
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

21

Research on Multi-Robot Architecture and
Decision-making Model

Li Shuqin1 and Yuan Xiaohua2
Department of Computer Science,

1Beijing Information Science &Technology University, Beijing
2College of Information, Shanghai Ocean University, Shanghai

China

1. Introduction

Robot architecture (or controlling architecture) mainly describes robot combining modules,

then relationship between modules and exchanging between robots. Up to now multi-robot

architecture is one of the main topics in multi-agent and multi-robot research, and many

researchers strive to design controlling architectures of excellent performance, and a few of

them have already proposed some valid multi-robot architecture and given related

simulation [Dias 2004], among which the famous are

• Architecture of GOPHER [Caloud et al. 1990] combined by four layers including

decomposition and distribution of task, moving programming and execution control. In

GOPHER a central task processing system (CTPS) take charge of task distribution.Every

robot can learn its task from CTPS’s announcment, use task distributing algorithm to

determine its own role, and use a classical AI programming technique to realize its role.

Although has successfully fulfilled tasks of box pushing and tracing, GOPHER prevent

robot join other task before fulfilled its current task, and has not clearly proposed how

robot can restore from error or failing, and how to make use of the limited sources and

to define state role. These limitations have weakened robot in GOPHER to work well

under dynamic environment.

• Distributive architecture of ALLIANCE [Parker 1998] was a behavior-based, fault-

tolerant and self-adoptive multi-robot cooperative architecture. In ALLIANCE,

individual robot used a behavior-based controller to select behavior based on a

motivation model. Robot in ALLIANCE could not make fast and optimal response in

dynamic environment. ALLIANCE has not considered optimal distribution of limited

resources, did not allow dynamic assigning of new type tasks too. By far ALLIANCE

has fulfilled tasks such as box pushing, disc collecting, and formation moving.

• Lueth and Laengle [Laengle et al. 1998] co-proposed a distributive controlling
architecture of KAMARA team oriented to multi-robot cooperation. KAMARA is
behavior fault-tolerance and error correction also. The architecture is based on universal
concept of agent to respresent robot component. Agent take charge of communication,
task programming and behavior selecting, and task executing. In KAMARA, agent
without capability can not take part in consultation and being assigned any task.

www.intechopen.com

 Multi-Robot Systems, Trends and Development

410

KAMARA can not guarantee incapable agent fulfilling its task. And in addition, in
KAMARA there is no optimal resource exploit also, so agent need to store all the
resources, thus will lead to a calamitous increase of consultation.

• The famous controlling architecture STEAM [Tambe & Zhang 1997] was built on joint-
intension and sharing programming. STEAM does not rely on special domain
knowledge, thus is reusability. In order to reduce communication, based on decision-
making theory, STEAM used a communication selecting mechanism to guarantee the
realization of joint-intension although without any communication. Tambe and etc.
have further designed a consultation-based model of CONSA based on STEAM.

• Noreils[Noreils 1993]proposed a three-layer hierarchical controlling architecture , in
which programming layer divides task into little sub tasks and assigns sub tasks to a
robot network, controlling layer organizes robot in task fulfilling, and function layer
provides actually controlling. Noreils has report implement of this architecture in multi-
robot cooperation of box pushing.

• Habib [Habib et al. 1992] proposed an AC-tRESS controlling architecture, in which a
consultation mechanism allow robot to seek help from other robots when needed.

• Zhao,Y W. & Tan, D L [Zhao & Tan 1990] proposed a hybrid hierarchical architecture
based on behavior decomposition.

• Tan-Min and etc. [Tan et al. 2005 ;Chao et al.2001] proposed a hybrid controlling
architecture oriented to task-level cooperation of multi-robot system, which was
combined by layers of system monitor, cooperative programmer, and behavior
controlling.

Since hierarchical cooperation can reduce programming complication and improve system
efficiency, the above architectures are almost hierarchical, but these architectures have not
emphasized autonomical behavior decision-making.
We take for that in multi-robot system under highly dynamic environment, it is impossible
and unpractical to rely on one controller to assign task and to make route programming for
all robots, robot must has capability of autonomous, self-adaption, and cooperation, all the
three are of the same importance and can not be lacked.
In this chapter, in order to emphasize the autonomical behavior decision-making, and for
system modularity and robusticity, we propose a hybrid architecture based on five layers,
among which decision-making is explicitly being presented as one laye. Since in our
architecture, different layer send out different information, communication consumptioncan
is largely reduced, and when exigency occurrs, robot needs not to wait for induction from
high layer, thus the system is more effective and robustic.
Firstly we introduce the hybrid architecture in section 2. Then we design the decision-
making module and develop a related algorithm in section 3. In section 4 we gave details on
implement of our architecture in Garbage disposal under dangerous environment, and at
last in section 5, we arrived at some chapter conclusions.

2. Hierarchical robot architecture based on behavior

Based on the advantage of existing robot architecture, considering characteristics of moving
task of multi-robot in dynamic complex environments, emphasizing robot’s capability of
self-adaptive, autonomous decision-making and cooperation, and strengthening monitoring
of robot also, we proposed a behavior–based five-layer hybrid architecture of hierarchical
individual robot, which includes two modules and five layers as shown in figure 1.

www.intechopen.com

Research on Multi-Robot Architecture and Decision-making Model

411

Coordination layer

Decision-making layer

Behavior control layer

Response layer

Perceive

module

Executive

module

Monitoring layer

Enviorment

R
o

b
o

t 2

R
o
b
o
r 1

R
o

b
o

t n

...

Fig. 1. Five-layer hybrid hierarchical robot architecture

Where the five layers are
1. System Monitoring Layer
Combined by monitoring modules, this layer watch if system state is abnormal. If it is, then
halt task execution and send a message to behavior planning controller.
2. Organization and coordination layer
This layer mainly take charge of task management and make robot cooperation rules. It
consists of seven modules as below

• Repository stores knowledge of environment, task, robot and experience. Robot
knowledge are about other surrounding robot, especially robot’s location, pose, and
intension. Experiential knowledge are a set of examples, which robot canuse for
reference when organizing, coordinating and programming.

• Update module periodically modify and update its interior organizing and
coordinating database according to information it collected.

• Task decomposition module will partition system functions according to knowledge of
tasks, and to build up robot organization model.

• Task assessment module will assesses the cost and befit of task fulfilling.

• Task assigning module. According to different robot role, this module assigns tasks
using a cost contract network or of optimization.

• Communication module mainly transfers local layer information among robots.

www.intechopen.com

 Multi-Robot Systems, Trends and Development

412

• Cooperation module is the kernel controller in the layer. By exchanging with the same
module of other robot,it sets up a hierarchical organization, and by cooperatively
assessment, decomposition and assigning of task, it can fulfill task decomposition and
assigning the subtasks quickly and rationally.

3. Behavior decision-making layer
This layer reflects robot autonomy and is mainly combined by behavior decision-making
module and communication module. The first behavior decision-making module involves
robot intention and realizes robot’s cooperation intension. According to repository content and
information from exchanging, this module autonomous search, reason and decide, produce
joint behavior intension, that is, to choose a team to take part in. The second communication
module mainly transfers information about behavior intension among robots.
4. Behavior control layer
This layer mainly takes charge of detail planning and executing of behavior decisions made
by the above behavior decision-making layer. Behavior control layer is mainly combined by
module of programming, coordination and communication. Programming module produce
or select a recently behavior sequence according to tasks selected by behavior decision-
making layer, when error or unexpected events occurring, programming module need to do
reprogramming. Strategy coordination module coordinates robot moving to avoid collision
and dead-lock as much as possible. Communication module transfers information about
behavior programming and coordination.
5. Response layer
This layer is combined by response modules, and primarily give rapid response. In this
layer there is a rule base which maps perceived information to some special behaviors.
Behaviors of this layer have the highest priority. Two modules within response layer are

• Perceiving module
This module perceives and abstract environmental changes during robot moving Different
kinds of information after abstracted will be loaded and processed in a related processing
layer. For example if perceived some emergent, then information will be sent to response
layer, from whose’s response, behavior instruction will be sent to an Execute Module.

• Execute module
This module takes charge of actual behavior execution, such as avoiding obstacles, forward
and backward movement, and etc.
In our architecture, time cost in decision-making layer is the longest. As refer to literature
[Farinelli et al. 2003], time cost in response layer was about 10 ms, and that of higher layer
was longer than 1min. In general, our proposed architecture has properties such as

• By setting a behavior decision-making layer to emphasize robot autonomous ability;

• Different layer will send out different information, thus can largely reduce
communication consumption.

• When exigency occurring, robot can make response by itself, no need to wait decision
from some higher layer, and

• System has modularity and robusticity.

3. Implement of behavior decision-making module

Robot can be taken as agent that has limited range of vision and communication, and certain

autonomy. So robot in system has capabilities such as [Tang 2002, Xu 2004].

• Perceptive capability,it can perceive and adopt to the changes of environment.

www.intechopen.com

Research on Multi-Robot Architecture and Decision-making Model

413

• Communication capability, which is needed when robots consult for cooperation.
• Moving capability, which includes steering and moving in dynamic environment, such

as climbing, cross country, paddle and etc. Moving capability can be represented by
moving speed and direction.

• Behavior capability, which includes skills needed in task fulfilling, such as installing,
maintaining, conveying, digging, site leveling out, attacking, scouting, computation,
searching, and plotting and etc.

• Behavior decision-making capability, which is robot autonomy in behavior. In this
chapter, this mainly refers that under multiple task condition, robot can decide to select
a task team to join in according to information it collected.

• Real time response capability, which means that robot can response and take behaivior
in emergency, such as avoiding obstacle and collision.

• Cooperation capability. In multi-robot system, robot must have capability of
cooperation with others for task fulfilling.

• Capability of local programming, which means that robot can deduce other robot’s
intension, and according to this to plan behavior of its own.

• Organization capability, it refers that Leader robot can organize and coordinate robots
with different skills to fulfill tasks together. And

• Learn capability. Individual robot must can learn from and adopt to complicate and
changeful environment, thus to improve the running efficiency of the whole system.

The below studies are mainly related to robot decision-making module in our architecture.
We firstly give definitions of robot intension, intension rule and role, then analyze factors
influence robot behavior decision-making, at last propose a intension decision-making
algorithm based on multiple dimension attributes.

3.1 Definition of intension
In dynamic environment, if can not fulfill some complicate task independently for lack of
essential global environmental information or skills by itself, individual robot must has
capability to choose a team to take part in, synthetically according to the environmental
information collected by its perceptive system, intension of other robot within its
communication range, and system runner’s indirect instruction (called as joint intension),
and through behavior programming to produce a series behavior to fulfill the intension .
Definition 1 Robot intension
Robot intension expresses robot’s task selection at some time abiding by the intension rule
defined as below.
Definition 2 Robot intension rule
There are two robot intension rules

• At a certain time intension only can be one, and

• intension must be of some certain stability and flexibility.
Here stability refers that intension can not change frequently, and flexibility is that intension
can change in some special situation, such as robot encounter a new target, or intended task
has being fulfilled, or motivation of one target disappeared. When accident comes forth in
task fulfilling, individual robot should modify its intension also.

3.2 Definition of role
Because of robot’s limited vision and communication capability, so in order to reduce
communication, according to robot’s knowledge of current task and the distance from the
task, we give the definition of state role that can be referred to [Chaimowicz et al. 2002].

www.intechopen.com

 Multi-Robot Systems, Trends and Development

414

Definition 3 State role
In task fulfilling, the distance from robot to task and robot’s responsibility are called state
role, it is related to task in specified application. State roles can be converted dynamically. In
our system, we set five state roles, including Explore, Leader, Approach, Attach and
Arrived.
Definition 4 Leader
Leader is the first robot that arrives at task, and take charge of organizing of task fulfilling.
To a given task, Leader should be the only. Represented by R0, Leader can be described as

 0(, _) (, _)Find first goal T Distance R goal T ρ∧ ≤ , where 0ρ > is the nearest distance constant ,

and goal_T is goal of the task.
Definition 5 Arrived
Arrived is robot that had arrived at task location and waiting for fulfilling it, which can be
described as

0(, _)Distance R goal T ρ ε≤ + , where 0ε > is a small positive constant. In our below

experiments, ρ ε+ is equal to robot vision radius.

Definition 6 Attach
Attach is the robot within R0’s communication range or R0 can indirectly communicate with
it, and it has already selected some task and already begin to move to. Attach can be

described as 0 0(,) . .Distance R R R Cap Crange≤ .

Definition 7 Approach
Approach is also within R0’s communication range or R0 can indirectly communicate with,
Although Approach has got some task information, but it has not selected any task yet.
Definition 8 Explore
Explore are robot that move randomly in environment for searching task.
In system running, each robot will correspond to and execute one role at one moment. In
dynamical environment robot’s role can be reassigned, which include methods of
Dynamical Assigning and Relocating. In Dynamical Assigning, robot can be assigned to a
new role after it fulfilled a task. After all the tasks of one team having being fulfilled, the
team will be dissolved, and Leader and Arriveds will be reassigned as Explore. When
Leader is not competent, its role can be changed to Arrived also. In Relocating, robot stops
executing its current role and start a new one, and in dynamic environment, robot can
become the Leader through competition. Since in its moving, robot’s team selection is
continually changed and robot may serves different role, thus robot can reassign and
relocate its role at any moment.
We prescribe that to the same task, role Relocating abide by the conversion order of Explore-
>Approach->Attach->Arrived->Leader.
Roles and their dynamically reassigning can be described in figure 2, in which a solid arrow
represents Relocating, and dashed arrow represents Dynamical reassigning.
Since Explore does not send but only accept information, after selecting one team Approch
only send application of team joining to task Leader, and Arrived does not send out any
information, thus by role setting, communication in our system can be reduced largely.

3.3 Attributes related to joint intention making
It is key to decide intension in our five-layer architecture. Below we firstly analyze two
kinds of factors that affect the autonomy of task selecting. One kind is indirect influencing
factors produced by task, including main task attributes. The other kind is direct factors

www.intechopen.com

Research on Multi-Robot Architecture and Decision-making Model

415

approach

attach

explore leader arrived

Fig. 2. Depict of role conversion

produced by robot itself, which include robot own capailitis. Below we give details about
these two kinds of factors.
1. Indirect factors
Indirect factors are all kinds of attraction of task to surrounding robot, which including

• Skills need to fulfill task Tj
Represented by TCapj, is the capability set need for fulfill task Tj. If robot has no TCapj it
will be refused by task Tj.

• Benefits of task Tj
Represented by ULj, is the total benefits from fulfilling of task Tj. The more ULj, the larger
attraction of task Tj.

• Least robot number needed for task Tj
Represented by Tnumj, it the least robot number needed for task Tj.

• Complex degree of task Tj
Represented by prj, complex degree of task Tj is the integrated complex degree, its value is
between 0 and 1. In muti-task enviromnet, different tasks have different complex degree.
Value of the above factors are set by system runner, and have no relation to system running
time.

• Location of task
Location of task Tj at time t is represented by TPlacej(t), which can be fixed or changeable
either, for example, when multiple robots are rounding up multiple targets, task location
will change continuously.

• Number of robot taking part in task
Number of robot taking part in task Tj at time t is represented by Cnumj. The smaller value
of Tnumj - Cnumj, the greater attraction of task Tj.

• Number of robot intend to take part in task
Number of robot intend to take part in task Tj at time t is represented by Anumj(t). The
smaller of Tnumj - Anumj, the more attraction of task Tj.

• Task priority
The priority of task Tj at time t is represented by Prj(t). The higher of the priority Prj(t), the
more attraction of Tj.

www.intechopen.com

 Multi-Robot Systems, Trends and Development

416

2. Direct factors
Direct factors mainly include robot’s own effect on task choosing, which include

• Robot capability
Capi is the capability set of robot Ri. If robot wants to take part in a task, it must has the
capacity required by that task. Since there are more than one tasks, therefore we can define
Q to represent if robot Ri has skills needed by task Tj.

: {0,1}Q Cap T× →

Q(Capi,Tj)=1 represents robot Ri has skills for task Tj. Q(Capi,Tj)=0 does not.

• Success rate
Abij is the estimated success rate of robot Ri completing task Tj. As a machinery or
equipment, robot will be aging and possibly go wrong, and possibly can not filfill some task.
According to its current situation, robot estimate an Abij, 0 < Abij ≤ 1. The larger Abij the more
confidence of robot to fulfill task Tj.

• Task attraction
Task has attraction to robot, which will reduce along with distance increasing[Parker 1999].
Using Attri representing the attraction, distance (Ri,R0) representing distance from Leader
robot R0 to robot Ri, and 0 < distance (Ri,R0) ≤ 1, then

0(,)
i

i

k
Attr

distance R R
=

Where constant k is the largest attraction. In order to discuss conveniently, let k=1.
Therefore, 0 < Attrii ≤ 1. The larger Attri, the more task attraction.

• Current state role
According to whether robot Ri is within the communication of R0 of one certain task Tj, we
can set robot Ri to different role, which can be represented by Staij. Staij=0 represents role of
Explore, Staij=1 of Approach, Staij=2 of Attach, Staij=3 of Arrived, and Staij=4 of Leader.
When robot select task, it need to fully consider role property, and select the task in which
robot’s role can be of higher priority.

• Intending benefit of task completing
RULj(t) is benefit expectation of fulfilling task Tj , which can be calculated by

()
j

j
j

UL
RUL t

Tnum
=

The larger RULj(t), the more interesting robot feeling in task Tj.

• Communication amount
For data sharing, robots needs communication with each other. Communication amount
Comij is the ratio of the observed robot number (Rv) to the total robot number in the team
(Tnum), that is

v
ij

R
Com

Tnum
=

The larger Comij, the more time cost and less choosing interesting.

• Interesting factor
Intij is the interesting degree of robot Ri in task Tj, which can be calculated using

www.intechopen.com

Research on Multi-Robot Architecture and Decision-making Model

417

ij
ij

ij

i

Times
Int

Times
=
∑

Where Timesij is the total times robot Ri had chosen task Tj. From Intij we can induce the
interesting of robot Ri in task Tj, and lead robot Ri to select Tj.

• Time factor
Take into account the continued influence of time interval Ri on the selection of task Tj, we

induce a remember coefficient ξ . Denote the interval between that moment and current

using Δ time, and according to Ebbinghaus forgetting curve , we can compute the remember
rate of robot Ri selecting Tj

b

timeij ceξ Δ=

where b,c are some positive number. The above formula shows that the smaller Δ time, the
less possibility of Ri forgetting Tj.

3.4 Decision-making model based on multi-attribute
Decision-making model based on multiple attributes is an important kind of that by
multiple rules, which was usually used in fields such as military, economy and polity. This
model can be used under condition that parts of tast attributes and weights have been
known [Y 2003]. We can descrbe these attributes by a decision-making matrix.
1. Matrix of decision-making based on multiple attributes

Denote the selected attribute set as 1 2{ , ,..., }mZ Z Z Z= , the task set as 1 2{ , ,..., }mT T T T= , then

the value of m attributes related to n tasks can be represented by a optimal matrix X

11 12 1 1

1 2

1 2

j n

i ij in

m m mj mn

X X X X

X Xi X X

X X X X

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

X

… …
#

… …
#

… …

Where Xij represent the ith attribute value of task Tj. all element in matrix X are unprocessed
primal data, has different physical meaning and usually different dimension, and value
difference is larger, so X need to be nondimensionalized(or standardization), by transforming
actually attribute value in X to relative value. To do this, we first divide attributes into benefit
type and cost type, according to the influence of attribute value changing on task selecting.
Benefit type is that benefit is large if attribute value is, this kind of attribute are also called
positive ones. And cost type are that benefit is large and attribute value is small instead, this
also be called as invert attributes. Then we can adapt the formula (1) and (2) in [Y 2003] to
compute the standardized optimal attribute degree yij of benefit type by

max

, 0
ij

ij ij
i

X
y X

X
= ≥ (1)

and of cost type by

 ,

min
0

i
ij ij

ij

X
y X

X
= < (2)

www.intechopen.com

 Multi-Robot Systems, Trends and Development

418

In (1) and (2), Xi max and Xi min are the maximum and minimum of attribute i respectively.
After the above standardization, we can get the relative optimal attribute degree matrix Y

11 12 1 1

1 2

1 2

j n

i ij in

m m mj mn

y y y y

y yi y y

y y y y

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Y

… …
#

… …
#

… …

2. Parameter determination
Weight coefficient is very important in our architecture, it can reflect how the attributes act
on optimum seeking. By now there are subjective and objective methods to determine the
weight. Here we adapt the first, and weight values are set by system runner beforehand,

and denote the attribute weight vector w as 1 2{ , ,..., }mw w w w= , where Wi is the weight of

attribute Zi and w satisifies

1

1
m

i

i

w
=

=∑

3. Task selecting
In optimal take selecting there is some relativity, the final result is relative to the m attributes
of n tasks. Here we take the chose task as a selecting project and for conveniently analysis

and comparison, we set a best selecting project Y+ and a worst one Y-. In Y+, all the relative
optimal attribute degrees can reach their largest value, and in the worst one, it is on the
contrary. Thus we have

 1 2(, ,...)T
mY y y y+ + + += , and

-
1 2(, ,...)T

mY y y y− − −=

Where -

1 1

max{ }, min{ }ij iji i
j n j n

y y y y+

≤ ≤ ≤ ≤
= = are the relative optimal attribute degree of attribute Zi

when select task Tj.

Since the existed n optional projects are commonly between Y+ and Y-. So we can not but

compare every actual project with Y+ and Y-, and to search the nearest to Y+and the farmost

fromY-. But it is harder even to do this. Therefore, we introduce a concept of weighted
Euclidean distance, and use a relative closing degree to judge the distance from one project

to Y+ and Y- and select the optimal project. The weighted Euclidean distance of project j to

Y+ and Y-can be computed

-
2

1

)
m

j i ij i
i

D w y y+

=

+ = ∑

-
- - 2

1

)
m

ij ij i
i

D w y y
=

= ∑

www.intechopen.com

Research on Multi-Robot Architecture and Decision-making Model

419

Where wi is the attribute weight. Thus the relative closing degree of project j is

1,2,...,
j

j
j j

D
C j n

D D

−

+ −= =
+

It is clearly that 0 ≤ Cj ≤ 1, and the larger Cj, project j be nearer to Y+ and be better. As to Y+,

Cj = 1, and to Y-, Cj = 0.

3.5 Behavior decision-making algorithms based on multiple attributes
Behavior Decision-Making in dynamic environment has properties such as robot’s own
autonomy and isomerism, variability of the dynamic environment, distribution of task, and
task’s own isomerism and variability. Thus in task executing, robots need to select a fitter
task according to the exterior and interior on-line information, and make the whole system
be in a changefully task assigning state. And just because of this, robot will dicover more
than one task at one moment, and it must chose one team to participate in according to its
knowledge about the task and by the judging of its own capability.
Recently, most algorithms for task choosing merely have considered whether robots fits
task, or only have further considered the single attribute of distance from robot to task. In
this research, according to analysis in the last section and at the precondition robot suit to
task, by fully considering many factors such as task, environment and robot itself, combing
attribute weight, and we propose a new robot behavior decision-making algorithm.
The main idea of our algorithm is that robot use greedy strategy to choose task, this also was
called the one-step optimization. The algorithm idea is that, after every time interval Δt, in
order to obtain information about other robots’ current situation, tasks needed to perform,
and situation of known tasks, robot will exchange with other robots within its
communication range. Integrating the information, robot will firstly find out a set of tasks it
competent for, then determine the relative attributes and weights, load the multiple
attributes decision matrix, and at last choose target task. These details are shown in figure 3.
In the implement, robot state in system can be described by a septuple

= < , , , , , , >R def id_robot Cap State Envir Rec Comm Time

Where
Id_robot is the unique ID of robot;
State is the current interior state of robot, which is represented by a quintuple (Sta, Vic, θ,
id_ros, SRole), here Sta is robot’s location, Vic and θ are robot’s speed and direction of current
moving, id_ros is the identifier of robot’s chose task, and SRole is robot’s current role.
id_ros=0 represents that robot has not selected any task , accordingly SRole =’Explore’;
Cap represents robot’s capability, which can be described by a group of (SRange, CRange,
MV, AC, ST, REAC, CO, PL, OR, LE), which are robot’s vision radius, communication radius,
and the ability of moving, behavior, behavior decision-making, real time reaction,
cooperation, local programming, organization, and of learning respectively;
Envir is the state space set of robot’s possible world, such as information of surrounding
geographical environment, of obstacles and surrounding robots;
Rec are history records, which are combined by a tetred (Tj, TStaj, Prej, timej) of task Tj, where
TStaj is the latest state, Prej represent the predecessor robot related to task Tj, that is the ID of
the robot who apprize the latest information, and timej represents time when the robot come
into learn task Tj;

www.intechopen.com

 Multi-Robot Systems, Trends and Development

420

Exchange with all other robots within the communication range to obtain a new task

set T1

Merge new task set T1 with the older task set.

T=T+ T1

Judge each Ti in T

T=T-{ti}; i=i+1

If robot Rj is competent

for Ti

Initial: i=1; M=|T|

i>M

yes

No

No

yes

 i=i+1

m=|T|;

Robot Rj determine the affect factor according to actual situation

Z1,Z2...Zn

Construct optimal selecting matrix X, and compute standardized optimal attribute

degree matrix Y

Determine attribute weight, and the best and worst projects

Compute relative closing degree Cj of each Tj

Take Tj with the largest Cj as current optimal selecting

Fig. 3. Flow chart of behavior decision-making algorithm based on multiple attribute

www.intechopen.com

Research on Multi-Robot Architecture and Decision-making Model

421

Comm is robot communication language; And

Time is the time of updating record, which used in maintaining robot group.

The Algorithm in detail is described in below algorithm 1.

Algorithm 1: Behavior decision-making algorithm based on multiple attribute

/*Algorithm description: After every time interval Δt, robot Ri will update organizing or

coordinating database and task information perceived by itself or obtained by

communication, and choose one task*/

Step 1. Set i, 1 ≤ i ≤ m
Step 2. Ri exchange with robot Ri within its communication range.

Step 3. if Ri find a new task in its vision range, then Ri.Rec.Rvi ← Leader; /*set Ri the
Leader of the new task*/

Step 4. Ri judge if there are any other new tasks by analysis the received information, if
there not any, Ri maintain its previous situation and goto 15. /*to maintain task’s
relative stability*/

 /* below steps dealing with currently known tasks*/
Step 5. merge new task with the previous task set, set the counter count ← 1, and set the

known task number to M.
Step 6. according to robot’s selected task, divide all robots into M class
Step 7. to each task, judge if it has been completed. if has, delete its information and goto 10.
Step 8. if the new task k is the same as the current task of Ri, then update the information of

task k with its latest information. Set the ID of robot who giving new task
information with u, and goto10

Step 9. if . .i j jR Cap T TCap⊆ , then add task Tj, add set ID of robot who giving new task

information with u
Step 10. count←count+1

Step 11. if count Mδ ≤ then goto 7

Step 12. call the behavior decision-making algorithm based on multi-attributes, find the task

whose intension function get the largest value by calculating max(())jUi t .

Step 13. if _ik R .id ros== , then goto 15 /* to perform the same task as current*/

 else Ri send a request to robot Ru for joining in task k.

Step 14. if Ri be accepted by task k, then set _iR .id ros k= .

Step 15. if _ <>0iR .id ros , then calculate the distance from robot Ri to Leader, and reassign

Ri’s role, then call the behavior programming module. Start and perform the
behavior control module.

Hereon, robot uses a one-step optimal searching strategy to choose task. This has merits

such as below

• After each moving step, robot will collect new information about tasks and

environment, to avoid information outdated.

• Can find disabled robot. If one robot has not updated its information for a long time,

then other robot take it being wrong and will inform this to Leader.

• By using the minimized task relationship, potential communication conflicts and time

needed for conflicts solving can be reduced, thus system efficiency can be improved. In

Algorithm 1 each step is the optimal, so it is fit for changeful dynamic environment in

which it is difficult to make a wholly route programming.

www.intechopen.com

 Multi-Robot Systems, Trends and Development

422

4. Garbage disposal in dangerous environment and its implement

In this section, in a simulated cross-country environment, test result of multiple robots
fulfilling garbage disposal through efficiently corporation was used to validate the efficiency
of the proposed hierarchical controlling architecture and the decision-making algorithm.

4.1 Problem description
Multiple robots cooperatively performing garbage disposal was a loosely coupling problem,
that is, robots separately search and dispose the garbage. There are two kinds of method to
do this. In the first kind of method, robots of different labor division will cooperatively dig
and bury garbage on the spot. In the other kind, robots firstly need to convey garbage to
some specified center then to dispose. Here we take the two kinds as two works.
In system, there set three class of robots, in which class i are crane robots adept at pushing

and convey object. Class ii are rooter robots adept at sapping. And class iii are conveyance

robot. All the three kinds of robot have stored information of task, can perform functions

such as task searching, organize, and coordinate. the first kind of task needs corporation of

robot class I and ii, in which after robot of class ii fulfilling dig, one or more than one robot

of class i will push garbage into the hole. And the second kind of task need the corporation

of ii and iii, as that robot of class ii grasp and transfer garbage to robot class iii, and one or

more robot of class iii will transfer garbage to an appointed location .

At system beginning, robots having capabilities of environment perceiving and behavior

programming were dispersed randomly in the cross-country environment, and began to

search garbage object. When find some garbage, robot will firstly judge whether it can

dispose the garbage by itself, if can, then began to, otherwise it will take the garbage as a

task and itself as the Lead, make sure numbers of three class robot needed according to

task’s size and property, and began to inform other robot to form a group. Without loss of

generality, we assumed that task of the first kind need 1 robot of class ii and a few of class i,

when robot number meet the required, robot of class ii will surround the task, which

represent robots have disposed garbage jointly, and task has been completed. As to the

second kind of task, we assume there need 1 robot of class i and a few of class iii, similarly

all the needed robots must firstly come to the garbage, then they form a column team for

garbage portage. After convey garbage to a target location, the task be completed.

In realization, the number of needed robot and of that around were labeled in a square
bracket beside the task. Three colors as we listed above were used to indicate the founded,
being performed and completed state of task respectively. If task is hung, then its needed
robot number is 0.

4.2 Implement strategy
Form point of view of organization, robots can be divided into task Leader and
collaborators. As manager of task, Leader will fulfill certain task also. Leader uses algorithm
2 below to build up a team, and also to fulfill task as soon as possible.
Algorithm 2: Leader select team member
Step 1. After tasks being announced, Leader begin to time and set i=0;
Step 2. Leader announces current tasks information to robots within its communication;
Step 3. Leader judge each answered robot Ri if it has competent to join the team. If it has

not, goto 8;

www.intechopen.com

Research on Multi-Robot Architecture and Decision-making Model

423

Step 4. Leader read the capacity of Ri related to task Tj;

Step 5. if () ()j jTnum t Cnum t≥ , then announce the end of recruit, and goto 7

Step 6. announce robot Ri as one of pre-team member, and if .iR SRole Arrived= then

() () 1;j jCnum t Cnum t= + else if .iR SRole Attach= then () () 1;j jAnum t Anum t= +

Step 7. if there be () ()j jTnum t Cnum t≥ (j=1，2，…，n), then goto 10;

Step 8. if it has not exceed the scheduled time, then i=i+1, and gotto 3;
Step 9. Leader announces the fail of formation;
Step 10. Leader determines final team members need for the task, and notifies all the

selected members.
In system running, each robot corresponds to one of the five state roles. For a relative stable
team, and reducing the unneeded cost of role exchanging, here we prescribe that only
Explore, Approach and Attach can bid and select team, robot after having chosen task only
send application to Leader of the task , and only Leader,Approach,Attach can announce
their knowledge of tasks.
In system we abstract and define task as class, in which we emphasize task needed robot
number, and the change of the number. The task class can be described as

class TARGET
{ CPoint m_Position; //task location
 int m_nValue ; //benift obtain from task completing
 int m_nComplax ; //complex degree of task fulfilling
 int m_nPrior ; // priority of current task
 int m_type; //kind of current task, m_ type =1 represent bury on the spot,

// m_type =2 represent transfer to a centralized spot then bury.
 int m_nNeedRobotNum1; // needed robot number of type I for task fulfilling
 int m_nNeedRobotNum2; // needed robot number of type II
 int m_nNeedRobotNum3; // needed robot number of type III
 int m_nArrivedRobotNum1; // arriveded robot number of I
 int m_nArrivedRobotNum2; // arriveded robot number of II
 int m_nArrivedRobotNum3; // arriveded robot number of III
 int m_nConfirmRobotNum1; // robot number of type I chosen the task
 int m_nConfirmRobotNum2; //robot number of type II chosen the task
 int m_nConfirmRobotNum3; //robot number of type III chosen the task
 int m_nLeaderId; // Leader ID
 bool m_bfinished; //if task fulfilled
 Real BeginTime; //task started(or discoveredd) time
 Real EndTime; // task completed time
 CList<Cpoint, CPoint&> m_RoundPoint; //coordinate of points surrounding the task.

};
And robot in the system is another class, which is
class Robot
 { int RobotId; //robot ID
 Type m_nType; //number represents robot’s current state role, 0 as Explore, 1

//as Approach, 2 as Attach, and 3 as Leader
 Type Cap; //robot’s capacity type
 int m_nViewDistance; //robot’s vision range
 int m_nComDistance; //robot’s communication range

www.intechopen.com

 Multi-Robot Systems, Trends and Development

424

 CPoint m_Position; // robot’s current location
 int m_nSpeed; // robot’s speed
 int m_nTargetId; //robot’s choosing task, value -1 represent it has not chosen any task.
 int m_nMaxValue; // upper limit of task benefit estimated by the robot
 int m_ObjectTarget[1501][1501]; //robot’s known information about task, value -2

//represent no task , >=0 represent discovered some task,
//value -1 represent not discovered any task, and -3 represent
// having completed the task

 Char m_Pa[n]; // information about robot’s known teammate
 Real CuTime; //time of current record
};

4.3 Implement strategy
In our system, robot adapt the controlling based on behavior, and behaviors can be divided
into four kinds as below

• move_to_goal;

• maintain_formation, after chosen one task and but can not see the task directly, robot
take this behavior lest diverge from the main direction;

• avoid_static_obstacle, robot takes this behavior lest it collides with obstacle;

• avoid_robots, robot takes this action lest it collides with other ones.

After chosen one task team, robot take that task’s location as its moving target, and Leader
will assign one role to it, this role correspond to robot location after task fulfilling. And after
all robot members determined their task’s location, the moving and coordination in robot
team can be taken as the processing of team formation. Each robot need to determine its
team’s formation vector according to its surrounding condition, such as the location of task
and other members, and the surrounding obstacle. Referring to formation vector
constructing algorithm in [Dong et al. 2000; Chio et al. 2003; Balch & Arkin 1995; Balch &
Hybinette 2000; Han 2003], we first prescribe some identifiers such as { }1 2, , nR R R R= " is a
robot set with n members, { }1 2, , nTARGET T T T= " is a task set,

{ }1 2, , mOBSTACLE O O O= " is an obstacle set, and di is formation vector by which Ri can
control its cooperation with other members thus to maintain the formation. Value in di can
indicate robot Ri’s driving power and moving direction.
By the above identifiers, Algorithm 3 of formation controlling during moving and
coordination can be described as below.
Algorithm 3: Formation controlling algorithm
Step 1. Determining robot type.In the system robots are dividend into type A that can see

the task directly, type B can see task indirectly, that is robot although can not see
task itself, but can see other robots in its team, and type C, can not see task or any
other robots.

Step 2. Using formula (3) to determine formation vector di

 1

'
2

i i
i

i i

K Q R A B
d

K Q R C

∈⎧⎪= ⎨
∈⎪⎩

∪
 (3)

Where 1 2,K K are two controlling parameters, we will give their value in the

simulation test. iQ is a unit vector from robot iR to other tasks or members, and
'
iQ is a unit vector from iR and normal to iQ .

www.intechopen.com

Research on Multi-Robot Architecture and Decision-making Model

425

Step 3. judge if there are some obstacles or team members along each robot’s formation

vector id , and using result of formula (4) to weightedly sum up every robot’s sub

behavior, thus to modify their moving directions.

1 , 1

2

i ii i i
j ji t t

t j j Ri i i i i
i t t j j

i i i i i
o o k k k

iki i i i i
k R OBSTACLEo o k k k

x xx x x
K K

y y y y y

x x x x x
K L

y y y y y

ατ βτ

γ δ

∈

∈

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟= +

⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + −⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭
∑

∪

 (4)

In (4), (),
Ti i

i ix y be iR ‘s moving direction during the current controlling cycle cT .

Coefficient ,α β and γ can be

1 0 0 ,

0 1 0 ,

0 0 1,

i

i

i

R A

R B

R C

α β γ
α β γ
α β γ

= = = ∈⎧
⎪ = = = ∈⎨
⎪ = = = ∈⎩

iτ be the attraction force of task jT on robot iR , jτ be inducing force of other

robot jR on iR , and ikδ be the exclusive force of obstacles or other robot on robot

iR . If distance from iR to other robot or obstacle is less than some L, then

0ikδ δ= > , otherwise there is no exclusive force, that is 0ikδ = .

Step 4. estimate robot iR ’s iPosition at next moment.

Step 5. iR moves to iPosition . If -i iPosition T ε< , then iR directly arrived at task location

iT , and goto 2.

4.4 Simulation plateform
1. Simulated environment
The system uses a 1501×1501 pixels 2-dimensional cross-country simulation environment,
which represent a 500×500 meters actual environment, value of pixel represent land-use
type of actual environment, which can be road, lake, river, natural land Surface, fortification,
sandlot, and plate. Surface such as grass and road can get through, and diked area such as
lake, road, and fortification can not.
2. Development tool
We use Microsoft VC++ 6.0 as the development IDE.
3. Running plate
Our simulation need to run on operating system of Windows 2000/XP.
4. Functions of main module
The main function of out simulation software includes

• Display environment map with depth feeling of environmental information

• Map can zoomes in or out

• Provides convenient interface for system user

• Dynamically and intuitively shows the process of robot formation for task fulfill.
5. Contents in display area in program running
In our system running, robot type of Crane, Rooter and Transporter distribute randomly,
and numbers of the three type robots are approximately equal. The three type robots are
represented by symbols as

www.intechopen.com

 Multi-Robot Systems, Trends and Development

426

 Crane
 Rooter
 Transporter

Two kinds of tasks are represented by circle and ellipse respectively, that is the 1’th task
type using circle, and the second using ellipse. And according to time order, tasks are
divided into three types, which we using three colors to express, that are

 Undiscovered task

 Discovered but not completed task

 Completed task
6. Status area
In status area below display area, there displays the location, needed robot number, having
recruited number of current task, and system running time.

4.5 Simulation of formation based on task
At the beginning, a few of tasks and robot randomly distribute in the cross-country
environment. We suppose that robot know their location and can communicate faultlessly.
Every robot has its own range of communication and vision and speed. And commonly
communication range is large than that of vision, and vision range is larger than speed×per
step time. System controlling parameters are set as in table 1. In the below demonstrating
map, we use color to represent robot role conversion, and beside each task there is a square,
in which robot number needed for task, and already recruited number are listed. Task such
as being discovered, executed and completed are distinguished by different colors, and
states being hang uses 0 needed robot number to express. the six below demonstration map
show the whole formation process, including produce, building, programming and
executing of cooperation.
Figure 4 is initial state of system running. There randomly distributes 6 tasks, represented
by character of A to F, and 17 robots including 6 crane robots (in color of pink), 6 transfer
robots (in red) and 5 rooter robots (in black).
Figure 5 is the system after running 1.75 s. Robot found 4 tasks including C, D, E and F, and
task F needed transferred. In square bracket beside each task there labeled the number of
robot needed and that of arrived.
Figure 6 shows system after running 2.406s. Task C has already been fulfilled, and task A
and B been founded. Task B was hang, so its needed robot number is 0, two robots around B
are moving towards other tasks. Task D needed one robot but around it there are two, the
redundancy is mainly caused by errors in communication and time setting.
Figure 7 shows system after running 3.156s. Tasks A~D have been completed, robot number
of task E already is 3, but that of task F have not changed. The black robot moving to task F
found that F out of its capability, so left it to other task.
Figure 8 shows system after running 10.327s. Robot number of task E is 4, and that of task F
unchanged, no other robot move to task F, thus deadlock came into being.
Figure 9 E and F shorting of robot, and within their communication no available ones, dead-
lock occur.

4.6 Result analysis
1. Four strategies in the system
In the system we use four controlling strategies
T0, integrated controlling strategy combining autonomic and entire controlling model

www.intechopen.com

Research on Multi-Robot Architecture and Decision-making Model

427

Fig. 4. Initial system state Fig. 5. System state after running 1.75s

Fig. 6. System state after 2.406s Fig. 7. System state after 3.156s

Fig. 8. System state after 10.327s Fig. 9. E and F occur dead-lock

www.intechopen.com

 Multi-Robot Systems, Trends and Development

428

T1, integrated controlling strategy combining random and entire controlling model
T2, integrated controlling strategy combining autonomic and partial controlling model
T3, integrated controlling strategy combining random and partial controlling model.
Here autonomic controlling is that robot adapting behavior decision-making algorithm to

select behaviour (to decide its role and team) based on multiple attributes proposed in this

chapter, making using of information by watching by exchanging. Randomly controlling is

that robot randomly select one team to join. And entire controlling is that in system there is

a virtual robot, it can collect information of all the known tasks, including task location, task

needed robot number, task’s recruited robot number and arrived robot number, and set

priority level to each task thus to induct robot’s team selecting. Virtual robot also will check

at intervals if dead-lock occurring (when all task’s robot number have not satisfied but no

robot in state of Explore, or all the remained robots are at state of Explore), if occurring,

virtual robot must solve it by forcing some robot to take one role or take part in certain

team. Interval of entire controlling will be determined by dead-lock occurring frequency at

last time, if this frequency is high, then shorten the interval, otherwise, extend it.

Success times in our simulation are the times robot complete task by its own coordination
without virtual robot’s intervening. And completing number is robot’s completing tasks
under entire controlling plus limited intervening.
2. System parameter setting
To valid the proposed architecture in this chapter, here we set value of all the common
parameters in table 1, other special parameters value of simulation will be set in respective
test table. In table 1, unit of running time is ms (millisecond), and units of communication
and vision range are pixel.

Parameter identifier Parameter value Parameter meaning

Range 40 Surrounding radius

iτ 1 Attraction of task jT on robot iR

jτ 1 Inducing power of robot jR on iR

K1 20 Coefficient of attraction and inducing power

K2 100 Coefficient of exclusive power

δ 100 Exclusive coefficient of obstacle to robot iR

Table 1. System controlling parameter

3. Result and analysis
We give tests for five kinds of comparisons as below.
Test 1, test with same task number and different robot number, result is listed in table 2.
Test 2, test with same robot number and different task number, results is listed in table 3.
Test 3, test with different vision range, result is listed in table 4.
Test 4, test with different communication range, result is listed in table 5.
Test 5, Test with different time length per running step, result is listed in table 6.
Reasult in Table 2 shows that along with the increasing of robot numbers, total time needed
for task fulfilling decreased, numbers of discovered tasks and completed tasks increased,
and dead-lock number lessened.

www.intechopen.com

Research on Multi-Robot Architecture and Decision-making Model

429

Basic parameter value

Robot
number

Task
number

Most robot
number needed

for task
Total loop number

Total time /
time per step

Vision range /
communication

range

10 5 6 50 20000/500 50/100

Test result

Total time
consume

Success times
Discovered task

number
Completed

number
Dead-lock number

T0 1075.454 12 163 168 435

T1 1110.5.2 8 184 122 496

T2 1058.156 16 180 156 304

T3 1111.434 8 178 118 476

Basic parameter value

Robot
number

Task
number

Most robot
number needed

for task
Total loop number

Total time /
time per step

Vision range /
communication

range

20 5 6 50 20000/500 50/100

Test results

Total time
consume

Success times
Discovered task

number
Completed

number
Dead-lock number

T0 1193.84 14 217 185 289

T1 1071.517 15 225 224 174

T2 1473.213 19 240 213 223

T3 1565.595 2 224 133 220

Basic parameter value

Robot
number

Task
number

Most robot
number needed

for task
Total loop number

Total time /
time per step

Vision range /
communication

range

30 5 6 50 20000/500 50/100

Test result

Total time
consume

Success times
Discovered task

number
Completed

number
Dead-lock number

T0 554.454 23 236 216 56

T1 652.22 23 240 230 72

T2 341.4 28 244 226 69

T3 305.233 28 241 227 83

Table 2. Results of test with same task number and different robot number

www.intechopen.com

 Multi-Robot Systems, Trends and Development

430

Value of basic parameters

Robot
number

Task number
Maximum

needed robot
number

Total loops
Total time /
time per step

Vision range/
communication

range

20 3 6 50 20000/500 50/100

Test result

Total time
consuming

Success times
Discovered task

number
Completed

task number
Dead-lock number

T0 1179.749 26 137 126 88

T1 1140.765 23 136 121 194

T2 1084.253 36 138 136 78

T3 1066.696 37 137 137 96

Value of basic parameters

Robot
number

Task number
Maximum

needed robot
number

Total loops
Total time /
time per step

Vision range/
communication

range

20 4 6 50 20000/500 50/100

Test result

Total time
consuming

Success times
Discovered task

number
Completed

task number
Dead-lock number

T0 821.091 29 170 164 197

T1 1253.700 25 163 163 348

T2 1122.657 29 165 151 246

T3 1122.08 33 167 152 198

Value of basic parameters

Robot
number

Task number
Maximum

needed robot
number

Total loops
Total time /
time per step

Vision range/
communication

range

20 5 6 50 20000/500 50/100

Test result

Total time
consuming

Success times
Discovered

task number

Completed
task

number

Dead-lock
number

T0 1193.84 14 217 185 289

T1 1071.517 15 225 224 174

T2 1473.213 19 240 213 223

T3 1565.595 2 224 133 220

Table 3. Test results with same robot number and different task number

www.intechopen.com

Research on Multi-Robot Architecture and Decision-making Model

431

When recruited robot number far exceeds the needed number, having or hving not used

entire controlling, the numbers of dead-locks and completed tasks is not different. The

reason is that when robot number is large, possibility of dead-lock will reduce, then even

not using the entire controlling, robot can fulfill task quickly by autonomic controlling.

If no more robot available, then although using entire controlling and bid algorithm based

on intension, because of there are many weak intervening, which will reduce robot’s

autonomic capability, so robot only can discover less tasks. And if not using entire

controlling intension-based algorithm, then system had to solve more dead-locks, thus will

reduce robot’s task discovering capability too.

Reasult in Table 3 shows that the more the task, the more the dead-lock, and the less

completed task number and the higher time consuming.

Value of basic parameter

Robot number 20
Test result

Task number 3
Total time
consuming

Succes
s times

Discovered
task

number

Completed
task number

Dead-lock
number

Task’s Maximum
needed robot

number
6 T0 1179.749 26 137 126 88

Total loops 50 T1 1140.765 23 136 121 194

Total time/
time per step

20000/
500

T2 1084.253 36 138 136 78

Vision range/
communication

range
50/100 T3 1066.696 37 137 137 96

Robot number 20
Test result

Task number 3
Total time
consuming

Succes
s times

Discovered
task

number

Completed
task number

Dead-lock
number

Task’s Maximum
needed robot

number
6 T0 506.72 14 64 64 74

Total loops 50 T1 553.316 12 62 62 91

Total time/
time per step

20000/
500

T2 937.531 6 52 52 84

Vision range/
communication

range
25/100 T3 702.733 5 40 40 74

Table 4. Test result of different vision range

www.intechopen.com

 Multi-Robot Systems, Trends and Development

432

Value of basic parameter

Robot number 10
Test result

Task number 3
Total time
consuming

Succes
s times

Discovered
task

number

Completed
task number

Dead-lock
number

Task’s Maximum
needed robot

number
6 T0 774.366 28 123 118 317

Total loops 50 T1 1054.996 16 106 82 536

Total time/
time per step

20000/
500

T2 849.47 22 114 108 398

Vision range/
communication

range
50/100 T3 1125.786 18 100 78 492

Robot number 10
Test result

Task number 3
Total time
consuming

Succes
s times

Discovered
task

number

Completed
task number

Dead-lock
number

Task’s Maximum
needed robot

number
6 T0 839.421 16 114 107 422

Total loops 50 T1 950.795 7 107 75 182

Total time/
time per step

20000/
500

T2 757.423 20 106 100 206

Vision range/
communication

range
50/200 T3 750.513 21 110 88 425

Table 5. Test result of different communication range

Reasult in Table 4 shows that vision range is better to be large.
Reasult in Table 5 shows that as to communication range it is not the greater the better. The
decreasing of completed task number along with the increasing of communication range in
the result has illustrated this point.
Reasult in Table 6 illustrates that changing of time per step has no more influences on task
fulfilling. But if adopting the entire controlling and intension-based bid recruiting algorithm
jointly under a moderate ratio of robot number to total task number, then the total time
consuming will reduce remarkably, and success time will increase remarkably.

www.intechopen.com

Research on Multi-Robot Architecture and Decision-making Model

433

Value of basic parameter

Robot number 10
Test result

Task number 3
Total time
consuming

Succes
s times

Discovered
task

number

Completed
task number

Dead-lock
number

Task’s Maximum
needed robot

number
6 T0 774.366 28 123 118 317

Total loops 50 T1 1054.99 16 106 82 536

Total time/time
per step

20000/
500

T2 849.47 22 114 108 398

Vision
range/communicat

ion range
50/100 T3 1125.78 18 100 78 492

Robot number 10
Test result

Task number 3
Total time
consuming

Succes
s times

Discovered
task

number

Completed
task number

Dead-lock
number

Task’s Maximum
needed robot

number
6 T0 787.652 24 122 112 300

Total loops 50 T1 1121.10 14 110 80 462

Total time/
time per step

20000/
700

T2 893.756 22 114 104 404

Vision range/
communication

range
50/100 T3 1086.30 17 94 75 502

Robot number 10
Test result

Task number 3
Total time
consuming

Succes
s times

Discovered
task

number

Completed
task number

Dead-lock
number

Task’s Maximum
needed robot

number
6 T0 798.72 28 124 120 296

Total loops 50 T1 1091.99 14 106 80 398

Total time/
time per step

20000/
1000

T2 884.734 24 114 106 250

Vision range/
communication

range
50/100 T3 1102.62 18 100 78 368

Table 6. Test result of different running time per step

www.intechopen.com

 Multi-Robot Systems, Trends and Development

434

4.7 Simulation conclusion
From the above comparisons we can found that the discovered and completed task number,
and total time consuming are mainly affected by factors such as the adapted strategy, ratio
of robot number to task number, range of vision and communication, and system total
running time. Generally speaking, we can have these four conclusions
1. When existed robot number does not exceed the total needed robot number of all tasks,

result by jointly adapting entire controlling and intension-based bidding algorithm is
better than that neither strategy being used. But if the existed robot number is larger,
adapting those two strategies will make system more complicate and less efficiency.

2. Using entire controlling and intension-based bidding algorithm jointly will induce
some weak intervening. But if not using neither of the two strategies, then time
consumed in dead-lock solving will increase, which will also reduce robot’s efficiency.

3. Along with the increasing of robot number, task numbers discovered and completed
will increase, and dead-lock number and total time consuming will decrease
remarkably.

4. In searching, along with the increasing of vision range, number of completed tasks will
increase largely. But along with increasing of communication, it is on the contrary.

So for the sake of efficiently fulfilling given tasks, the practicable solution is that besides
jointly adapting entire controlling and intension-based bidding algorithm, we can set robot
number the half of total needed robot number, and extend robot’s vision as large as possible.

5. Conclusion

In this chapter, we firstly gave analysis on some typical architectures of robot system, and
took for that in multi-robot system that oriented to task under a dynamic environment, the
prominence should be given to robot capabilities of self-adopting, real time reaction,
behaviour autonomic decision-making, and cooperation, especially to behavior autonomic
selecting, but all this has not presented in the existed architectures. Therefore, we proposed
a hybrid hierarchical controlling architecture of five layers, in which behavior decision-
making as an independent module is expressed. And then we emphatically studied the
implement of the behavior decision-making module. And at last, we used the effectively
fulfilling of garbage disposal by robot’s corporation in cross-country environment to
validate the proposed hierarchical controlling architecture and decision-making algorithm.
Simulation results showed that our architecture and algorithm are effective.

6. Acknowledgment

This research is sponsored by Scientific Research Common Program of Beijing Municipal
Commission of Education (KM200910772011) and by the Funding Project for Academic
Human Resources Development in Institutions of Higher Learning under the Jurisdiction of
Beijing Municipality (PHR201007131).

7. References

Balch, T. & Arkin, R C.(1995). Motor Schema-based Formation Control for Multi-agent

Robot Teams, in Proceeding of the First International Conference on Multi-agent

www.intechopen.com

Research on Multi-Robot Architecture and Decision-making Model

435

Systems, pp.10-15, ISBN 978-0262621021, San Francisco, June,1995, The MIT Press,

Cambridge, Massachusetts (USA).

Balch, T & Hybinette, M. (2000). Social Potentials for Scalable Multi-Robot Formation, IEEE

International Conf. on Robotics and Automation, pp. 73-80, ISBN 978-0780358867,

April, 2000, IEEE, New York, NY (USA).

Caloud, P.; Choi, W., Latombe, J C.; Pape, C L. & Yim, M. (1990). Indoor automation with

many mobile robots, Proceeding of IEEE international Workshop on Intelligent Robotic

system, pp. 67-72, ISBN 90-247-3346-4, Ibaraki, Japan, July, 1990, IEEE, New York,

NY (USA).

Cao, Z Q.; Zhang, B. & TAN, M. (2001). Individual Control Architecture for Multiple Robot

System. Robot, Vol. 23, No. 5, 450-454, ISSN 1002-0446.

Chaimowicz, L.; Campos, M F M. & Kumar, V. (2002). Dynamic Role Assignment for

Cooperative Robots, Proceedings of the 2002 IEEE International Conference on Robotics

and Automation, pp. 293-298, ISBN 0-7803-7272-7, Washington,May, 2001, ,IEEE,

New York, NY (USA).

Yue, C Y.(2003).Decision-making Theory and Methods, Science Press, ISBN 7-03-010816-7,

Beijing, China.

Chio,T S. & Tarn, T J. (2003). Rules and Contral Strategies of Multi-Robot Team Moving in

Hierarchical Formation. IEEE International Conf. on Robotics and Automation, pp.

2701-2706, ISBN 0-7803-7737-0, Taipei, Taiwan, September, 2003.

Dias, B. (2004). Trader Bots: A New Paradigm for Robust and Efficient Multirobot Coordination in

Dynamic Environments, the Robotics Institute, Carnegie Mellon University, 2004.

Dong, S L.; Chen, W D. & Xi, Y G.(2000). Distributed Control System for Multi-robot

Formation. ROBOT, Vol. 20, No.6, 433-438, ISSN 1002-0446.

Farinelli, A.; Scerri, P. & Tambe, M.(2003). Building Large-scale Robot Systems: Distributed

Role Assignment in Dynamic, Uncertain Domains, In AAMAS'03 Workshop on

Resources, role and task allocation in multiagent systems, ISBN 1-58113-683-8,

Melbourne, Australia, July, 2003, ACM, New York, NY (USA) .

Habib,M K.; Asama,H. & Ishida Y.(1992). Simulation Environment for an Autonomous and

Decentralized Multi-agent Robotic System, Proc. IROS'92, pp. l550-1557, ISBN

0780307372, Raleigh , NC (USA) , July 1992, IEEE, New York, NY (USA).

Han, X d.; HONG, B R. & MENG, W.(2003). Distrubuted Control for Generating Arbitrary

Formation of Multiple Robots. Robot, Vol. 25, No. l, 66- 72, ISSN 1002-0446.

Laengle, T.; Lueth,T C.; Rembold,U. & Woern, H. (1998). A Distributed Control Architecture

for Autonomous Mobile Robots-implementation of the Karlsruhe Multi-agent

Robot Architecture (KAMARA). Advanced Robotics, Vol. 12, No.4, 411-431, ISSN

0169-1864.

Noreils,F R.(1993). Toward a Robot Architecture Integrating Cooperation between Mobile

Robots: Application to Indoor Environmentm. The International Journal of Robotics

Research, Vol. 12, No. 1, 79-98, ISSN 0278-3649.

Parker, L E.(1998) ALLIANCE: An Architecture for Fault Tolerant Multi-Robot Cooperation.

IEEE Transactions on Robotics and Automation, Vol. 14, No.2, 220-240, ISSN 1042-

296X.

www.intechopen.com

 Multi-Robot Systems, Trends and Development

436

Parker, L E.(1999). Cooperative Robotics for Multi-Target Observation. Intelligent Automation

and Soft Computing, special issue on Robotics Research at Oak Ridge National Laboratory,

Vol. 5 , No.1, 5-19, ISSN, 1079-8587.

Tambe M. & Zhang W.(1997). Towards Flexible Teamwork. Journal of Artificial Intelligence

Research(JAIR), Vol. 7, No.1, 83-124, ISSN 1076 - 9757.

Tan, M.; Wang, S. & Cao, Z Q.(2005) Multi-robot systems, Tsinghua University Press, ISBN

7302100950 , Beijing, China.

Tang, Z M. (2002) Research on Essential Techniques for Mobile Intelligent Robot and Robot Team

[D].Nanjing university of science and technology, Nanjing, Jiangsu province,

China.

Xu D. (2004). Research on Some Key Techniques for Multi-robot System. Applied Science

and Technology. Vol. 7, No. 31, 37-39, ISSN 1009-671X.

Zhao, Y W. & Tan, D L. (1990). Study of Robot Architecture in Multiple Mobile Robots

System. Robots, Vol. 21, No.6, 421-425, ISSN 1002-0446.

www.intechopen.com

Multi-Robot Systems, Trends and Development

Edited by Dr Toshiyuki Yasuda

ISBN 978-953-307-425-2

Hard cover, 586 pages

Publisher InTech

Published online 30, January, 2011

Published in print edition January, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book is a collection of 29 excellent works and comprised of three sections: task oriented approach, bio

inspired approach, and modeling/design. In the first section, applications on formation, localization/mapping,

and planning are introduced. The second section is on behavior-based approach by means of artificial

intelligence techniques. The last section includes research articles on development of architectures and control

systems.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Shuqin Li (2011). Research on Multi-Robot Architecture and Decision-Making Model, Multi-Robot Systems,

Trends and Development, Dr Toshiyuki Yasuda (Ed.), ISBN: 978-953-307-425-2, InTech, Available from:

http://www.intechopen.com/books/multi-robot-systems-trends-and-development/research-on-multi-robot-

architecture-and-decision-making-model

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

