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1. Introduction 

A fast algorithm for elastic-plastic non-conforming contact simulation is presented in this 
work.  While the elastic response of a material subjected to load application is reversible, 
plasticity theory describes the irreversible behavior of the material in reaction to loading 
beyond the limit of elastic domain.  Therefore, elastic-plastic response of contacting bodies 
to loading beyond yield strength is needed to assess the load-carrying capacity of the 
mechanical contact.     
The modern approach in simulating elastic-plastic contact is based on the algorithm originally 
proposed by Mayeur, (Mayeur, 1996), employing Betti’s reciprocal theorem. Although Mayeur 
developed a model for the three-dimensional problem, numerical implementation was 
restricted to two-dimensional case, due to lack of formulas for the influence coefficients. 
Problem generalization is due to Jacq, (Jacq, 2001), and to Jacq et al. (Jacq et al., 2002), who 
advanced a complete semi-analytical formulation for the three-dimensional elastic-plastic 
contact.  The algorithm was later refined by these authors, (Wang & Keer, 2005), who 
improved the convergence of residual and elastic loops. The main idea of their Fast 
Convergence Method (FCM) is to use the convergence values for the current loop as initial 
guess values for the next loop.  This approach reduces the number of iterations if the 
loading increments are small.   
Nélias, Boucly, and Brunet, (Nélias et al., 2006), further improved the convergence of the 
residual loop.  They assessed plastic strain increment with the aid of a universal algorithm 
for integration of elastoplasticity constitutive equations, originally proposed by Fotiu and 
Nemat-Nasser, (Fotiu & Nemat-Nasser, 1996), as opposed to existing formulation, based on 
Prandtl-Reuss equations, (Jacq, 2001). As stated in (Nélias et al., 2006), this results in a 
decrease of one order of magnitude in the CPU time.  
Influence of a tangential loading in elastic-plastic contact was investigated by Antaluca, 
(Antaluca, 2005).  Kinematic hardening was added by Chen, Wang, Wang, Keer, and Cao, 
(Chen et al.,2008), who advanced a three-dimensional numerical model for simulating the 
repeated rolling or sliding contact of a rigid sphere over an elastic-plastic half-space. 
The efficiency of existing elastic-plastic contact solvers, (Jacq et al., 2002; Wang & Keer, 2005) 
is impaired by two shortcomings.  Firstly, the algorithms are based on several levels of 
iteration, with the innermost level having a slow convergence. Secondly, the effect of a 
three-dimensional distribution in a three-dimensional domain, namely residual stresses 
related to plastic strains, is computed using two-dimensional spectral algorithms. 
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A numerical approach to simulate the elastic-plastic contact, based on Betti’s reciprocal 
theorem, is overviewed in this work. Computation of residual stresses due to plastic strains 
is accelerated by implementing three-dimensional spectral methods, in a hybrid 
convolution-correlation algorithm. Pressure-free surface condition in Chiu’s inclusion 
problem decomposition is imposed with the aid of Boussinesq fundamental solutions and 
superposition principle.  The newly proposed algorithm appears well adapted to numerical 
simulation of elastic-plastic contacts. Fotiu and Nemat-Nasser's universal algorithm is 
employed to derive plastic strain increment. The convergence of the residual part is 
therefore improved dramatically, and computationally intensive residual stress assessment 
is moved to an upper iterative level, allowing for finer resolutions in problem digitization. 

2. Formulation of continuous elastic-plastic contact problem 

Since the works of Mayeur, (Mayeur, 1996), and Jacq, (Jacq, 2001), Betti’s reciprocal theorem 
is used in elastic-plastic contact modeling to assess surface normal displacement and stress 
state in an elastic half-space in the presence of plastic strains.  The basis of Betti’s theorem is 
the equality between the work done by the virtual force through the displacements 
produced by the real force and the work done by the real force through the displacements 
produced by the virtual force.  

According to this formulation, if two independent loads are applied to an elastic body of 

volume Ω  and of boundary Γ , generating two independent states ε σ( , , )u  and ε σ∗ ∗ ∗( , , )u  

with vanishing body forces, and the latter corresponds to a unit load applied along the 

direction of 
3

x
f

, in a point A  of the boundary (a unit impulse): 

 
( )3 1

1 2

0
∗

−

≠⎧⎪= ⎨
=⎪⎩

, ;
( )

, ,

M A
p M

dx dx M A
 (1) 

the following equation holds: 

 
3 33 3 3 3 3

2μ ε ε∗ ∗ ∗ ∗

Γ Ω

= Γ + Ω∫ ∫( ) ( , ( )) ( ) ( ) ( , ( )) .

C p

p
ijiju A u M p A p M d M M p A d  (2) 

Here, ΓC  is the boundary subdomain with normal tractions 
3

p  defined, and Ωp  the 

volume subdomain with existing plastic strains ε p , both corresponding to state ε σ( , , )u , μ  

Lamé's constant and M  the integration point.  This point is located within ΓC  in the first 

term of Eq. (2) and within Ωp  in the second.  Consequently, 
33 3

∗ ∗( , ( ))u M p A  is the 

displacement in the direction of 
3

x
f

, and 
3 3
ε ∗ ∗( , ( ))ij M p A  is the strain tensor induced at point 

M  by the loading described by Eq. (1).  By varying the position of A  on Γ  and by applying 

superposition principle with respect to integration point M , normal displacement in every 

point of the boundary can be assessed. 
The second term in Eq. (2), which is expressed as a volume integral, represents the residual 
part of displacement, namely the deflection that would persist after unloading elastically the 
considered body.  Knowledge of normal residual displacement allows solving the elastic-
plastic contact problem as a purely elastic problem with a modified initial contact geometry.  
A level of iteration, corresponding to solution of elastic contact, is therefore required for the 
mutual adjustment between contact pressure and surface normal displacement. 
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Betti’s reciprocal theorem is also applied to assess stress state in the half-space, in the 

presence of plastic strains. As shown in the following section, knowledge of stress state and 

of hardening state of the elastic-plastic material allows for computation of plastic strain 

increment, when a new loading increment is applied leading to further yielding.  Again, two 

independent loads are considered, leading to two independent states ε σ( , , )u  and 

ε σ∗∗ ∗∗ ∗∗( , , )u , the latter corresponding to a unit load applied along the direction of kx
f

, in a 

point B  inside the half-space:   

 
( ) 1

1 2 3

0
∗

−

≠⎧⎪= ⎨
=⎪⎩

, ;
( )

, ,
k

M B
p M

dx dx dx M B
 (3) 

The following equation yields from the general form of Betti’s reciprocal theorem: 

 
3 3

2μ ε ε ∗∗ ∗∗

Ω Γ

= Ω + Γ∫ ∫( ) ( ) ( , ) ( , ) ( ) .

p C

p
k kij kiju B M M B d u M B p M d  (4) 

Here, 
3

∗∗( , )ku M B  and ε ∗∗( , )kij M B  are the displacement along direction of  
3

x
f

 and the  ij  strain 

tensor component respectively, induced at point M  in the half-space by the unit load 

applied at point B  along the direction of  kx
f

.   By varying the position of B  in Ω  and by 

applying superposition principle with respect to integration point M , displacements in 

every point of  the body can be assessed. 

Eq. (4) suggests that stresses have an “elastic” part, σ pr , related to contact pressure 
3

p , which 

is expressed as a surface integral over ΓC , and a residual part, σ r , expressed as a volume 

integral over plastic region Ωp .  The term “elastic” in the previous statement can be 

misleading, as all stresses are elastic, but σ pr  denotes the part of stresses that would vanish if 

an elastic unloading would occur.  This stresses are related to contact pressure, as opposed to 

residual stresses σ r , which are linked to the plastic region Ωp , and would persist after elastic 

unloading.  If ijkM `  is the stiffness tensor from Hooke’s law, the following equations hold: 

 
1

2
σ ⎛ ⎞= +⎜ ⎟

⎝ ⎠
, ,( )pr pr pr

ijkij k kM u u` ` ` ,   
3 3

∗∗

Γ

= Γ∫( ) ( , ) ( )

C

pr
kku B u M B p M d ,  (5) 

 
1

2
σ ε⎛ ⎞= + −⎜ ⎟

⎝ ⎠
, ,( ) pr r r

ij ijk k k kM u u` ` ` ` ,   2μ ε ε ∗∗

Ω

= Ω∫( ) ( ) ( , )

p

pr
k kijiju B M M B d . (6) 

A single comma in the subscript denotes the derivative with respect to the corresponding 

direction: = ∂ ∂,i j i ju u x .   

Resulting equations (2) and (4) suggest elastic-plastic contact problem split in an “elastic” 

and a residual part.  As shown in the following sections, the elastic part comprises the static 

force equilibrium, interference equation, and complementarity conditions, while the 

residual part expresses the plastic strain increment and plastic zone contribution to surface 

normal displacement and to stress state in the elastic-plastic body.   
However, the two subproblems cannot be solved independently, as residual displacement, 
computed in the residual part, enters interference equation in the elastic part, while contact 
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stress, assessed in the elastic subproblem, is needed to find the plastic strain increment in 
the residual part. 
Analytical resolution of resulting model is available for neither the elastic, nor the residual 
part, as integration domains, namely boundary region with tractions and plastic strain 
volume respectively, not known a priori, are arbitrarily shaped.  Therefore, numerical 
approach is preferred.   
The principle of numerical approach consists in considering continuous distributions as 
piece-wise constant on the cells of a three-dimensional grid imposed in a volume enveloping 
integration domains.  Continuous integration in the analytical model of the elastic-plastic 
contact model is replaced by multi-summation of elementary cells individual contributions.  
As these multi-summation operations are in fact convolution and/or correlation products, 
spectral methods are applied to speed up the computation.  

3. Numerical solution of the elastic part 

The numerical model of the elastic part is obtained from that corresponding to a normal 
elastic contact problem completed with the residual term, which is superimposed into the 
interference equation.  
Numerical resolution of elastic contact problem relies on considering continuous 
distributions as piecewise constant on the elements of a rectangular mesh imposed in the 
common plane of contact and including the contact area.  This approach allows 
transforming the integral contact equation, for which analytical solutions exists only in a 
few cases, in a linear system of equations, having nodal pressure as unknowns. 
Kalker and van Randen, (Kalker & van Randen, 1972), reformulated the elastic contact 
problem as a problem of minimization, where the unknown contact area and pressure 
distribution are those who minimize the total complementary energy, under the restrictions 
that pressure is positive on the contact area and there is no interpenetration. This 
formulation finally reduces to solving a set of equations and inequalities which have to be 
satisfied simultaneously:   

 ω= + −( , ) ( , ) ( , )prh i j hi i j u i j , ∈( , )i j D  (7) 

 0 0= >( , ) , ( , )h i j p i j , ∈( , )i j A  (8) 

 0 0> =( , ) , ( , )h i j p i j , ∈ −( , )i j D A  (9) 

 
∈

Δ =∑
( , )

( , )
i j A

p i j W  (10) 

with: h  – the gap between the deformed contact surfaces; hi  – the initial gap (without 

loading); pru  – the composite displacements of the contact surfaces, due to contact pressure; 

ω  - rigid-body approach; W  –  the load transmitted through contact; A  - digitized contact 

area; D  - digitized computational domain. A set of two integers ( , )i j  is used in the 

numerical model instead of continuous coordinates ix  to denote patch position in the grid. 
This numerical formulation cannot predict singularities in the computed fields, as it 
employs values averaged over the elementary patches, but allows for the use of influence 
coefficients based methods. The most efficient approach in solving the system (7)-(10) 
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employs a modified conjugate gradient method (CGM), originally proposed by Polonsky 
and Keer, (Polonsky & Keer, 1999). This algorithm has two main advantages over other 
minimization methods.  Firstly, convergence is assured, as there is proof of convergence for 
the CGM, and the rate of convergence is superlinear. Theory states, (Shewchuk, 1994), that 
CGM should converge in a number of iterations equal to the number of non-nil unknowns, 
namely the numbers of cells in contact.  In practice, a much faster convergence was observed 
for smooth contact geometries. Secondly, the algorithm allows for imposing additional 
restrictions in the course of CG iterations. This means contact area is iterated during 
pressure correction, based on non-adhesion, Eq. (8), and non-penetration principles, Eq. (9).  
The force balance condition, Eq. (10), is also imposed to correct the pressure distribution.  
This eliminates the need for additional nested loops, which were present in most contact 
solvers prior to this approach. 

Convolution product is used to derive the answer of a linear elastic system subjected to an 
input, when the unit impulse response, also referred to as the Green function, is known.  For 
contact problems, the response of an elastic isotropic half-space to a unit concentrated force 
applied on the boundary is known from the Boussinesq and/or Cerruti fundamental 
solutions.  The product of this solution (or Green function) with a shape function, as defined 
in (Liu et al., 2000), yields the influence coefficient (IC), which expresses contribution of an 
element of the grid into another. Superposition principle is then applied, implying 
summation of individual contributions over all grid elements. This multi-summation 
process, which is in fact a convolution product, is very time-consuming, being of order 

2( )O N  for a grid with N  elementary patches.   
In order to circumvent this limitation, the solution currently applied is to compute the 
convolution in the frequency domain, according to convolution theorem, thus reducing the 
computational effort to ( log )O N N . An important issue when using discrete cyclic 
convolution to assess continuous linear convolution is the periodization of the problem, 
which induce the so called periodicity error, (Liu et al., 2000). If the Green function is known 
in the time-space domain, the Discrete Convolution Fast Fourier Transform (DCFFT) 
technique proposed by these authors, (Liu et al., 2000), eliminates completely the periodicity 
error, as discrete cyclic convolution approaches the linear continuous convolution the way 
quadrature estimates continuous integral. 
The implemented algorithm for solving numerically the elastic contact problem, described 
in detail in (Spinu et al., 2007), can be summarized in the following steps: 

1. Acquire the input: contact geometry, elastic properties of the contacting materials, 

normal load transmitted through contact. 
2. Establish the computational domain, D .  For non-conforming contact problems, Hertz 

contact area usually makes a good guess value. If during pressure iterations, current 
contact area is not kept inside computational domain, namely ⊄( )kA D , the algorithm 
should be restarted with a new D . 

3. Establish grid parameters, based on available computational resources.   
4. Choose the guess value for pressure, 0

p
( )  and the imposed precision eps  for the 

conjugate gradient iteration. According to (Polonsky & Keer, 1999), the latter should be 
correlated with the number of grids. 

5. Start the conjugate gradient loop. Compute surface normal displacement field as a 
convolution between influence coefficients matrix K  and current pressure p( )k , using 
DCFFT for computational efficiency:  = ⊗u K p

( ) ( )k k , where symbol ⊗" "  is used to 
denote two-dimensional discrete cyclic convolution. 
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6. Compute the gap distribution, corresponding to residual in CG formulation, using Eq. 

(7) with a vanishing rigid body approach ω : = +( ) ( )( , ) ( , ) ( , )k kh i j hi i j u i j , ∈( , )i j D . In 

order to compensate for the disregarding of ω  (which is unknown),  h( )k  is normalised 

by its mean value on the current contact area  ( )kA .  

7. Compute the descent direction ( )( , )kd i j  in the CG algorithm. 

8. Compute the length of the step α ( )k  to be made along minimization direction:  

= ⊗t K d
( ) ( )k k ,  ( ) 1

α
−

= h d t d
( ) ( ) ( ) ( )k k k k .  For consistence with gap correction in step 6, t( )k  

is also normalized by its mean value. 

9. Adjust nodal pressures:  1 α+ = +( ) ( ) ( )( , ) ( , ) ( , )k k kp i j p i j d i j . 

10. Impose complementarity conditions.  Cells with negative pressure are excluded from 

current contact area  ( )kA , and the corresponding nodal pressures are set to zero.  Cells 

with negative gap re-enter ( )kA , and the corresponding pressures are adjusted 

according to step 9. 

11. Verify convergence criterion:  1+ − ≤p p
( ) ( )k k eps . 

The model was enhanced to allow for eccentric loading of conforming contacts by these 
authors, (Spinu & Diaconescu, 2008), who imposed an additional Newton-Raphson iterative 
level to allow for rotation of common plane of contact. Later on, Spinu (Spinu, 2008) further 
improved the algorithm, by suppressing the outer iterative level and by imposing a 
correction of tilting angles of contact common plane during CG iterations. 

4. Numerical solution of the residual part 

4.1 Plastic zone contribution to surface displacement 

The residual part is also reformulated numerically, by imposing digitized plastic strain 

distribution and finite load increments.  As the region of plastic strains Ωp  can be arbitrarily 

shaped, the integrals in Eq. (2) can only be computed numerically. The numerical 

formulation is based on dividing Ωp  in a set of N  cuboids of elementary volume Ωc , 

having uniform plastic strains in each elementary cuboid.  Consequently, the continuous 

distribution of εp  in Ωp  is assumed as piece-wise constant and Ωp  is substituted by a set of 

elementary cuboids Ωpn .  With this formulation, the residual displacement can be expressed 

as the sum of contributions of all elementary cuboids in Ωpn : 

 
3 3

1

2μ ε ε ∗
= Ω

= ∑ ∫( ) ( ) ( , )

c

N
pr

ijij
k

u A k k A , (11) 

or, by indexing the cuboids with a set of three integers, and by denoting the cuboid sides 

with 
1 2

Δ Δ,  and 
3

Δ : 

 

{

( )
3 3 2 2 1 1

3 3 2 2 1 1

3

2 2 2

3 1 2 1 2 3

2 2 2

0 2 ζξ

ζξ

μ ε

ε

∈Ω

+Δ +Δ +Δ
∗

−Δ −Δ −Δ

= ×

⎫⎪− − ⎬
⎪⎭

∑

∫ ∫ ∫

( , , )

( ) ( ) ( )

( ) ( ) ( )

( , , ) ( , , )

( ) , ( ), .

pn

pr

m n

x n x m x

x n x m x

u i j m n

x i m x j n dx dx dx

`

`

`

`

`
 (12) 
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The tensor 
3
ε ∗ , representing strains due to a unit concentrated force applied on surface 

boundary, is known from Boussinesq fundamental solutions, (Boussinesq, 1969), which 
represent, in terms of spectral methods, the corresponding Green functions.  In order to 
compute the influence coefficients, functions iid  are defined as primitives of functions 

3 3 3
2με μ∗ ∗ ∗= +, ,( )ii i i i iu u  with respect to directions of 

1 2
,x x

f f
 and of 

3
x
f

, and functions ijd , <i j , 

as primitives of ( )3 3 3 3
2 2μ ε ε μ∗ ∗ ∗ ∗+ = +, ,( )ij ji i j j iu u  with respect to the same directions.  The 

influence coefficients can then be computed according to the formulas given in (Spinu, 
2009).  
Eq. (12) written with respect to indices of elementary cells takes the following form: 

 ( )3
0 ζξζξε

∈Ω

= − −∑
( , , )

( , , ) ( , , ) , , ,
pn

pr

m n

u i j m n D i m j n
`

` `  (13) 

with summation over 1 2 3ζ ξ =, , , , ζ ξ≤ .  If expression ( )ζξ − −, ,D i j m n`  is used in relation 

(13) instead of ( )ζξ − −, ,D i m j n` , namely the point of integration and the point of 

observation are interchanged, Eq. (13) takes the following form: 

 ( )3
0 ζξ ζξε

∈Ω

= − −∑
( , , )

( , , ) , , ( , , ),
pn

pr

m n

u i j D i j m n m n
`

` `  (14) 

which represents a discrete cyclic convolution with respect to directions of 
1

x
f

 and of 
2

x
f

.  
Efficient computation for this product is available through DCFFT, (Liu et al., 2000). 

4.2 Plastic zone contribution to stress state 

The problem of residual stresses due to plastic zone in elastic-plastic contact can be treated 
in the more general frame of the so called “inclusion problem”.  Eigenstrains such as plastic 
strains, misfits strains, thermal expansion or phase transformation, generate a linear elastic 
stress field in an isotropic half-space. Usually, assessment of this field, also referred to as the 
inclusion problem, is performed using a problem decomposition method originally 
suggested by Chiu, (Chiu, 1978). Although inclusion problem has received a great deal of 
attention in the last four decades, (Mura, 1988), closed form solutions exist only in a few 
cases of simple, regular shapes, such as spherical or cuboidal eigenstrains.  In elastic-plastic 
contact modeling, these limiting assumptions are not met, thus imposing the use of 
numerical approach. 
The problem of residual stresses arising in elastic-plastic contact was solved by Mayeur, 
(Mayeur, 1995), for the two-dimensional rough contact. The three-dimensional case was 
solved by Jacq, (Jacq, 2001), using Chiu's problem decomposition, (Chiu, 1978). These 
authors, (Jacq et al., 2002), used two-dimensional fast Fourier transform algorithms to 
efficiently compute the arising convolution products.  Wang and Keer, (Wang & Keer, 2005), 
used a similar approach in studying residual stresses arising in elastic-plastic contact with 
hardening behavior. They stated that two-dimensional DCFFT should be applied in residual 
stress computation. 
An alternative to Chiu's problem decomposition was advanced by Liu and Wang, (Liu & 
Wang, 2005), based on Mindlin and Cheng's results, (Mindlin & Cheng, 1950), involving 
derivatives of four key integrals. They also advanced an efficient algorithm to compute 
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correlation products using convolution theorem, called Discrete Correlation Fast Fourier 
Transform (DCRFFT). 
Jin, Keer, and Wang, (Jin et al., 2008), suggested that, in order to achieve a better 
computational efficiency, convolution and correlation should be used together, in a hybrid 
algorithm.  They presented some comparative results obtained using both two-dimensional 
and three-dimensional spectral algorithms, proving that the latter reduces dramatically the 
CPU time and memory requirements, allowing for finer grids. 
The problem of elastic fields due to arbitrarily shaped inclusions in an elastic half-space was 
also treated by these authors, (Zhou et al., 2009). Although Chiu's problem decomposition is 
employed, influence coefficients for imposing the pressure-free surface condition are not 
derived explicitly, as stresses due to spurious pressure on the boundary are not expressed as 
functions of existing eigenstrains. 
Mura, (Mura, 1968), stated that, in the presence of initial strains, a finite body with a 
traction-free surface can be treated as an infinitely extended body, if equal and opposite 
normal and shear stresses are applied on the boundary, compensating for the ones 
corresponding to the full space solution. Consequently, the method suggested by Chiu, 
(Chiu, 1978) consists in applying superposition principle to elastic states (b), (c), and (d) in 
Fig. 1, whose summation yields the elastic state of the original problem (a).   
Eigenstrains in state (b) are identical to those of the original problem (a), while in state (c), 
the cuboid is the mirror image of the original one with respect to half-space boundary.  
Eigenstrains in state (c) are chosen such as shear tractions induced by states (b) and (c) 
cancel each-other on the half-space boundary: 

 =ε εpm p , except for 
13 13
ε ε= −pm p , and 

23 23
ε ε= −pm p , (15) 

leading to a spurious normal traction (or pressure) depicted by state (d). Consequently, in 
order to simulate the traction-free boundary condition, solution of state (d) should be 
extracted from summation of solutions corresponding to states (b) and (c). 
 

 
                 (a)               (b)          (c)   (d) 

Fig. 1. Inclusion problem decomposition:  a. cuboidal inclusion in elastic half-space;  
b. cuboidal inclusion in infinite elastic space;  c. an image counterpart in infinite space;  
d.  a half-space with a pressure distribution 

A uniformly-spaced rectangular grid is established in a cuboidal domain including the 
arbitrarily shaped plastic zone. According to superposition principle, problem solution is 
obtained by superimposing the solution of each cuboidal inclusion.  If the grid is uniformly 
spaced, the number of different influence coefficients to be computed is reduced to the 
number of different distances between cell control points. This allows reformulation of 
multi-summation operation as a discrete convolution, which can be evaluated efficiently in 
the frequency domain, according to convolution and/or correlation theorems. 
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Plastic strains are assumed constant in every elementary cell, but otherwise can vary along 
computational domain.  The solution for a cuboidal inclusion of constant eigenstrains in an 
infinite space, namely the IC, is needed. 
The first closed form solution for the ICs required to assess states (b) and (c) in Fig. 1 was 

advanced by Chiu, (Chiu, 1977).  A Cartesian coordinate system 
1 2 3
′ ′ ′( , , )x x x  is attached to the 

centre of the cuboid.  In the presence of plastic strains ε p
ij , displacements iu  are related to 

strains by the strain-displacement equations: 

 ( )1

2
ε ε+ = +, ,

pe
ij i j j iij u u , (16) 

where εe  is the elastic component of strains. By substituting ε e
ij  into the constitutive 

equation (Hooke's law), one can find the stresses induced by the eigenstrains ε p
ij .  The 

gradients of displacements needed in Eq. (16) were obtained by Chiu, (Chiu, 1977), using the 

Galerkin vector: 

 
8

1 2 3 3

1

1 2
4

1 1
2 1

28

1

ν λε με
νμ
μπ ε
ν

=

−⎡ ⎤+ −⎢ ⎥−′ ′ ′ = − ⎢ ⎥
⎢ ⎥−⎢ ⎥−⎣ ⎦

∑
c c

c

, ,

,

,

( ) ( )

( , , ) ( ) ,

( )

p p
iqnn m jqnn mijkk

m
i q

pm
iqnj mnj

D D

u x x x

D

 (17) 

where μ  and λ  are Lamé's constants, cm , 1 8= ,m  are the eight vectors linking the corners 

of the cuboid to the observation point, and c( )mD  is a function whose fourth derivates with 

respect to coordinates ′jx  are obtained by circular permutation in one of four categories, 

1111,D , 
1112,D , 

1122,D  and 
1123,D , given in (Chiu, 1977).  Einstein summation convention is 

employed in Eq. (17). 

Summation of elastic fields induced by εp  and εpm  in a coordinate system with the origin 

on the half-space boundary yields the following equation: 

 
1 2 3 1 1 2 2 3 3 1 2 3

1 1 2 2 3 3 1 2 3

σ ε

ε

′ ′ ′ ′ ′ ′= − − − +

′ ′ ′ ′ ′ ′− − + −

( )( , , ) ( , , ) ( , , )

( , , ) ( , , ).

space p
ijkij k

pm
ijk k

x x x A x x x x x x x x x

A x x x x x x x x x

` `

` `

 (18) 

where
1 2 3

( , , )x x x  is the observation point and 
1 2 3
′ ′ ′( , , )x x x  the source point (the control point 

of the elementary cuboid having uniform plastic strains).   

As all distributions are assumed piece-wise constant, it is convenient to index the collection 

of cuboids by a sequence of three integers ranging from 1 to 
1 2
,N N  and 

3
N  respectively, 

with 
1 2 3

=N N N N , and to express all distributions as functions of these integers instead of 

coordinates.   
After superimposing the individual contributions of all cuboids, Eq. (18) becomes: 

 

31 2

31 2

1 1 1

1 1 1

ξζςγ ςγξζ

ξζςγ ςγ

σ ε

ε

= = =

= = =

= − − − +

− − +

∑∑∑

∑∑∑

`

`

` `

` `

( )( , , ) ( , , ) ( , , )

( , , ) ( , , ),

NN N
r space p

m n

NN N
p

m n

i j k A i j m k n m n

A i j m k n m n

 (19) 
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which expresses the stress field induced in infinite space at cell ( , , )i j k  by all cuboids of 

uniform eigenstrains `( , , )m n  and by their mirror images.   

Based on this development, the spurious normal traction induced on the half-space 

boundary, 
33

σ −( )half space , needed to solve the state (d) in Fig. 1, can be expressed: 

 

31 2

31 2

3333 33

1 1 1

33

1 1 1

0 ςγ ςγ

ςγ ςγ

σ σ ε

ε

−

= = =

= = =

= = − − − +

− −

∑∑∑

∑∑∑

( ) ( )( , ) ( , , ) ( , , ) ( , , )

( , , ) ( , , ),

NN N
half space r space p

m n

NN N
p

m n

i j i j A i j m n m n

A i j m n m n

`

`

` `

` `

 (20) 

The stress induced in the half-space by this fictitious traction can then be computed: 

 
1 2

33

1 1

ζξ ζξσ σ −

= =
= − −∑∑ ( )( , , ) ( , , ) ( , ).

N N
half space

k

i j m Q i k j m k
`

` `  (21) 

The influence coefficients ijQ , (Liu and Wang, 2002), result from integration of Boussinesq 

formulas over elementary grid cell with respect to directions of 
1

f
x  and 

2

f
x .  The product in 

Eq. (21) is a two-dimensional convolution with respect to directions of 
1

f
x  and 

2

f
x , which 

can be computed efficiently with DCFFT algorithm.   
Finally, the solution for the stress due to arbitrarily shaped eigenstrains in an elastic 
isotropic half-space results from superposition of solutions (19) and (21). 

The two terms in Eq. (19) imply multi-summation over three dimensions, as both source and 
observation domains are three-dimensional.  Computation of these distributions by direct 
multiplication method (DMM) or even by two-dimensional DCFFT is very time-consuming, 
therefore a non-conventional approach is required.  The first term in Eq. (19) is a three-
dimensional convolution, while the second term is a two-dimensional convolution with 
respect to directions of 

1

f
x  and 

2

f
x  and a one-dimensional correlation with respect to 

direction of 
3

f
x .  Liu and Wang, (Liu & Wang, 2005), suggested that correlation theorem, 

together with convolution theorem, could be used together in a hybrid convolution-
correlation multidimensional algorithm.   
In the last decade, spectral methods are intensively used in contact mechanics to rapidly 
evaluate convolution-type products. These authors, (Jacq et al., 2002), applied a two-
dimensional fast Fourier transform algorithm to speed up the computation of convolution 
products arising in Eq. (19). Their approach reduces the computational requirements from 

2 2 2

1 2 3
( )O N N N  in DMM to 2

3 1 2 1 2
( log )O N N N N N .   

However, using a two-dimensional algorithm to solve a problem which is essentially three-
dimensional is an imperfect solution.  Therefore, in this work, a three-dimensional spectral 
algorithm is implemented, capable of evaluating both convolution and hybrid convolution-

correlation type products in 
1 2 3 1 2 3

( log )O N N N N N N  operations. The algorithm, originally 

advanced in (Spinu & Diaconescu, 2009), is based on the notorious DCFFT technique (Liu et 
al., 2000).   

If the ICs are known in the time/space domain, this algorithm can evaluate the linear 
convolution by means of a cyclic convolution with no periodicity error.  The concepts of 
"zero-padding" and "wrap-around order", presented in (Liu et al., 2000), can be extended 
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naturally to the three-dimensional case, and applied to compute the first term in the right 
side of Eq. (19).  However, for the second term, due to positioning of the mirror-image 
element relative to global coordinate system (linked to half-space boundary), convolution 
turns to correlation with respect to direction of 

3

f
x .  In order to use three-dimensional FFT 

and convolution theorem to evaluate the convolution-correlation product, the following 
algorithm is proposed: 

1. The influence coefficients A  are computed as a three dimensional array of 

1 2 3
2× ×N N N  elements, using the formulas derived from Eqs. (16) and (17). 

2. The term A  is extended into a 
1 2 3

2 2 2× ×N N N  array by applying zero-padding and 
wrap-around order with respect to directions of 

1

f
x  and 

2

f
x , as requested by the classic 

DCFFT algorithm. 
3. Plastic strains εp  are inputted as a three-dimensional array of 

1 2 3
× ×N N N  elements. 

4. The term εp  is extended to a 
1 2 3

2 2 2× ×N N N  array by zero-padding in all directions. 

5. Elements of εp  are rearranged in reversed order with respect to direction of 
3

f
x . 

6. The Fourier transforms of A  and εp  are computed by means of a three-dimensional 

FFT algorithm, thus obtaining the complex arrays Â  and ε̂p , where ( ĝ ) is used to 

denote the discrete Fourier transform of any time/space array g . 

7. The spectral array of residual stresses is computed as element-by-element product 

between convolution terms:  σ ε= ⋅( ) ˆ ˆˆ r space pA . 

8. The time/space array of residual stresses is finally obtained by means of an inverse 

discrete Fourier transform: σ σ=( ) ( )ˆ( )r space r spaceIFFT . 

9. The terms in the extended domain are discarded, thus keeping the terms 
1 2 3
× ×N N N  

of σ ( )r space  as output. 

Domain extension with respect to directions of 
1

f
x  and 

2

f
x  in step 2 is required by the 

DCFFT technique, and no additional treatment is needed to evaluate the corresponding 

discrete cyclic convolutions.  On the other hand, according to discrete correlation theorem, 

(Press et al., 1992), a correlation product can be evaluated as a convolution between one 

member of the correlation and the complex conjugate of the other.  Therefore, DCFFT can be 

applied with respect to direction of 
3

f
x  too, if the second term, namely the plastic strains 

array, is substituted by its complex conjugates in the frequency domain.  The fastest way to 

achieve this is to rearrange the terms of εp , as indicated in step 4.  Indeed, when FFT is 

applied on a series of real terms g , thus obtaining ĝ , one can obtain its complex conjugate 
∗ĝ , simply by reading g  in reversed order.  This remarkable property allows for combining 

convolutions and correlations products with respect to different directions in a hybrid 

algorithm.  By applying three-dimensional FFT, the computational effort for solving the 

inclusion problem in infinite, elastic and isotropic space is reduced considerably, from 
2

3 1 2 1 2
( log )O N N N N N  in Jacq’s approach to 

1 2 3 1 2 3
( log )O N N N N N N  operations for the 

newly proposed algorithm. 
The following step is to compute the stress state induced in the half-space by spurious 
normal traction 

33
σ −( )half space .  In existing formulations, (Chiu, 1978; Jacq, 2001), this stresses 

are expressed explicitly as functions of plastic strains ε p
ij .  This rigorous formulation results 

in increased model complexity.  It also has the disadvantage of limiting the application of 
spectral methods to two-dimensional case.  However, if the analysis domain is large 
enough, one can assume that the normal traction induced on the half-space boundary 
vanishes outside the computational domain.  Therefore, the corresponding elastic state (d) is 
due to term 

33
σ −( )half space  alone.  With this assumption, computation of elastic state (d) is 
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reduced to the problem of a stress state induced in an elastic isotropic half-space by an 
arbitrarily, yet known, pressure (or normal traction).  Solution of this problem is readily 
available, as corresponding Green functions are known from Boussinesq fundamental 
solutions.   

The resulting computational advantage is more effective when using the newly proposed 

algorithm as part of an elastic-plastic contact code. Indeed, influence coefficients ijQ  needed 

to assess stresses induced by pressure are shared with the elastic contact code. They are 

computed and stored as a 
1 2 3
× ×N N N  array. In Jacq’s formulation, 

3
N  arrays, each having 

1 2 3
× ×N N N  terms, are needed, because influence coefficients needed to impose free surface 

relief depend explicitly on both source and computation point depths. This double 

dependence also limit the use of spectral methods to two dimensions, thus being of order 
2

3 1 2 1 2
( log )O N N N N N , corresponding to 2

3
N  two-dimensional DCFFTs in layers of constant 

depth.   

In the simplified formulation advanced in this paper, as source domain (namely pressure 

domain) is only two-dimensional, as opposed to plastic zone, which is three-dimensional, 

the computational order is decreased to 
1 2 3 1 2

( log )O N N N N N  operations, corresponding to 

3
N  two-dimensional DCFFTs in layers of constant depth. 
The method for imposing the pressure-free condition assumes that spurious normal 
tractions on the half-space boundary vanish outside computational domain. This 
assumption requires a larger computational domain in order to minimize truncation errors.  
When simulating concentrated elastic-plastic contacts, plastic region is usually located 
under the central region of the contact area, occupying a hemispherical domain. Therefore, 
the newly proposed method is well adapted to this kind of problems.   
As inclusion problem has to be solved repeatedly in an elastic-plastic contact simulation, the 
overall computational advantage is remarkable, allowing for finer grids or smaller loading 
steps to reduce discretization error. 

4.3 Plastic strain increment assessment 

According to general theory of plasticity, plastic flow occurrence can be described 
mathematically with the aid of a yield function, assessing the yield locus in the 
multidimensional space of stress tensor components. If von Mises criterion is used to assess 
stress intensity, this function can be expressed as: 

 σ σ= −( ) ( )p p
VM Yf e e , (22) 

where pe  denotes the effective accumulated plastic strain, 2 3ε ε= p pp
ij ije , and σ ( )p

Y e  is the 

yield strength function.  The latter satisfy the relation for the initial yield strength 
0

σY : 

 
0

0σ σ=( )Y Y . (23) 

For elastic-perfectly plastic materials, relation (23) is verified for any value of pe .  However, 

for metallic materials, more complex models of elastic-plastic behavior are employed, as the 

isotropic, or the kinematic hardening laws.  The isotropic hardening law of Swift, 

 σ = +( ) ( )p p n
Y e B C e , (24) 
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with ,B C  and n  material constants, is used in the current formulation, as it is verified for 

many metallic materials, (El Ghazal, 1999) and, from a numerical point of view, it has the 

advantage of being continuously derivable.  
The following conditions must be met all the time: 

 0 0 0≤ ≥ ⋅ =; ;p pf de f de , (25) 

with 0=f  and 0>pde  corresponding to plastic flow. 

According to flow rule, plastic strain increment can be expressed as: 

 
3

2

δ
ε

δσ σ
= = ijp p p

ij
ij VM

Sf
d de de , (26) 

where ijS  denotes the deviatoric stress tensor. 

The algorithm used to derive the plastic strain increment was advanced by Fotiu and 

Nemat-Nasser, who developed a universal algorithm for integration of elastoplasticity 

constitutive equations.  As stated in (Fotiu & Nemat-Nasser, 1996), the algorithm is 

unconditionally stable and accurate even for large load increments, as it takes into account 

the entire non-linear structure of elastoplasticity constitutive equations. These are solved 

iteratively, via Newton-Raphson numerical method, at the end of each loading step.  The 

yield function f  is linearized at the beginning of the load increment, by employing an 

elastic predictor.  This places the predictor (trial) state far outside the yield surface 0=f , 

since elastic-plastic modulus is small compared to the elastic one.  The return path to the 

yield surface is generated by the plastic corrector, via Newton-Raphson iteration.  This 

approach, also referred to as elastic predictor - plastic corrector, is efficient when most of the 

total strain is elastic.  In the fully plastic regime, which occurs usually after the elastic-plastic 

one, the plastic strain is predominant, thus the return path may require numerous iterations.  

Thus, linearization at the beginning of the loading step is performed by a plastic predictor, 

and return path is generated with an elastic corrector. 

A yield occurs when von Misses stress exceeds current yield stress, namely when 0>f .  

The elastic domain expands and/or translates to include the new state, namely to verify 

condition 0=f .  The actual increment of effective accumulated plastic strain should satisfy, 

in the plastic zone, equation of the new yield surface: 

 0δ+ =( )p pf e e . (27) 

Here, δ pe  denotes the finite increment of effective plastic strain, as defined in (Jacq, 2001).  

Relation (27) can be considered as an equation in δ pe , which is solved numerically by 

Newton-Raphson iteration. To this end, yield surface relation is linearized along plastic 

corrector direction: 

 0δ δ
∂

+ = + =
∂

( )
( ) ( )

p
p p p p

p

f e
f e e f e e

e
, (28) 

yielding the plastic corrector: 
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 δ
σσ

= − =
∂∂ ∂

−
∂ ∂∂

( ) ( )

( ) ( )

p p
p

p p
VMY

p pp

f e f e
e

f e e

e ee

. (29) 

For isotropic hardening, the derivate of equivalent von Mises stress with respect to effective 
accumulated plastic strain was derived by Nélias, Boucly and Brunet, (Nélias et al., 2006), 
from the general equations presented in (Fotiu & Nemat-Nasser, 1996) for rate-dependent 
elastoplasticity: 

 3
σ∂

= −
∂

VM
p

G
e

, (30) 

where G is the shear modulus, or the μ  Lamé’s constant. 

With these results, the following return-mapping algorithm with elastic predictor - plastic 
corrector can be formulated: 
1. Acquire the state at the beginning of the loading step and impose the elastic predictor.  

For elastic-plastic contact problems, this is equivalent to solving an elastic loop without 
imposing any residual displacement increment.  Corresponding parameters are 
identified by an “ a ” superscript, as opposed to a “ b ” superscript, used to denote the 

state at the end of the loading increment: ( )p ae , σ σ=( ) ( )( )a p a
YY e , σ σ σ= +( )( ) ( )pr aa r a

ij ij ij , 

σ ( )a
VM , σ σ= −( ) ( )( ) a aa

VM Yf .  These variables also represent the input for the Newton-

Raphson iteration.  Thus, by using superscripts to denote the Newton-Raphson iteration 

number, 1 =( ) ( )p p ae e , 1σ σ=( ) ( )a
Y Y , 1σ σ=( ) ( )a

ij ij , 1σ σ=( ) ( )a
VM VM , 1 =( ) ( )af f . 

2. Start the Newton-Raphson iteration. Compute the plastic corrector according to 
relations (29) and (30): 

 3δ
⎛ ⎞∂

= +⎜ ⎟⎜ ⎟∂⎝ ⎠

( )
( ) ( )

( )

( )p i
p i i

p i

k e
e f G

e
. (31) 

3. Use the plastic corrector to adjust model parameters: 

1
3σ σ δ+ = −( ) ( ) ( )i i p i

VM VM G e ;   1 δ+ = +( ) ( ) ( )p i p i p ie e e ;   1 1σ σ+ +=( ) ( )( )i p i
YY e ;   

1

1 1

1

σ
σ

+
+ =

( )
( ) ( )

( )

i
i VM

ij ij
VM

S S . (32) 

4. Verify if Eq. (27) is verified to the imposed tolerance eps . If condition  

 1 11 σ σ+ ++ = − >( ) ( )( ) i ii
VM Yf eps  (33) 

is satisfied, go to step 2.  If else, convergence is reached, and the state at the end of the 

loading step is described by the newly computed parameters: 1+=( ) ( )p b p ie e , 
1σ σ +=( ) ( )b i

VM VM , 1+=( ) ( )b i
ij ijS S . 

5. Compute the plastic strain increment, according to Eq. (26): 

 ( ) 3

2

δε
σ

= −
( )

( ) ( )
( )

b
ijp p b p a

ij b
VM

S
e e . (34) 
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This increment is used to update the plastic zone.  The residual parts of displacement and of 
stress can then be computed, and superimposed to their elastic counterparts. 

5. Numerical solution of the elastic-plastic contact problem 

Elastic-plastic normal contact problem is solved iteratively based on the relation between 
pressure distribution and plastic strain, until the latter converges. Plastic strain modifies 
contact pressure by superposing induced residual surface displacement into the interference 
equation.  Contact pressure, in its turn, contributes to the subsurface stress state, responsible 
for plastic strain evolution. 
Finally, the algorithm proposed for simulation of elastic-plastic contact with isotropic 
hardening is based on three levels of iteration:   
1. The innermost level, corresponding to the residual part, assesses plastic strain 

increment, based on an algorithm described in the previous section, and the 
contribution of plastic zone to stress state and surface displacement. 

2. The intermediate level adjusts contact pressure and residual displacement in an iterative 
approach specific to elastic contact problems with arbitrarily shaped contact geometry.   

3. The outermost level is related to the fact that, unlike elastic solids, in which the state of 
strain depends on the achieved state of stress only, deformation in a plastic body 
depends on the complete history of loading.  Plasticity is history dependent, namely 
current state depends upon all pre-existing states.  In this level, the load is applied in 
finite increments, starting from an intensity corresponding to elastic domain, until the 
imposed value is reached.  

The algorithm for solving one loading step in the elastic-plastic normal contact problem is 
summarized in Fig. 2.   

 

Fig. 2. Elastic - plastic algorithm 
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Firstly, the elastic problem with modified contact geometry hi  is solved, yielding contact 

area and pressure distribution p . The latter is used to assess elastic displacement field pru  

and stress field σ pr . These terms represent the “elastic” part of displacement and of stress, 

namely that part that is recovered once loading is removed (after contact opening). The 

stresses induced by pressure are used, together with hardening state parameters, in the 

residual subproblem, to assess plastic strain increment and to update the achieved plastic 

zone ε p . Residual parts of displacement, ru , and of stresses, σ r , can then be computed.  As 

opposed to their elastic counterparts, the terms ru  and σ r  express a potential state, that 

would remain after contact unloading, if no plastic flow would occur during load relief.  The 

total displacement can then be computed, +pr ru u , thus imposing a new interference 

equation in the elastic subproblem. These sequences are looped until convergence is 

reached. 
The new algorithm for computation of plastic strain increment improves dramatically the 

speed of convergence for the residual subproblem. The formulation advanced by Jacq, (Jacq, 

2001), based on the Prandtl-Reuss algorithm, implies iteration of a tensorial parameter, 

namely the plastic strain increment, as opposed to the new algorithm, which iterates a 

scalar, namely the increment of effective accumulated plastic strain. Convergence of the 

Newton-Raphson scheme is reached after few iterations. As stated in (Fotiu & Nemat-

Nasser, 1996), the method is accurate even for large loading increments.   

Moreover, Jacq’s algorithm is based on the reciprocal adjustment between plastic strain and 

residual stress increments. Consequently, at every iteration of the residual loop (the 

innermost level of iteration), it is necessary to express the residual stress increment.  Its 

assessment implies superposition, with both source (integration) and observation domains 

three-dimensional. Although three-dimensional spectral methods were implemented to 

speed up the computation, the CPU time and memory requirements remain prohibitively 

high.   

In the new algorithm, residual stresses due to plastic zone needs to be evaluated at every 
iteration of the elastic loop (the intermediate level of iteration), after plastic zone update 
with the new plastic strain increment.  In other words, residual stress assessment is moved 
to an upper iterative level, resulting in increased computational efficiency. Consequently, 
with the same computational effort, a finer grid can be imposed in the numerical 
simulations, thus reducing the discretization error. 

6. Numerical simulations and program validation 

In this section, numerical predictions of the newly proposed algorithm are compared with 

already published results, validating the computer code. The materials of the contacting 

bodies are assumed to be either rigid (R), or elastic (E), or elastic-plastic (EP), having a 

behavior described by a power hardening law (Swift), or elastic-perfectly-plastic (EPP).  

Four types of contacts are considered: R-EP, E-EP, EP-EP with symmetry about the common 

plane of contact and R-EPP. 

Development of plastic region and of residual stresses with application of new loading 
increments is assessed, and contribution of residual state, which superimpose elastic state 
induced by contact pressure, is suggested.   

Algorithm refinements allow for a fine grid, of 120 120 80× ×  elementary cells, to be imposed 

in the computational domain.  
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6.1 R-EP contact 

The contact between a rigid sphere of radius 6
105 10

−= ⋅R m  and an elastic-plastic half-space 

is simulated, allowing for comparison with results published by Boucly, Nélias, and Green, 

(Boucly et al., 2007).  Elastic half-space parameters are: Young modulus, 
2

210=E GPa , 

Poisson's ratio, 
2

0 3ν = . .  The hardening law of the elastic-plastic material is chosen as a 

power law (Swift), according to (El Ghazal, 1999), Eq. (24), with pe  the effective 

accumulated plastic strain, expressed in microdeformations, and the following parameters: 

1 280= ,B MPa , 30=C , 0 085= .n .   

The contact is loaded incrementally up to a maximum value of 0 65= .W N , for which the 

purely elastic model (Hertz) predicts a contact radius 6 053μ= .Ha m  and a hertzian pressure 

8 470= ,Hp MPa .   

Dimensionless coordinates are defined as ratios to Ha , =i i Hx x a , and dimensionless 

pressure or stresses as ratios to Hp .  The computational domain is a rectangular cuboid of 

sides 
1 2

3= = HL L a , 
3

1 6= . HL a , which is dicretized with the following parameters: 

1 2
120= =N N , 

3
80=N  elementary grid cells.  Due to the fact that problem is axisymmetric, 

three dimensional distributions are depicted in the plane 
2

0=x  only. 
Pressure profiles predicted by the numerical program for six loading levels corresponding 
to elastic-plastic domain are depicted in Fig. 3.  Hertz pressure corresponding to maximum 
load is also plotted for reference. 
 

 

Fig. 3. Pressure profiles in the plane 
2

0=x , various loading levels 

Elastic-plastic pressure distributions appear flattened compared to the purely elastic case.  

At the end of the loading loop, a central plateau of uniform pressure can be observed in the 

vicinity of 6 5. Hp .  This limitation of contact pressure results in an increased elastic-plastic 

contact radius, compared to its elastic counterpart, Ha . 
The same distributions were obtained by Jacq et al., (Jacq et al., 2002), by Boucly, Nélias, and 
Green, (Boucly et al., 2007), using load driven (ld) or displacement driven (dd) formulations, 
and also by Benchea and Cretu, (Benchea & Cretu, 2008), using finite element analysis (FEA). 
Initiation of plastic flow occurs on the contact axis, where von Mises equivalent stress firstly 
exceeds initial yield strength. With application of new loading increments, plastic zone 
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expands to a hemispherical domain, Fig. 4, while material hardening state is modified 
according to Eq. (24).   
Toward the end of the loading cycle, the plastic core approach peripherally the free surface, 
enveloping an elastic core.  Evolution of maximum effective accumulated plastic strain with 
loading level is presented in Fig. 5.   
The model assumes elastic and plastic strains are of the same order of magnitude, 

corresponding to elastic-plastic range.  As plastic strains are small, usually less than 2% , 

they can be considered small strains and can be superimposed to their elastic counterparts.  
This approach cannot be applied to larger plastic strains, corresponding to fully plastic 
range, solution of this scenario requiring FEA.   
 

 

Fig. 4. Effective accumulated plastic strain at 0 65= .W N  

 

Fig. 5. Maximum effective accumulated plastic strain versus loading level 
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Plastic strains induce residual stresses, namely elastic stresses that would persist after elastic 
unloading. These stresses superimpose the ones induced by contact pressure. The resulting 
state generates further plastic strain if stress intensity exceeds yield strength. Consequently, 
an accurate estimation of stress field in the elastic-plastic body is essential to plastic strain 
increment prediction.   
Figures 6 and 7 depict distributions of equivalent von Mises contact stress (stress induced by 
contact pressure) and total stress in the elastic-plastic half-space. Residual stress intensity, 
Fig. 8, is one order of magnitude smaller than equivalent contact stress. Comparison of 
distributions depicted in Figs. 6 and 7, using the same scale, suggests that residual stress 
reduces peaks in contact stress intensity, thus making the resulting field more uniform.  This 
behavior is also suggested by the curves traced in Fig. 9. Maximum intensity of contact 
stress increase more rapidly than the maximum of the total field, due to contribution of 
residual stress. Consequently, residual stresses, which represent material response to plastic 
flow, act to impede further plastic yielding.   
 

 
Fig. 6. Von Mises stress induced by contact pressure 
 

 

Fig. 7. Maximum intensities of stress fields versus loading level 
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Fig. 8. Von Mises residual stress 

 

 

Fig. 9. Total (contact and residual) Von Mises stress in the elastic-plastic body 

Profiles of residual prints corresponding to the same six loading levels are depicted in Fig. 

10. These profiles show that residual displacement increase contact conformity in 

investigated non-conforming contact, leading to a more uniform distribution of contact 

pressure.   

The variation of residual print maximum depth with the loading level is presented in Fig. 

11. This curve was also obtained experimentally by El Ghazal, (El Ghazal, 1999), numerically 

by Jacq et al., (Jacq et al., 2002), and using FEA by Benchea and Cretu, (Benchea & Cretu, 

2008). 
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Fig. 10.  Residual print profiles in elastic-plastic spherical contact 

 

Fig. 11. Residual print depth versus loading level 

6.2 E-EP and EP-EP Contact 

Normal residual displacement enters interference equation, by superimposing the 

deflections induced by contact pressure.  When only one of the contacting bodies, let it be 

body (2), is elastic-plastic and the other one, let it be body (1), is elastic, the following 

interference equation can be written by superimposing the residual part of 

displacement 2

3

( )ru , related to development of plastic zone in the elastic-plastic body (2), in 

elastic contact interference relation, Eq. (7):  

 1 2 21 2

3 3
ω++= + + −( ) ( )( )( , ) ( , ) ( , ) ( , ) .pr rh i j hi i j u i j u i j  (35) 
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On the other hand, when contacting bodies are both elastic-plastic, Eq. (35) encloses residual 

displacements of both surfaces, namely 1 2

3

+( )( , )ru i j .  If the hardening behavior or contacting 

bodies is dissimilar, residual displacement should be computed for every body separately.  

The model is simplified considerably if the bodies follow the same hardening law and have 

the same initial contact geometry, because, due to symmetry of the problem about the 

common plane of contact, 1 2

3 3
=( ) ( )r ru u .  Consequently, Eq. (35) becomes: 

 1 2 21 2

3 3
2 ω++= + + −( ) ( )( )( , ) ( , ) ( , ) ( , ) .pr rh i j hi i j u i j u i j  (36) 

To validate Eq. (36), the contact between two spheres of radius 0 015= .R m  is simulated 

numerically, for two different material behaviors: elastic, and elastic-plastic following 

Swift's law, with the following parameters: 945=B MPa , 20=C , 0 121= .n .   

The contact is loaded up to a level of 11 179= ,W N , corresponding to a hertzian pressure 

8=Hp GPa  and to a Hertz contact radius 817μ=Ha m .   

Pressure distributions obtained using Eqs. (35) and (36) respectively, depicted in Fig. 12, 

agree well with already published results, (Boucly et al., 2007). As expected, in the EP-EP 

contact, pressure appears more flattened compared to the E-EP case, due to a more 

pronounced increasing in contact conformity related to doubling of the residual term. 

 
 
 

 
 

 

Fig. 12. Pressure profiles for various material behaviors 

Variations of maximum effective plastic strain with loading level, in the E-EP and in the EP-

EP contact respectively, are depicted in Fig. 13. Intensity of plastic strains in the E-EP contact 

is up to 40%  higher than the one corresponding to the EP-EP scenario.   

Variations of maximum pressure with the loading level in the E-E, the E-EP and the EP-EP 

contact, are depicted in Fig. 14. The curves presented in Figs. 13 and 14 also match well the 

results of Boucly, Nélias, and Green, (Boucly et al., 2007). 
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Fig. 13. Maximum effective accumulated plastic strain versus loading level 

 

 
Fig. 14. Maximum pressure versus loading level 

6.3 R-EPP contact and experimental validation 

As Contact Mechanics uses simplifying assumptions in order to circumvent the 
mathematical complexity of the arising equations, experimental validation is needed to 
verify model viability.  An extended program of experimental research was conducted in 
the Contact Mechanics Laboratory of the University of Suceava, aiming to assess residual 
print parameters in rough elastic-plastic non-conforming contacts.  The stand used for the 
loading experiments was originally designed by Nestor et al., (Nestor et al., 1996).  
Microtopography of deformed surface was scanned with a laser profilometer UBM14.   

Contact between a steel ball, assumed as a rigid indenter, and a lead specimen, simulating 

the elastic-plastic half-space, was loaded up to an equivalent hertzian pressure 
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0 94= .Hp GPa .  The contact was also simulated using the numerical formulation.  As lead is 

best described as an EPP material, a linear hardening law with a very small slope was 

considered in the numerical model.  As stated in (Jacq, 2001), the plastic strain increment is 

undefined when assuming a purely EPP material behavior. 
Residual prints at a hertzian pressure of 0 94. GPa  is depicted in Fig. 15.   

 
 

 
 

Fig. 15. Experimental residual print in R-EPP contact, 0 94= .Hp GPa  

 

 
 

Fig. 16. Residual print depth versus loading level 

Variation of print depth with loading level is presented in Fig. 16.  The agreement between 

the values predicted numerically and those obtained experimentally is considered 

satisfactory, giving the complexity of the phenomena involved.  
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6. Conclusions 

A numerical approach for simulating the elastic-plastic contact with isotropic hardening, 

based on Betti’s reciprocal theorem, is overviewed in this paper.  Problem decomposition, as 

originally suggested by Mayeur and later by Jacq, is employed to assess pressure and plastic 

strain distribution, on three nested iterative levels. 

The newly proposed algorithm has two major advantages over other existing methods.  

Firstly, the plastic strain increment is determined in a fast convergent Newton-Raphson 

procedure which iterates a scalar, namely the effective accumulated plastic strain. The 

method, originally suggested by Fotiu and Nemat-Nasser, employs an elastic predictor, 

which places the trial state outside yield surface, and a plastic corrector, used to derive the 

return path to the yield locus. The algorithm is fast, stable, and accurate even for large 

loading increments. 

An additional advantage arises from moving residual stress computation, which is very 

computationally intensive, to an upper iterative level. 

Secondly, the use of three-dimensional spectral methods for solving the intrinsically three-

dimensional inclusion problem improves dramatically the overall algorithm efficiency.  

Solution is obtained by problem decomposition, following a method originally suggested by 

Chiu.  Subproblem of stresses due to eigenstrains in infinite space is solved using influence 

coefficients also derived by Chiu. Traction-free surface condition is imposed with the aid of 

Boussinesq fundamental solutions, in a simplified formulation, well adapted to elastic-

plastic contact modeling. 

With the newly advanced three-dimensional convolution and convolution-correlation 

hybrid algorithm, based on the DCFFT technique, the computational effort is reduced 

dramatically, allowing for finer grids in problem discretization. 

The newly proposed algorithm was used to simulate, with a high resolution of 120 120 80× ×  

elementary cells, the spherical contact between bodies with various behaviors: R-EP, E-EP, 

EP-EP and R-EPP. 

Elastic-plastic pressure appears flattened compared to the elastic case, due to changes in 

hardening state of the EP material, and in contact conformity due to superposition of 

residual displacement in interference equation. 

Plastic zone, initially occupying a hemispherical region located at hertzian depths, advances 

toward half-space boundary with increased loading, enveloping an elastic core. This 

development is consistent with existing models for the elastic-plastic process, marking the 

passing from elastic-plastic range to fully plastic. 

Residual stress intensity is one order of magnitude smaller than equivalent stresses induced 

by contact pressure.  They contribute to total elastic field by decreasing the peaks in contact 

stress intensity, thus impeding further plastic flow.  

A modified interference equation is used for solving the EP-EP contact with similar 

hardening behavior and symmetry about the common plane of contact. 

Furthermore, residual displacement predicted numerically for the R-EPP contact match well 

print depths obtained experimentally in indentation of a lead specimen, assumed as an EPP 

half-space, with a steel ball assumed as a rigid indenter. 
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