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1. Introduction 

Most tests that assess pain in animals involve motor responses to noxious stimuli. This 
practice depends on the implicit premise of a strong relationship between nociception and 
motor activity [Le Bars et al., 2001, Smith, 1995]. Therefore, a behavior can and should be 
analyzed as thoroughly as any brain structure and function involving motor activity in 
neurological investigations. The importance of analyzing behavior has been demonstrated 
by several studies on the mechanisms of nociception. For example, Rousseaux et al. 
[Rousseaux et al., 1999] showed that patients with spinothalamic tract injury had a higher 
temperature threshold than normal in response to nociceptive stimuli and have pain but not 
heat sensations. Thermal and electrical stimulation of the affected side in these patients 
elicited a withdrawal reaction. Another example, demonstrated by Shyu et al. [2003], was 
conditioned CO2 laser-evoked behavior in rats to distinguish emotional components from 
sensory conductive pathways [Kung et al., 2003]. 
The ideal model of pain stimulation should be nociceptive-specific, controllable, safe, and 
reproducible. Pain pathways are a part of the somatosensory system. Therefore, 
neurophysiological investigation of pain pathways is related to the recording of 
somatosensory-evoked responses. To test the integrity of nociceptive pathways with evoked 
nociceptive responses, the timing of the activation of nociceptive afferents must be precise 
for stimulus-locked averaging. Many experimental pain models that fulfill this requirement 
have been successfully used in pharmacological studies. Nevertheless, most of these models 
have limited clinical application for precise diagnosis. For example, pain has been elicited by 
cutaneous intense electrical stimulation, which activates peripheral fibers that respond to 
both noxious and innocuous stimulation. The drawback of electrical stimulation may be 
partially overcome by using various blocking techniques. Another approach is to induce 

nociception by activating tooth pulp, which is innervated mostly by Aδ- and C-fibers [Roos 
et al, 1982, Van Hassel, 1972]. Stowell [1974] used an electromechanically driven pin to 
produce cutaneous pain, and Mitchell and Hellon [1977] used gradual warming to induce 
cutaneous thermal stimulation. However, both methods can excite thermo- or 
mechanoreceptors in addition to nociceptors [Burgess & Perl, 1973]. 
Non-contact thermostimulation is required for the investigation of the neural mechanisms 
underlying pain sensation without concurrent activation of mechanoreceptors. To record 
thermal-evoked potentials, thermostimulation must be very brief to permit the time-locking 
of potential averaging to the sensory event. Many repetitions of the thermal stimulation 
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without habituation are necessary to improve the signal-to-noise ratio, and only nociceptors 
should be activated. Applying gas lasers, such as CO2 and argon, to the skin satisfies most of 
the aforementioned criteria. A laser beam does not actually contact the skin; therefore, heat 
and thermosensitive nociceptors are selectively activated, while mechanoreceptors are 
unaffected [Kakigi et al., 1989]. Thus, for the experimental study of pain and clinical 
neurology diagnosis, only thermal stimulation of non-glabrous skin by brief laser pulses has 
gained widespread clinical use. 
The use of short CO2 laser pulses in the study of pain was introduced by Mor and Carmon 
[1975]. These pulses have several potential advantages as noxious stimuli. First, the laser is 
the source of very short and concentrated thermal energy that activates thermosensitive 
nociceptors. Second, in contrast to conventional radiant heat, short laser pulses induce a 
synchronous volley of impulses in afferent nerves, allowing repeated and simultaneous 
measurement of time-locked evoked neuronal responses at different levels of the nervous 
system. Their high power output produces steep heating ramps, which improve 
synchronization of afferent volleys and therefore allow the recording of time-locked events, 
such as laser-evoked potentials (LEPs) in the brain. The amplitude of LEPs on the human 
scalp is related to subjective reports of pain sensation [Bjering & Arendt-Nielsen, 1988, 
Bromm & Treede, 1984, Carmon et al., 1978]. These findings suggest that LEPs may be used 
as objective correlates of pain perception. 
Laser-evoked cortical responses can be classified into two groups [Danneman et al., 1994, 

Isseroff et al., 1982, Kalliomaki et al., 1993]. The first group, mediated by Aδ-fibers, is more 
sensitive to pentobarbital-induced anesthesia [Shaw et al., 2001] and laser pulse energy level 
[Kalliomaki et al., 1993]. The second group, mediated by C-fibers, is widespread across the 
cortical surface and can be diminished by topical morphine application onto the lumbar 
spinal cord and reversed by naloxone [Kalliomaki et al., 1998]. Although the peripheral and 
central conductance mechanisms responsible for cortical LEPs have been investigated, the 
results have been inconsistent. For example, Devor et al. [1982] claimed that only C-fibers, 

and no Aδ-fibers, were activated by CO2 laser pulses, according to single-unit recordings in 
peripheral nerves in rats. However, the Isseroff group [1982] studied cortical potentials in 
anesthetized rats and found that laser-evoked cortical potentials have a latency of 

approximately 40 to 55 ms, which is within the range of Aδ-fibers. 
We previously administered short-pulse CO2 laser stimulation to freely moving rats to 
measure nociceptive sensitivity [Shyu et al., 1995] and studied nocifensive behavior induced 
by a similar model [Fan et al., 1995]. Nocifensive behavior was subdivided into eight 
discrete response components, including flinching, foot elevating, licking, body movements, 
and foot movements. Following stimulation with higher laser energy, rats exhibited both an 
increase in the number of response types and frequency of specific responses. The results 
suggested that hierarchically organized responses in the nocifensive motor system are 
recruited to varying degrees by noxious stimuli with different intensities [Fan et al., 1995]. 
Additionally, the threshold for activation of the nocifensive behavior component “body 
movement” was lower than that of the behavior components “flinching” and “licking” [Fan 
et al., 1995]. Le Bar et al. [2001] proposed that stimulus intensity can determine which type 
of nerve fiber initiates the reaction. Treede et al. [1995] illustrated this concept by showing 
that the threshold of C-fibers was significantly higher, and conduction was slower, than that 

of Aδ-fibers. The differential activation of Aδ- and C-fibers and the difference in their 
physiology suggest that they play differential roles in nociceptive responses under specific 
stimulation conditions [Lawson 2002]. In humans, considerable evidence indicates that 
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distinct secondary pain sensation is driven by C-fibers [Ploner et al., 2002, Torebjork & 
Ochoa, 1990] and is activated by C nociceptors distributed in the rostral hypothalamus 
[Lumb, 2002]. The supraspinal circuits activated by C-fiber inputs can be linked to 
nocifensive behavioral patterns related to the relative contribution of these types of 
nociceptive afferents [Le Bars et al., 1976]. Therefore, nocifensive behaviors can be 
differentially elicited and mediated by different classes of nociceptors. 
The aim of the present study was to test the hypothesis that nocifensive behavioral elements 
elicited by brief laser pulse stimuli are mediated by C nociceptors. We applied the 
neurotoxin capsaicin, which acts specifically on primary sensory afferent C-fibers, to 
selectively block activity. Capsaicin has been locally applied to the sciatic nerve of the hind 
legs in rats to examine whether cortical LEPs are conducted by C-fibers [Sun et al., 2006]. In 
the present study, we used a previously established nocifensive behavioral model in rats to 
study the correlation between cortical LEPs and the response components evoked by a 
short-pulse CO2 laser beam and examined whether those response elements are nocifensive 
responses mediated by C-fibers. 

2. Materials and methods 

2.1 Subjects 

A total of 68 male Sprague Dawley rats, weighing 250-350 g, were used for these experiments. 
Food and water were available ad libitum. Rats were housed singly in standard wire mesh 
cages in a temperature- and humidity-controlled environment (21-23°C, humidity 50%) with a 
12 h/12 h light/dark cycle (lights on at 0600 h). All experiments were conducted during the 
light period in a quiet room. Animal care adhered to the guidelines of the Academia Sinica 
Institutional Animal Care and Utilization Committee and the National Institutes of Health 
Guide for the Care and Use of Laboratory Animals (NIH publication no. 80-23). 

2.2 Implantation of chronic cortical and electromyogram electrodes 

Rats were surgically prepared before being subjected to neurophysiological and behavioral 
experiments. The rats underwent surgery while under pentobarbital anesthesia (50 mg/kg, 
i.p.; Abbott Laboratories, Chicago, IL, USA). For recording of cortical-evoked potentials, 
electrodes were chronically implanted into the rats’ brains. Three holes (1.0 mm diameter) 
were drilled in the skull, one on each side (coordinates: 3 mm lateral to bregma, 
approximately in the region of the primary somatosensory cortex, S1) and the third 2 mm 
behind lambda as a reference lead. Stainless-steel screws were tightly inserted into the holes 
so that their tips made contact with the dura mater overlying the cortical surface. A thin 
Teflon-coated stainless steel wire was soldered on the edge of the screw head and connected 
with one of eight legs of an integrated circuit (IC) chip receptacle. The screws were used as 
electrodes and anchoring points for the IC chip receptacle, which was affixed to the skull 
with dental cement. 
For electromyography (EMG), two multi-strand stainless steel microwires were inserted into 
the hamstring muscle of the left hindlimb. Dental cement was applied to fasten the 
connection receptacle to the surface of the skull. The measurements were collected 1 week 
after surgery. The body weights of the treated rats were monitored between surgery and the 
recording day, which occurred 1 week after surgery. Post-surgical body weight gain served 
as an indicator of recovery from surgical stress. Rats that did not gain weight 1 week 
following surgery were excluded from the study. 
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2.3 Laser stimulation 

The glabrous skin of the foot pad was stimulated with a high-intensity CO2 laser beam 
(Carbon Dioxide Surgical Laser System, model 20 CH, Direct Energy, Inc., CA, U.S.A.). The 
system generated a laser radiation beam in the infrared spectrum (10.6 µm wavelength) and 
had adjustable power capable of producing peak laser power greater than 20 watts (W). The 
duration of the laser pulse was controlled by the duration of an externally triggered TTL 
pulse from a pulse generator (A-M systems Inc., USA). The laser beam was focused 
approximately 3 cm in front of the laser head, and the size of the beam was measured by 
burning a spot on heat-sensitive coated paper that was set at a distance indicated by a rod. 
In the acute spinal cord recording experiment, the laser tube was held by an experimenter or 
a rigid stainless steel stand. 

2.4 Tactile stimulation 

A 1.5 mm diameter stainless steel rod was attached to the voice coil of an 8 Ω, 15 W loud 

speaker as a tactile stimulus. The tactile stimulus was triggered and controlled by a TTL 

pulse from a pulse generator (A-M Systems Inc., USA). The movement of the coil 

transmitted to the rod produced an outward excursion of 5 mm. 

2.5 Recording devices 

A cable from above the cage was connected to the receptacle on the head of the animal. 

Electrical activity was recorded either from the cortex of freely moving animals or from the 

spinal cord of anesthetized animals and was amplified by differential AC amplifiers (0.1 Hz 

to 5 KHz, Model DAM70, WPI, USA). Analog signals were either displayed on a digital 

storage oscilloscope or sent to a IBM-PC-based data acquisition system for online A/D 

conversion (Metrabyte DAS-16F AD/DA interface card, USA) and digital analysis using 

Quick Basic Language. The signals were also stored on a hard disk for offline data analysis 

using a PC-based data analysis system. 

2.6 Application of capsaicin to the sciatic nerve 

After obtaining the evoked cortical potentials and behavioral responses, the left legs of the 

rats were treated with either capsaicin or vehicle solution. The rats (n = 26) were first 

anesthetized by halothane inhalation (2-3%). The sciatic nerves of the left legs were exposed 

and separated from the muscles and vessels by placing paraffin paper under them. A piece 

of cotton soaked with either vehicle (3% Tween-80 dissolved in 100% alcohol) or 1% 

capsaicin (Sigma-Aldrich, St. Louis, MO, USA) dissolved in vehicle was applied directly to 

the nerve trunk for 45 min. After treatment, the cotton was removed, and the open muscle 

and skin were sutured. Rats were then given antibiotics intramuscularly and allowed to 

recover. Their cortical potentials and behavioral responses were tested 3 days after surgery. 

2.7 Behavioral assessment and procedures 

Control experiment. Stimuli had a fixed pulse duration of 30 ms and five graded intensities: 

3, 5, 10, 15, and 20 W. Animals were randomly divided into five groups (n = 6/group), and 

each group received one of five stimuli. In each stimulation session, 20 laser stimuli of the 

same intensity were delivered. Stimulation protocols were chosen to establish a correlation 

between evoked cortical potentials and behavioral reaction patterns. 
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Capsaicin experiment. Twelve rats were randomly divided into two groups. One group 
received capsaicin treatment, and the other group received vehicle. The average laser- and 
tactile-evoked potentials were recorded before and after capsaicin or vehicle treatment. Both 
the treated and untreated hindpaws were stimulated with laser pulses (15 W intensity, 30 
ms duration). The untreated side served as a control. The stimulus power was chosen based 
on our previous results [Shyu et al., 2003]. 
Testing procedures. Tests were performed on the day before capsaicin treatment (Day 0) 
and on Days 3, 5, and 14 after treatment. Animals were brought to the laboratory and placed 
into the test cage for 20 min before each test. This procedure familiarized the animal to the 
test environment to reduce exploratory activity during the test. The test cage measured 26.5 

cm length × 21 cm width × 17 cm height and was constructed with transparent acrylic sheets 
with a 0.5 cm2 stainless steel grid at the bottom. The cage was hung such that the bottom 
could be viewed by the experimenter to apply laser stimuli to the hindpaw. During a test 
session, the laser beam was projected from below the test cage to the plantar surface of the 
rat’s hind footpad. The animals were unrestrained and free to react during the experiments. 
The experimental setup for laser stimulation, electrophysiological recording, and behavioral 
measurement in freely moving rats is shown in Fig. 1. 
 

 

Fig. 1. Experimental setup for brief CO2 laser pulse stimulation, electrophysiological 
recording, and behavioral assessment in unrestrained, freely moving rats. 

Behavior analysis. Behavioral assessment was described in detail in our previous paper [Fan 
et al., 1995]. Briefly, behavior was observed for 2 min following each stimulus presentation 
because previous experience indicated that the animal returned to its resting status within 2 
min. During this 2 min, whenever a response occurred, the frequency was counted as “1,” 
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no matter how many times it was repeated. The raw data following each stimulus consisted 
of whether a response occurred (1) or did not occur (0). 
Five behavioral components were recorded and quantified: body movement, head turning, 
withdrawing, flinching, and licking. Body movement was defined as slow body motion, body 
turning, running, or exploration involving translocation of the body. Head turning included 
turning, shaking, or elevating the head. Flinching was recorded whenever a rat made a small 
abrupt jerking movement (< 1 cm) with its body. A withdrawal response was scored when an 
animal receded its body position by ≥ 1 cm away from the stimulus. Licking involved the rat 
retracting the paw by ≥ 1 cm and licking. Other complicated movements, such as tapping, 
that may have occurred together with a withdrawing or licking motion were recorded with 
the major movement that the complicated movement accompanied. 
Twenty laser stimuli were applied during each session, and the maximum number of an 
observed behavioral component was 20 for each rat, even if the rat repeated the same 
behavior. The laser intensity used in the behavioral assessment was 10 W and 30 ms, based 
on our previous study [Fan et al., 1995]. 

2.8 Acute spinal cord preparation for electrophysiological recordings 

Six rats that were not used for behavioral analysis were anesthetized by intraperitoneal 
injection of a mixture of ketamine (30 mg/kg) and rumpon (15 mg/kg). A PE-240 tube was 
inserted into the trachea for artificial respiration, and the left jugular vein was catheterized 
with a PE-50 tube for drug or fluid infusion. Body temperature was maintained at 37 ± 5ºC 
by a homeothermo blanket system. During the recording experiments, animals were 
paralyzed and received artificial respiration. The end tidal CO2 concentration was 
monitored and maintained in a range of 3-4%. Because the surgery and experiments may be 
prolonged, supplementary doses of ketamine (10 mg/kg) were administered intravenously 
to maintain the depth of anesthesia, which was monitored by pinching the tail of the rat. If a 
withdrawal reflex occurred, then anesthesia was not sufficient. Laminectomy was 
performed to expose the lumbar spinal cord (L3-L6). The animal was then placed in a rigid 
spinal unit frame, and the dura mater covering the spinal cord was dissected. The skin flaps 
were used to form a pool that was filled with warm paraffin oil. 
Surface potentials were recorded with bipolar Ag-AgCl ball electrodes with an active lead 
placed on the surface of the dorsal column of the spinal cord and a reference lead placed in 
the nearby connective tissue. The recording was made from the lumbar spinal cord (L4 and 
L5) because this is the area where the maximal evoked potential from stimulation of the 
hindlimb foot pad could occur. Capsaicin was applied acutely to investigate the 
contribution of C-fibers on spinal cord evoked potentials. 

2.9 Acute preparation for cortical recording 

The anesthesia procedure was the same as the spinal cord recording experiment. When the 

paralysis test was required, animals were immobilized with gallamine triethiodide (Flaxedil, 

40 mg/kg, i.v.) and then artificially ventilated. End tidal CO2 concentration was monitored 

and maintained at approximately 3-4%. Heart rate, respiratory rate, and pCO2 were 

monitored throughout the recording session. Six rats were allowed to periodically recover 

from muscle paralysis to assess the arousal level of anesthesia by evaluating the corneal 

reflex or withdrawal reflex of the hindlimb. Supplementary doses of ketamine (10 mg/kg) 

were administered if reflexes were present. 
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2.10 Data analysis 

The amplitudes of the laser-evoked cortical potentials and spinal cord potentials and the 
total frequency of each response over the 20 trials were obtained for each rat. Analysis of 
variance (ANOVA) was used to assess the effects of capsaicin treatment. 

3. Results 

3.1 Effects of capsaicin on spinal cord and cortical potentials evoked by mechanical 
and laser stimulation 

Mechanical stimulation of the hindpaw evoked a short negative potential followed by a 

long-lasting positive potential in the dorsal lumbar column surface. Applying capsaicin to 

the sciatic nerve did not influence this potential (Fig. 2A, left panel). In contrast, a short laser 

pulse (10 W, 30 ms) applied to the hindpaw induced a prominent positive potential in the 

dorsal column of the lumbar spinal cord (L4-L5) (Fig. 2A, lower right panel). The LEP 

amplitude in the spinal cord was significantly lower in the capsaicin group (Fig. 2A, upper 

right panel) compared with the vehicle group, indicating that capsaicin specifically blocked 

the transmission of sensory information from the peripheral nerve to the spinal cord. 

3.2 LEP conduction velocity 

To estimate the conduction velocity of LEP in peripheral transmission, we recorded field 
potentials in the spinal cord evoked by laser pulses applied to two sites, 10 mm apart, on the 
hindpaw (Fig. 2B). To calculate the conduction velocity, the difference in the latency of both 
LEPs produced by stimulating the proximal and distal paw regions was divided by the 
distance (10 mm) between the sites. The LEP conduction velocity was 0.8 ± 0.3 m/s (n = 5), 
which was in the range of C-fiber conduction. The latency for spinal cord evoked potentials 
was in the range of 70 to 90 ms, which was close to the latency of the laser-evoked EMG 
response of the hindlimb. Thus, the EMG response recorded in the hindlimb was likely 
induced by C-fiber activation. The latency of cortical LEPs had a much longer latency than 
both the EMG responses and the spinal cord evoked potentials. Thus, the ascending spinal 
pathway appears to convey such nociceptive information to the supraspinal brain areas. 

3.3 Laser-evoked cortical potentials 

Short-pulse, low-intensity, CO2 laser irradiation of the hindpaw in awake, freely moving 
rats produced distinct evoked cortical potentials in the S1 region. Prominent negative 
potentials were evoked and could be distinguished from background potentials. The peak 
latency of the LEP was 254.2 ± 11.9 ms, and the amplitude was -0.16 ± 0.05 mV. Laser-
evoked potential components could be induced bilaterally, and their amplitudes increased 
as laser intensity increased (Fig. 3A, B). An earlier component was discernible at a latency of 
approximately 60 ms, but because of the variation in amplitudes and nonsignificant 
influence of capsaicin, this early component was not analyzed further.  

3.4 Component profiles of nocifensive behavioral responses 

Consistent with our previous findings [Fan et al., 1995], we found that as stimulus intensity 
increased, animals exhibited a greater variation in responses and a greater frequency of 
component responses (Fig. 3C). When the hindpaw was stimulated with 5 W laser power, 
the rats reacted with few withdrawal, flinch, and body movement responses. At 10 W, their 
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Fig. 2. Spinal cord evoked potentials and conduction velocity measurement. A. Spinal cord 
evoked potentials induced by either mechanical or CO2 laser stimulation. Applying 
capsaicin to the left sciatic nerve in rats affected spinal cord LEPs but not mechanical-evoked 
potentials. No changes were found in vehicle group potentials evoked by either of the 
stimulation methods. B. Conduction velocity of spinal cord potentials evoked by CO2 laser 
stimuli. The recording site was located in the dorsal column of the spinal cord. Laser 
stimulation was applied to the heel and middle regions of the hind paw. The representative 
evoked potential for each stimulated point is shown in the right panel. The difference in the 
response latency for both stimulation points was calculated and divided by the total 
distance from the hindpaw to the spinal cord. 

withdrawal/flinch response frequency increased by more than 50%, with very few body 
movements and licking. Behavioral responses markedly changed when stimulated with 20 
W, with withdrawal/flinch, body movement, and lick responses increasing by 40%, 30%, 
and 70%, respectively. At 25 W, a greater number of lick responses and 20% and 50% more 
withdrawal/flinch and body movement responses, respectively, were evident. 
The of withdrawal/flinch, body movement, and lick response components corresponded to 
the cortical LEP amplitude (Fig. 3D). At 3 W laser power, LEPs were less than 0.1 mV. At 5 
W, the rats reacted with withdrawal/flinch responses which produced ~0.2 mV of cortical 
LEPs. The amplitude increased to ~3-4 mV when body movements and licking were elicited 
by stimulation at the 10 and 20 W stimulus intensities. 
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Fig. 3. Typical examples of cortical field potentials evoked by noxious laser pulses and 
nocifensive behavioral response component profile. A. Laser-evoked potentials were 
bilaterally recorded in the cortex. B. The graphs show the mean amplitude of LEPs recorded 
from the right or left side as a function of laser intensity. C. Average response frequency for 
each behavioral response component at different laser stimulation intensities ranging from 5 
to 25 W. D. The representative evoked potentials corresponded to different behavioral 
elements: no response, withdrawal/flinch, body movement, and licking. 
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3.5 Effect of capsaicin on nocifensive behavioral components 

Capsaicin treatment did not noticeably alter locomotion or the righting response during 

handling or open field exploration. Furthermore, capsaicin and vehicle treatment did not 

produce trophic or morphological changes in the lower extremities. 

Laser stimulation of the footpad in freely moving rats induced several behavioral 

components, such as flinching, withdrawing, licking, moving, and head turning. The 

occurrence of some behavioral components were markedly altered after capsaicin treatment. 

The response frequency for flinching, withdrawing, and licking were significantly reduced 

after stimulation on the capsaicin-treated side, whereas the frequency for moving and head 

turning were not affected. Additionally, the reduced incidence of behavioral components 

after capsaicin treatment did not recover for at least 14 days. 

Rats showed an average of three flinch responses induced by laser stimulation (10 W, 30 ms) 

before capsaicin treatment. After capsaicin treatment, this response decreased to an average 

of less than one time. This observation was confirmed statistically using a post hoc test, in 

which the flinch response significantly decreased compared with the vehicle treatment 

group (F = 4.41, p < 0.05) on days 3, 5, and 14 after treatment. Similarly, withdrawal 

 responses decreased after capsaicin treatment. Before treatment, rats exhibited the 

withdrawal response 5-6 times, but following treatment, the capsaicin-treated group 

responded less compared with the untreated side and vehicle group (F = 13.03, p < 0.001) on 

days 3, 5, and 14 (p < 0.01) after treatment. After the laser pulse stimulation was applied to 

the hindpaws, the frequency of the licking responses was also reduced from 2-4 times before 

capsaicin treatment to approximately 1 time (F = 6.56, p < 0.01) on Days 3, 5, and 14 after 

treatment. In contrast to the above behaviors, rats only moved or turned their heads 1-2 

times before treatment, and this frequency did not change after capsaicin treatment. 

Typical effects of capsaicin and vehicle treatment on LEPs in behaving rats are shown in Fig. 

4. Laser-evoked potentials were markedly diminished after the left sciatic nerve was treated 

with capsaicin but not with vehicle (Fig. 4A, B, and right panel). A prominent fast 

component could be elicited by mechanical stimulation, and this component was unaltered 

after capsaicin treatment. The amplitude of LEPs decreased by an average of 78% in the 

capsaicin group compared with the vehicle group and untreated paws of both groups. These 

observations were confirmed statistically. The amplitude of cortical LEPs produced by 

stimulating the left paw was significantly reduced in the capsaicin-treated group compared 

with the vehicle group (F = 4.95, p < 0.05; Fig. 4C). However, no significant differences were 

found for mechanical-evoked cortical potentials (Fig. 4D). 

4. Discussion 

This study showed that capsaicin, which selectively blocks activity of primary sensory C-
fibers, inhibited specific components of nocifensive behavior. Applying capsaicin to the 
sciatic nerves of rats blocked flinch, withdrawal, and lick responses but did not affect 
movement and head turn responses. These results suggest that C-fibers mediate the 
nocifensive components of flinching, withdrawing, and licking. Interestingly, these 
components were temporally linked to activation of the nocifensive motor system and 
cortical-evoked potentials. 
Nocifensive behaviors elicited by CO2 laser stimulation were linked to LEPs recorded in 
freely moving rats. The average latency of late LEPs was 250 ms, which is in the range of C-  
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Fig. 4. Effect of capsaicin on cortical potentials evoked by mechanical and laser stimulation. 
The sciatic nerve of the left leg of rats was treated with capsaicin or vehicle (n = 6/group), 
whereas the right leg was untreated (Control). A, B. Traces of recorded potentials for the 
control, vehicle, and capsaicin groups. Mechanical and laser stimulation was applied to the 
right (A) and left (B) paws. C, D. Statistical analyses showed that the LEP (C) was 
significantly reduced in the capsaicin group compared with the untreated paw and vehicle 
group, but not with mechanical stimulation (D). **p < 0.01. 

fiber conduction [Bromm & Treede, 1987]. This result is closely related to C-fiber-mediated 

cortical responses evoked by laser pulses in anesthetized [Shaw et al., 2001] and awake, 

freely moving rats [Shaw et al., 1999]. Capsaicin, a neurotoxin known to block C-fiber 

activity [Wall & Fitzgerald, 1981], decreased the frequency of nocifensive responses, the 

amplitude of spinal evoked potentials, and LEPs when applied to the sciatic nerves of rats. 

Altogether, these results suggest that the nocifensive response components, including 

flinching, withdrawing, and licking, were mediated by C-fibers via the spinal cord and then 

linked to neurons in the cortex, which was demonstrated by LEP induction. We recently 

analyzed the current source density of LEPs in the S1 region of the cortex and found that 

intracortical current flows revealed late synaptic activation that initially occurred in layer VI 

and were relayed transsynaptically to both superficial and deep layers [Sun et al., 2006]. 

Evaluating the respective contributions of both Aδ- and C-fibers for a given test of 

nociception is challenging. Capsaicin administration primarily destroys C-fibers in rats and 

sometimes certain Aδ-fibers, albeit to a lesser extent [Lynn, 1990]. To exclude the possibility 
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of Aδ-fiber destruction, we applied electrical stimulation on treated and untreated foot 

paws. Subsequently, we found that the animals had evoked spinal and cortical potentials. 

The latency of the evoked potentials was in the range of 60 ms, and their amplitudes were 

significantly higher than that of the capsaicin-treated group. These results demonstrate that 

faster conduction fibers, in the range of Aδ-fibers, were not destroyed. Therefore, we are 

confident that the behavioral components, including flinching, withdrawing, and licking, 

are nocifensive responses mediated by C-, but not Aδ-, fibers. In experiments conducted in 

humans, in which a brief and sufficiently intense single stimulus activates Aδ- and C-fibers, 

the emotional component of the secondary pain is much stronger than the primary pain 

[Handwerker & Kobal, 1993]. In the future, we suggest using an alternative experimental 

design that combines this pain-conditioning model with the current behavioral model to 

distinguish sensory components from affective components [Kung et al., 2003, Shyu et al., 

2003]. 

Ideally, an animal model of behavior related to nociception should possess the following 

characteristics: (i) nociceptive stimulation (“input specificity”), (ii) a distinction between 

nociceptive and non-nociceptive stimuli, (iii) quantifiable responses that are correlated to 

stimulus intensity within a reasonable range (from thresholds for pain to pain tolerance), (iv) 

sensitivity to manipulations (notably pharmacological), which would specifically reduce 

nociceptive behavior, (v) differentiation between nonspecific behavioral changes (e.g., 

motility and attention) from those triggered by the nociceptive stimulus per se, (vi) consistent 

scores between identical or equivalent retests, and (vii) reproducible results. Most, if not all, 

of these characteristics are present in the model used in the present study. The behavioral 

model used here involved the use of a noxious stimulus, CO2 laser, to elicit specific 

nocifensive response components. These nocifensive components (such as flinching, 

withdrawing, and licking) could be quantified, manipulated by capsaicin, and distinguished 

from non-nocifensive behaviors (e.g., head turning and moving). Moreover, these response 

components were consistently elicited when stimulated with CO2 lasers and are 

reproducible because they have been described in reports from other laboratories [Shaw et 

al., 1999]. 

A laser pulse radiates intense and highly focused thermal energy and has been used as 

noxious stimulation in several human studies [Arendt-Nielsen & Bjerring, 1993, Kakigi et al., 

2005]. Carmon et al. reported that an energy density of 1.64 to 1.94 J/cm 2 caused a slight 

burning pain sensation in subjects, and an energy density of 2.49 to 2.54 J/cm2 caused a 

moderate pinprick pain sensation [Carmon et al., 1976]. In the present study, we used the 

same laser stimulus source and found that the energy densities that led to lick and foot 

movement responses were 1.93 and 3.11 J/cm2, respectively. Thus, the range of energy 

density values obtained in the present animal study is comparable to that from human 

studies. In humans, when the stimulus intensity was increased to achieve progressive levels 

of pain, the amplitude of evoked cortical responses also increased, and the correlation 

between cortical responses and weighted subjective responses was significant (r = 0.707) 

[Carmon et al., 1976]. In the present study, we found that various intensities of CO2 laser 

stimulation applied to the same location in anesthetized and freely moving rats induced 

dorsal horn activity and two cortical potentials, one with a latency of approximately 64 ms 

and a second with a latency of 253 ms. The spinal potential and the second cortical potential 

were sensitive to the stimulus intensity and susceptible to modification by capsaicin. These 

www.intechopen.com



CO2 Laser Pulse-Evoked Nocifensive Behavior Mediated by C-Fibers   

 

471 

data further suggest that our laser stimuli were indeed noxious and specific to certain 

nocifensive behavioral elements and neuronal activity in rats. 

The three response components of the nocifensive behavior model were most likely 

mediated by C-fibers, and we suggest that the present model is suitable for studying the 

neuronal mechanisms underlying the analgesic effects of morphine. Morphine reduces the 

responses of dorsal horn neurons produced by C-fibers more easily than it affects those 

produced by Aδ-fibers [Jurna & Heinz, 1979]. This observation may explain why 

experimental pain in humans, which is usually produced by Aδ-fibers, is little affected by 

morphine [Becher, 1957]. Some behavioral models using phasic stimulation methods 

predispose human subjects and animals to respond to pain as soon as it occurs (i.e., at the 

moment the first pain is produced by Aδ-fibers). The presence or absence of secondary pain 

will generally have no impact on the measurement. For example, animals withdrew their 

hindpaw after high-intensity electrical stimulation [Evans, 1961]. This test may involve the 

activation of both Aδ- and C-fibers, as well as some non-nociceptive fibers. Stimulation is 

stopped as soon as a response is observed. Yeomans and Proudfit [1996] suggested that 

most common nociceptive tests involving mechanical and thermal stimuli actually 

investigate only responses triggered by Aδ-fibers and thus are not sensitive to morphine, 

with the exception of very high doses. In a pain-induced audible and ultrasonic vocalization 

experiment in rats, a vocal response was clearly triggered by C-fibers and was very sensitive 

to morphine, with an ED50 five-fold less than when it is triggered by Aδ-fibers [Jourdan et 

al., 1998]. We therefore propose that our nocifensive behavioral model is suitable for 

studying the dynamic analgesic effects of morphine. 

In conclusion, the present results suggest that nocifensive behavior has distinct components 

that can be analyzed, and the reaction pattern changes probabilistically, such that the greater 

the noxious stimulation, the more likely additional components will be evoked [Fan et al., 

1995]. The nocifensive motor system may be viewed as a set of hierarchically organized 

responses, and a given subset of responses appear with a specific noxious stimulation, 

dependent on stimulus intensity. The study of the mechanism of pain must consider this 

pain response hierarchy to precisely define the neurological bases of sensory and motor 

aspects of the nociceptive system. 
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