varying within the ranges defined 
before), a displacement value that has been proved to provided good results is 0.3 mm. 

2. Then, adjusting the zone I and part of the zone II with an unique mathematical law. A 
commercial software, DataFit (DataFit 8.2, 2009) has been used for this purpose. The 
best fitting model is chosen by analyzing the different statistical coefficients of the 
different models. From the analysis of the different statistical coefficients of the different 
models, the best fitting model has been chosen. This consists in a exponential law in the 
form y=exp(a+b/x+c·Ln(x)), where y corresponds to load and x correspond to 
displacement. Fig. 9 shows this curve fitting for a generic material. In this way, the three 
output data obtained from each set of input data are the factors a, b, c, which depend on 
the three variables to determine, that is a=a(σ0, n, K), b=b(σ0, n, K) and c=c(σ0, n, K). 

Each of these functions is postulated as a polynomial model (Cuesta et al., 2007), being 

necessary determining its order. The higher this order, the bigger the number of coefficients 

to determine. Thus, in a second-order model the number of coefficients to determine is 10; in 

a third-order model is 20 and in a fourth-order model is 31. By the comparison of the 

numerical results obtained by the method of least-squares, and polynomial regressions of 
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orders two, three and four, it has been chosen to use the following models for the functions 

a,b,c: second-order models in case of using DOE for simulations and third-order models in 

case of using the battery of simulations, since they allow to reach good-enough adjustments 

using a relatively small number of coefficients. Table 1 gives detail of the Ra2 values for each 

function a, b, c obtained with models of different orders. From this table can be observed 

that the adjusted coefficient of multiple determination is much higher for the battery of 

numerical simulations (180 simulations) than for the design of experiments (15 simulations). 

Besides, all the regressions used are very significant and the proportion of variance of a, b, c, 

explained are 99.7%, 95.6% and 98.4%, respectively. 

 

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

Input Data
exp(a+b/x+c*ln(x))

x

y

 

Fig. 9. Exponential adjustment of the Load-displacement curve in zone (I+II) until d=0.3 mm 

Moreover, it has been carried out sensitivity analyses within a ±10% variation of the factors 
a, b, c of the exponential law, in order to analyse their effect on the load-displacement curve. 
These analyses show that the influence of the function a on the exponential law is enormous, 
the influence of c is notable and the influence of b is not important. 
 

Design of experiments Battery of numerical simulations
 

2ndº order 2nd order 3er order 4th order

a 0.981 0.986 0.997 0.999 

b 0.889 0.934 0.951 0.960 

c 0.907 0.961 0.982 0.987 

Table 1. Ra2. coefficients for functions a, b and c 

In case of using design of experiments, the second order polynomial models for functions a, 
b and c can be write by expressions in the form 

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅

2 2 2
0 0 1 0 2 3 11 0 22 33 12 0 13 0

23

g(σ ,n,K) = g + g σ + g n + g K + g σ + g n + g K + g σ n + g σ K +

+ g n K
 (12) 

where g(σ0, n, K) correspond to a=a(σ0, n, K), b=b(σ0, n, K) and c=c (σ0, n, K). 
Similarly, in the case of using the battery of numerical simulations, the third-order 
polynomial models for each function can be expressed in the form 
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⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

+ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

2 2 2
0 0 1 0 2 3 11 0 22 33 12 0 13 0

2 2 2 2
23 123 0 112 0 113 0 122 0 223

2 2 3 3 3
133 0 233 111 0 222 333

g(σ ,n,K) = g + g σ + g n + g K + g σ + g n + g K + g σ n + g σ K +

+ g n K + g σ n K + g σ n + g σ K + g σ n + g n K +

g σ K + g n K + g σ + g n + g K

 (13) 

Coefficients bijk have been obtained using the commercial software DataFit with 
regularized input values (σ0, n, K) varying within the range [0, 1]. Values obtained for a 99% 
confidence interval are shown in Table 2. 
 

 a b c 

g0 5.71048018 -0.00829258 0.25978748 

g1 0.00191446 -0.01508759 -0.36809281 

g2 -0.60585504 -0.00051838 -0.0886477 

g3 6.75259819 0.02658378 1.38774367 

g11 1.45337999 -0.00480519 0.33279479 

g22 -0.17753184 -0.0056283 -0.11501128 

g33 -2.88944339 -0.09971593 -1.81039397 

g12 0.00491019 -0.02896433 -0.48577964 

g13 -5.52592006 0.06567327 0.1338645 

g23 -1.12143967 0.04558742 0.55393563 

g123 -5.13987844 -0.06643944 -2.1955321 

g112 1.11391405 0.02857506 0.75839976 

g113 -1.44430745 -0.10182755 -1.94692201 

g122 1.40276526 0.00766641 0.38699445 

g223 -2.58686787 -0.01189609 -0.60625958 

g133 9.53781127 0.14445698 4.01278162 

g233 6.71653262 0.04137906 1.80579095 

g111 -0.47228307 0.01499177 0.10613477 

g222 0.42619501 0.00050424 0.0751837 

g333 -5.67785877 -0.04182362 -1.71486231 

Table 2. gijk. coefficients for the third- order models for functions a, b and c 

Finally, the inverse procedure finishes with the multiobjective optimization. That is, with the 
determination of the set of values (σ0, n, K) that are associated to target values, which were 
obtained from the load-displacement curve of a specific laboratory small punch test. In our 
case, atarget=-6.097034, btarget=0.009365 and ctarget=0.283507. Therefore, it have to be searched 
the set of variable values that simultaneously minimize three target (objective) functions: (a 
− atarget), (b − btarget) and (c − ctarget). This multiobjective optimization problem has been 
solved using the evolutionary genetic algorithm NSGA-II, which has been run in MATLAB 
(MATLAB, 2006). The input arguments for the function nsga_2, are the population size and 
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number of generations. In this paper, the population size has been set to 200 and the number 
of generations has been set to 100. Since the algorithm incorporates elitism, only the best N 
individuals are selected, where N is the population size. The process repeats to generate the 
subsequent generations (100 generations). With this procedure the Pareto front is obtained, 
and it is represented in the space of functions [(a − atarget), (b − btarget),(c − ctarget)]. Fig. 10 
shows the Pareto front in the space of functions for the target values.  
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Fig. 10. Pareto front (Zone I+II) in the space of functions for the target values  

As it was pointed out before, Pareto front produces non-dominated set of solutions with 

regard to all objectives and all solutions on the Pareto front are optimal. Furthermore, 

sensitivity analyses in functions a, b and c has shown that the variable that affects more the 

load-displacement curve (that is, the result) is variable a. As a result, from all the possible 

solutions that form the Pareto front, should be chosen those that show lower values of 

function objective (a − atarget). Fig. 11 shows the Pareto front in the space of solutions for the 

target values. Within this values it has been chosen one in the zone with higher population 

density of the solution space (σ0, n, K), and it has been called the calculated set of variables 

(σ0, n, K)calculated. In order to verify its ‘goodness’, it has been compared with the values of the 

variables (σ0, n, K) obtained by means of standard laboratory tests (traction test), which have 

been called the known values (σ0, n, K)known. 
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Fig. 11. Pareto front in the space of solutions 
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Moreover, the numerical simulation of the resulting values (σ0, n, K)calculated has been carried 

out in order to obtain the a, b, c parameters from the numerical load-displacement curve. 

These values have also been compared with the objective experimental values. Besides, the 

numerical and experimental load-displacement curves and the stress–strain curves have 

been compared too. Very good agreement has been observed in all cases. Table 3 gives detail 

of the comparison between the calculated values (σ0, n, K)calculated and those obtained with 

standard laboratory traction test (σ0, n, K)known. The relative error between the known and 

calculated values are also shown in Table 3. 

 

Calculated 
Known values

Value Error (%)

σ0 291.6 292.3 0.24 

n 0.256 0.2548 0.47 

K 854.5 849.76 0.55 

Table 3. Results obtained and relative error 
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Fig. 12. Pareto front in the space of solutions for another material 

Moreover, in Fig. 11 there are different zones with high population density (solutions). 

Thus, at a slight sought it could be thought that there is no uniqueness in solution, because 

there are different zones in the figure with high population density. This fact is however 

observed in some solutions, but generally it is not a problem, because the ranges of variation 

of variables in the different solutions and their influence on the stress–strain curve is small 

enough to consider that any result is a good one. However, in many other cases there is only 

a single zone with high population density and all values trend to a unique solution (Fig. 12) 

6.2 Micromechanical characterization 
Once the material has been macromechanically characterized, only four of the seven 

parameters to determine (σ0, n, K, εn, fn, fc and fF) are still unknown (εn, fn, fc and fF) and they 

have to be obtain by means of another inverse procedure. The inputs variables for the 

micromechanical characterization are εn, fn, fc and fF. From Fig. 7 it has been shown that the 
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only parameters to identify in zone III are εn and fn. In this zone, central composed 

experiment design centred on faces, based on quadratic response surfaces, has been used to 

identify the values of these sets of variables to simulate and to choose the minimum number 

of sets required. In Zone III, only has been applied design of experiments, since defining 

multiple batteries of simulations for each particular material that it is not known 

beforehand, is not operative. It has been selected 20 sets of variables (20 experiments) 

distributed in order to obtain variable inflation factors greater than one and lower than four. 

In addition, the input variables vary within the following ranges  

 n n= 0.15 - 0.3, f = 0.01 - 0.07ε  (14) 

which are typical ranges for steels (Abendroth and Kuna, 2003). In addition, the maximum 

variation of (εn, fn) is Δ(εn, fn)max=(0.05, 0.015). 
Zone III has been adjusted with a linear law in the form y=l+m·x. Again, the commercial 
software DataFit has been used for this purpose. Now, the two output data obtained from 
each input set are the factors l and m, which depend on the two variables to determine, that 
is l=l(εn, fn) and m=m(εn, fn). Both factors are postulated as second-order polynomial models 
that can be written in the form 

 2 2
n n 0 1 n 2 n 11 n 22 n 12 n ng(ε , f ) = g + g ε + g f + g ε + g f + g ε f⋅ ⋅ ⋅ ⋅ ⋅ ⋅  (15) 

where g(εn, fn) correspond to l=l(εn, fn) and m=m(εn, fn). 
Coefficients gij have been obtained using DataFit with regularized input values (εn, fn) 
varying within the range [−1, 1]. Table 4 gives detail of the values obtained for a 99% 
confidence interval. Both regressions are very significant and the proportion of variance of l 
and m, explained are 99.3%, 99.7%, respectively. From zone III of the load-displacement 
curve of the laboratory small punch test, the target values are ltarget=0.0119 and 
mtarget=0.7909. 
 

 l m 

g0 0.022333 0.774075 

g1 -0.001755 0.011094 

g2 0.029950 -0.051640 

g11 -0.001519 0.001642 

g22 0.000071 0.000086 

g12 -0.00123 0.007788 

Table 4. gij. coefficients for the second- order models for functions l and m 

Again, Pareto front has been obtained by means of the evolutionary genetic algorithm 
NSGA-II run in MATLAB. The Pareto front in the space of functions [(m − mtarget), (l − ltarget)] 
for the target values is shown in Fig. 13. Moreover, Fig. 14 shows the Pareto front in the 
space of solutions (εn, fn). In order to verify its ‘goodness’, the numerical simulation of the 
resulting values (εn, fn)calculated has been carried out in order to obtain the (l, m) parameters 
from the numerical load-displacement curve 
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Fig. 13. Pareto front (Zone III) in the space of functions for the target values  
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Fig. 14. Pareto front (Zone III) in the space of solutions 

 

Calculated 

εn 0.2107 

fn 0.0293 

↓ Target Pareto Error (%)

l 0.0119 0.0119 1.78e-3 

m 0.7909 0.7909 1.45e-4 

Table 5. Results obtained for zone III and relative error 

Table 5 gives detail of these values. This table also shows the relative error of the functions l 
and m with respect to the objective values (l,m)target. Again, very good agreement has been 
observed in all cases. 
Once the parameters εn and fn have been determined a very good agreement between the 
experimental and numerical curves at zones I, II and III has been achieved. However, it is 

www.intechopen.com



 Numerical Simulations - Applications, Examples and Theory 

 

328 

from zone IV where the curves separates from each other due to the accelerating effect on 
the evolution law of the void volume fraction induced from void coalescence, which 
seriously affect the load resistance capacity of the material. The critical void volume fraction 
fc is the only parameter that defines the beginning of coalescence in the material. This value 
can be obtained from the evolution law of the void volume fraction of the specimen at the 
region where failure takes place. The value of fc is the value of porosity (void volume 
fraction) at the instant in which the experimental and numerical curves begin to separate 
from each other, and corresponds to the initiation of Zone IV. For the target material 
(studied material), this separation takes place for a displacement of the punch of 1.32 mm. 
Thus, the corresponding critical void volume fraction obtained is fc=0.07 (Fig. 15). 
After fc has been determined, the void volume fraction keeps on growing up to the 
maximum load point. This maximum marks the beginning of zone V where the load 
carrying capacity decreases drastically. The slope of this zone depends on fF. The value of fF 
can be obtained carrying out several simulations with different values of fF until the best 
agreement in zone V is obtained. For the material studied in this paper (tested by means of 
the SPT), very good agreement between the experimental and numerical curves is achieved 
with fF=0.1. 
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Fig. 15. Void volume fraction–displacement curve and onset of void coalescence 

 

σ0 (MPa) n K εn fn fc fF q1 q2 

292.3 0.2548 849.76 0.2107 0.0293 0.07 0.1 1.5 1.0

         

q3 f0 Sn µ E (MPa) ν 

2.25 0 0.01 0.3 200 000 0.3 

Table 6. Complete characterization for the studied material 

Once the macromechanic characterization and the micromechanic characterization have 
been completed, the material is completely characterized. The resulting values for the 
different parameters obtained by means of the methodology presented in this paper for the 
complete characterization of the SP tested material are detailed (Table 6). 
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7. Conclusion 

In this paper has been developed an inverse methodology for the determination of the 
mechanical and damage properties of structural steels that behave according to the 
Hollomon’s law and to the damage model developed by Gurson, Tvergaard and 
Needleman. Most of these parameters have been derived from the load-displacement curve, 
which has been obtained by means of small punch tests. 
This methodology allows:  
1. To characterize not only macromechanically but micromechanically, a wide variety of 

structural steels, combining experimental data and pseudo-experimental data 
(numerical simulations). 

2. Knowing the deformation of specimen while the test is running 
3. To identify the zone of the load-displacement curve that is affected by each variable, 

and to perform sensitivity analyses. 
Moreover, the Pareto front and the evolutionary genetic algorithms allow to obtain, in a 
relative easy way, numerical results that fit with good agreement the experimental results. 
In addition, the best way to tackle the parameter identification problem, seems to be the use 
of a battery of numerical simulations combined with design of experiments. The former has 
to be used for the macromechanical characterization, whereas the later should be used for 
the micromechanical characterization. 
Finally, the inverse methodology shown in this paper, has to be developed for each type of 
material, as well as for each thickness of the specimen and each test temperature. 
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