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1. Introduction     

Synchronization behavior among agents is found in flocking of birds, schooling of fish, and 
other natural systems. Synchronization among coupled oscillators was studied by 
(Kuramoto 1975). Much work has extended consensus and synchronization techniques to 
manmade systems such as UAV to perform various tasks including surveillance, moving in 
formation, etc. We refer to consensus and synchronization in terms of control of manmade 
dynamical systems. Early work on cooperative decision and control for distributed systems 
includes (Tsitsiklis 1984). The reader is referred to the book and survey papers (Ren & Beard 
2008; Ren, Beard et al., 2005; Olfati-Saber et al., 2007; Ren, Beard et al., 2007). Consensus has 
been studied for systems on communication graphs with fixed or varying topologies and 
communication delays. See (Olfati-Saber & Murray 2004; Fax & Murray 2004; Ren & Beard 
2005; Jadbabaie et al., 2003), which proposed basic synchronizing protocols for various 
communication topologies.  
Early work on consensus studied leaderless consensus or the cooperative regulator problem, 
where the consensus value reached depends on the initial conditions of the node states and 
cannot be controlled. On the other hand, the cooperative tracker problem seeks consensus or 
synchronization to the state of a control or leader node. Convergence of consensus to a 
virtual leader or header node was studied in (Jadbabaie et al., 2003; Jiang & Baras 2009). 
Dynamic consensus for tracking of time-varying signals was presented in (Spanoset al., 
2005). The pinning control has been introduced for synchronization tracking control of 
coupled complex dynamical systems et al., 2004; Z. Li et al., 2009). Pinning control allows 
controlled synchronization of interconnected dynamical systems by adding a control or 
leader node that is connected (pinned) into a small percentage of nodes in the network. 
Analysis has been done using Lyapunov and other techniques by assuming either a Jacobian 
linearization of the nonlinear node dynamics, or a Lipschitz condition, or contraction 
analysis. The agents are homogeneous in that they all have the same nonlinear dynamics. 
The study of second-order and higher-order consensus is required to implement 
synchronization in most real world applications such as formation control and coordination 
among UAVs, where both position and velocity must be controlled. Note that Lagrangian 
motion dynamics and robotic systems can be written in the form of second-order systems. 
Moreover, second-order integrator consensus design (as opposed to first-order integrator 
node dynamics) involves more details about the interaction between the system dynamics/ 
control design problem and the graph structure as reflected in the Laplacian matrix. As 
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such, second-order consensus is interesting because there one must confront more directly 
the interface between control systems and communication graph structure. See the book 
(Ren & Beard 2008) in Section III (Chapter 4-5). The article (Ren et al., 2007) studied the case 
of higher-order consensus for linear chained integrator systems. The detailed analysis there 
is performed for 3rd order systems but it extends to the higher order case. The paper (Zhu et 
al., 2009) studies the general second order consensus problem for double integrator systems. 
Ref. (Khoo et al., 2009) studied second order consensus in finite time using sliding mode 
error and a Lyapunov analysis. Papers (Bo & Huajing 2009; Yang et al., 2008; Su & Xiaofan 
Wang 2008) discuss consensus with time delays for second order integrator (Type II) 
systems. The article (Seo et al., 2009) proposed second order consensus using output 
feedback for agents with identical linear dynamics.  
Few papers study second-order consensus for unknown nonlinear systems. Few papers 
study consensus for heterogeneous agents with different unknown nonlinear dynamics. 
Leaderless or uncontrolled synchronization with nonlinear non-identical passive systems is 
reported in (Chopra & Spong 2006), which provided a Lyapunov proof valid for balanced 
graph structures. By contrast, this Chapter concerns controlled consensus or the multi-agent 
tracker problem on general directed graphs.  
Neural networks (NN) have a universal approximation property (Hornik et al., 1989) and 
learning capabilities that make them ideal for cooperative tracking control of multi agent 
systems with non-identical unknown nonlinear dynamics. Neural networks have been used 
since the 1990s to extend the abilities of adaptive controllers to handle larger classes of 
unknown nonlinear dynamical systems. Novel NN weight tuning algorithms have been 
developed to make NN suitable for online control of dynamical systems with real-time 
learning along the system trajectories. Rigorous proofs of convergence, performance, and 
stability have been offered. The reader is referred to (Qu 2009; Lewis et al., 1999; Lewis et al., 
1996; Narendra 1992; Narendra & Parthasarathy 1990; F. -C Chen & Khalil 1992; Polycarpou 
1996) for early works and the extensive literature since then is well known and hence not 
covered here. Neural adaptive control has not been fully explored for control of multiagent 
systems. 
Distributed multiagent systems with unknown nonlinear non-identical dynamics and 
disturbances were studied in (Hou et al., 2009) where distributed neural adaptive controllers 
were designed to achieve robust consensus. That treatment assumed undirected graphs and 
solved the leaderless or uncontrolled consensus problem, that is, the nodes reach a steady-
state consensus that depends on the initial conditions and cannot be controlled. Expressions 
for the consensus value were not given. Higher order consensus was proposed using a 
complex backstepping approach.  
Many control system graph structures are nonsymmetric in that communication links are 
unidirectional, with information flowing only one way between subsystems. Moreover, in 
most problems it is important to be able to specify the desired synchronization trajectory. 
This corresponds to a multi-agent tracker problem. An example is the directed tree structure 
of formation control, where all agents sense (either directly or indirectly through 
intermediate neighbors) the state of the control node, but the control node sets the 
prescribed course and speed. Therefore, (Das & Lewis 2009) studied the cooperative tracker 
problem for agents on general digraphs having non-identical unknown dynamics and 
disturbances. First-order integrator dynamics were studied. A distributed adaptive control 
technique was given that used pinning control to achieve synchronization to a desired 
command trajectory. Performance and stability were shown using a Lyapunov approach.  
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In this Chapter we extend (Das & Lewis 2009) to consensus for agents having second order 
dynamics in Brunovsky form. We confront the second-order synchronization tracking 
problem for heterogeneous nodes with non-identical unknown nonlinear dynamics with 
unknown disturbances. Herein, ‘synchronization control’ means the objective of enforcing 
all node trajectories to follow (in a ‘close-enough’ sense to be made precise) the trajectory of 
a leader or control node. The communication structures considered are general directed 
graphs with fixed topologies. Analysis of digraphs is significantly more involved than for 
undirected graphs. The dynamics of the leader or command node are also assumed 
nonlinear and unknown. A distributed adaptive control approach is taken, where 
cooperative adaptive controllers are designed at each node. A parametric neural network 
structure is introduced at each node to estimate the unknown dynamics. The choices of 
control protocol as well as neural net tuning laws are the key factors in stabilizing the 
networked multi-agent systems. A Lyapunov analysis shows how to tune the neural 
networks cooperatively, and guarantees the stability and performance of the networked 
systems. The error bounds obtained from the Lyapunov proof are dependent on control 
design and NN tuning parameters which can be chosen to suitably manage the tracking 
error and estimation error. Simulation results for networked agents with Lagrangian 
dynamics are provided to show the effectiveness of the proposed method.  
Section 2 is formulated the synchronization tracking control problem for second-order 

systems with non-identical unknown nonlinear dynamics. In Section 3 a Lyapunov 

technique is used to design cooperative adaptive controllers based on neural network 

approximation methods. Performance and stability guarantees are given for the networked 

systems. Section 4 presents simulation results. 

2. Synchronization control formulation 

Consider a graph ( , )G V E=  with a nonempty finite set of N nodes 1{ , , }NV v v= A  and a set 

of edges or arcs E V V⊆ × . We assume the graph is simple, e.g. no repeated edges and 

( , ) ,i iv v E i∉ ∀  no self loops. General directed graphs are considered. Denote the adjacency 

or connectivity matrix as [ ]ijA a=  with 0 ( , )ij j ia if v v E> ∈  and 0ija =  otherwise. Note 

0iia = . The set of neighbors of a node iv  is { : ( , ) }i j j iN v v v E= ∈ , i.e. the set of nodes with 

arcs incoming to iv . Define the in-degree matrix as a diagonal matrix { }iD diag d=  with 

i

i ij
j N

d a
∈

= ∑  the weighted in-degree of node i  (i.e. i -th row sum of A). Define the graph 

laplacian matrix as L D A= − , which has all row sums equal to zero. Define o
i ji

j

d a=∑ , the 

(weighted) out-degree of node i , that is the i -th column sum of A .  

We consider directed communication graphs with fixed topologies and assume the digraph 

is strongly connected, i.e. there is a directed path from iv  to jv  for all distinct nodes 

,i jv v V∈ . Then A and L are irreducible (Qu 2009), (Horn & Johnson 1994). That is they are 

not cogredient to a lower triangular matrix, i.e., there is no permutation matrix U such that  

 
* 0

* *
TL U U

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
 (1) 
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The results of this Chapter can easily be extended to graphs having a spanning tree (i.e. not 
necessarily strongly connected) using the Frobenius form in (1). 

2.1 Cooperative tracking problem for synchronization of multiagent systems 

Consider second order node dynamics defined for the i -th node in Brunovsky form as 

 
1 2

2 ( )

i i

i i i i i

x x

x f x u w

=

= + +

$

$
 (2) 

where 1 2 2[ ]Ti i ix x x R= ∈ , ( )iu t R∈  is the control input and ( )iw t R∈  a disturbance acting 

upon each node. Note that each node may have its own distinct nonlinear dynamics. 

Standard assumptions for existence of unique solutions are made, e.g. ( )i if x  either 

continuously differentiable or Lipschitz. The overall graph dynamics is 

 
1 2

2 ( )

x x

x f x u w

=

= + +

$

$
 (3) 

where the overall (global) state vector is 2 2 2 2
1 2

T N
Nx x x x R⎡ ⎤= ∈⎣ ⎦A , 

1 1 1 1
1 2

T N
Nx x x x R⎡ ⎤= ∈⎣ ⎦A , ( )1 2,

T
x x x= , ( ) ( ) ( ) ( )1 1 2 2

T N
N Nf x f x f x f x R⎡ ⎤= ∈⎣ ⎦A , 

input [ ]1 2
T N

Nu u u u R= ∈A , and [ ]1 2
T N

Nw w w w R= ∈A .  

If the states k
ix  are not scalars, this analysis carries over with the mere addition of the 

standard Kronecker product term (Das & Lewis 2009). 
Definition 1. The local neighborhood tracking synchronization errors (position and velocity) for 
node i are defined as (Khoo et al., 2009) 

 ( ) ( )1 1 1 1 1
0

i

i ij j i i i
j N

e a x x b x x
∈

= − + −∑  (4) 

and 

 ( ) ( )2 2 2 2 2
0

i

i ij j i i i
j N

e a x x b x x
∈

= − + −∑  (5) 

with pinning gains 0ib ≥ , and 0ib >  for at least one i . Then, 0ib ≠  if and only if there exist an arc 

from the control node to the i -th node in G . We refer to the nodes i for which 0ib ≠  as the pinned or 

controlled nodes.  
Note that (4) and (5) represents the information that is available to any node i for control 
purposes.  

The state 1 2 2
0 0 0[ ]Tx x x R= ∈  of the leader or control node satisfies the (generally 

nonautonomous) dynamics in Brunovsky form 

 
1 2
0 0

2
0 0 0( , )

x x

x f x t

=

=

$

$
 (6) 
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This can be regarded as a command or reference generator. A special case is the standard 

constant consensus value with 1
0 0x =$  and 2

0x  absent. Here, we assume that the control node 

can have a time-varying state. 

The Synchronization tracking control problem confronted herein is as follows: Design 

control protocols for all the nodes in G  to synchronize to the state of the control node, i.e. 

one requires 0( ) ( ),  1,2,k k
ix t x t k i→ = ∀ . It is assumed that the dynamics of the control node is 

unknown to any of the nodes in G . It is assumed further that both the node nonlinearities 

(.)if  and the node disturbances ( )iw t  are unknown. Thus, the synchronization protocols 

must be robust to unmodelled dynamics and unknown disturbances. 

2.2 Synchronization tracking error 

Define the consensus disagreement error vector 

 1 2 1 1 2 2
0 01 1

T T
x x x xδ δ δ⎡ ⎤ ⎡ ⎤= = − −⎣ ⎦ ⎣ ⎦

 (7) 

From (4), the global error vector for network G is given by 

 ( )( ) ( )1 1 1 1
01e L B x x L B δ= − + − = − +  (8) 

and 

 ( )( ) ( )2 2 2 2
01e L B x x L B δ= − + − = − +  (9) 

where, { }iB diag b=  is the diagonal matrix of pinning gains, and 1 2 ,
Tk k k k N

Ne e e e R⎡ ⎤= ∈⎣ ⎦A  

1,2,k i= ∀  and 1 NR∈  the vector of 1’s.  

Lemma 1. Let the graph is strongly connected and 0B ≠ . Then 

 ( )/ ,       1,2k ke L B kδ σ≤ + =  (10) 

 

with ( )L Bσ +  the minimum singular value of ( )L B+ , and 0e =  if and only if the nodes 

synchronize, that is  

 0( ) ( ), 1,2,k k
ix t x t k i= = ∀ . (11) 

2.3 Synchronization Control Design and Error Dynamics 

Differentiating (8) and (9), 

 ( )( )1 2 2
01e L B x x= − + −$  (12) 

and 

 ( )( )2 2
0 01 ( , )e L B x f x t= − + −$ $  (13) 

Note that 1 2e e=$ . Define sliding mode error for node i  
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 2 1
i i i ir e eλ= +  (14) 

or as a whole 

 2 1r e e= + Λ  (15) 

where diag( ) 0iλΛ = > . The next result follows directly. 

Lemma 2. The velocity error is bounded according to  

 ( )2 1e r eσ≤ + Λ  (16) 

Now differentiating r one obtains the error dynamics 

 
( )( ) ( )( )
( ) ( )( ) ( )

2 2 2
0 0 0

2
0 0

1 ( , ) 1

1 ( , )

r L B x f x t L B x x

L B f x u w L B f x t e

= − + − − Λ + −

= − + + + + + + Λ

$ $
 (17) 

Following the techniques in (Lewis et al., 1999; Ge et al., 1998), assume that the unknown 

nonlinearities in (2) are smooth and thus can be approximated on a compact set S R∈  by 

 ( ) ( )T
i i i i i if x W xϕ ε= +  (18) 

with ( ) i
i ix Rηϕ ∈  a suitable basis set of iη  functions at each node i  with iη  number of 

neurons and i
iW Rη∈  a set of unknown coefficients. According to the Weierstrass higher-

order approximation theorem (Stone 1948), a polynomial basis set suffices to approximate 

( )i if x  as well as its derivatives, when they exist, and moreover, the approximation error 

0iε →  uniformly as .iη →∞  According to the neural network (NN) approximation 

literature (Hornik et al., 1989), a variety of basis sets can be selected, including sigmoids, 

gaussians, etc. There ( ) i
i ix Rηϕ ∈  is known as the NN activation function vector and 

i
iW Rη∈  as the NN weight matrix. Then it is shown that iε  is bounded on a compact set. 

The ideal approximating weights i
iW Rη∈  in (7) are assumed unknown. The intention is to 

select only a small number iη  of NN neurons at each node (see Simulations). 
Here, to avoid distractions from the main issues being introduced, we assume a linear-in-
the-parameters NN, i.e. the basis set of activation functions is fixed and only the output 
weights are tuned. It is straightforward to use a two-layer NN whereby the first and second-
layer weights are tuned. Then one has a nonlinear-in-the-parameters NN and the basis set is 
automatically selected in the NN. Then, the below development can easily be modified as in 
(Lewis et al., 1999).  
To compensate for unknown nonlinearities, each node will maintain a neural network 
locally to keep track of the current estimates for the nonlinearities. The idea is to use the 
information of the states from the neighbors of node i to evaluate the performance of the 
current control protocol along with the current estimates of the nonlinear functions. 

Therefore, select the local node’s approximation ˆ ( )i if x  as 

 ( )ˆ ˆ ( )T
i i i i if x W xϕ=  (19) 

where ˆ i
iW Rη∈  is a current estimate of the NN weights for node i , and iη  is the number of 

NN neurons maintained at each node i . It will be shown in Theorem 1 how to select the 
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estimates of the parameters ˆ i
iW Rη∈  using the local neighborhood synchronization errors 

(4), (5). The global node nonlinearity ( )f x  for graph G  is now written as 

 

1 1 1 1

2 2 22

( )

( )

( )

( ) ( )

( )

T

T

T

T
N N NN

x

W x

xW

f x W x

xW
ϕ

ϕ ε
ϕ ε

ϕ ε

ϕ ε

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

B BD
B BD

'*(*)

 (20) 

and the estimate ˆ( )f x  as 

 

1 1 1

2 22

( )

ˆ ( )

ˆ ( )
ˆ ˆ( ) ( )

ˆ ( )

T

T

T

T
N NN

x

W x

xW

f x W x

xW
ϕ

ϕ
ϕ

ϕ

ϕ

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= = ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

BD
BD

'*(*)

 (21) 

Consider an input  

 ˆ ( ) ( , )i i i iu f x x tμ= − +  (22) 

or 

 ˆ( ) ( , )u f x x tμ= − +  (23) 

with ( , )i x tμ  an auxiliary input for the i th node yet to be specified. Then using (12) the 

error dynamics (6) becomes 

 ( ) ( ) ( )( ) ( ) 2
0 0, 1 ( , )r L B f x x t w L B f x t eμ= − + + + + + + Λ#$  (24) 

where ( ) ( )ˆ( ) ( )f x f x f x W xϕ= − =# #  with ( )1 1 2 2
ˆ ˆ ˆdiag , , ,

T

N NW W W W W W W= − − −# AA . 

3. Lyapunov design for cooperative adaptive tracking control 

It is now shown how to select the auxiliary control ( )tμ  and NN weight tuning laws such as 

to guarantee that all nodes synchronize to the desired control node signal, i.e., 

0( ) ( ),ix t x t i→ ∀ . It is assumed that the dynamics 0( , )f x t  of the control node (which could 

represent its motion) are unknown to any of the nodes in G . It is assumed further that the 

node nonlinearities ( )i if x  and disturbances ( )iw t  are unknown. The Lyapunov analysis 

technique approach of (Lewis et al., 1999; Lewis et al., 1996) is used, though there are some 

complications arising from the fact that ( ),x tμ  and the NN weight tuning laws must be 

implemented as distributed protocols. This entails a careful selection of the Lyapunov 

function. 
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The maximum and minimum singular values of a matrix M are denoted ( )Mσ  and ( )Mσ  

respectively. The Frobenius norm is { }T
F

M tr M M=  with {}tr ⋅  the trace. The Frobenius 

inner product of two matrices is 1 2 1 2, { }T
F

M M tr M M= . 

The following Fact gives two standard results used in neural adaptive control (Lewis et al., 
1999) 

Fact 1. Let the nonlinearities ( )f x  in (3) be smooth on a compact set NRΩ ⊂ . Then: 

a. The NN estimation error ( )xε  is bounded by Mε ε≤  on Ω , with Mε  a fixed bound 

(Hornik et al., 1989; Lewis et al., 1999).  

b. Weierstrass higher-order approximation theorem. Select the activation functions ( )xϕ  

as a complete independent basis (e.g. polynomials). Then NN estimation error ( )xε  

converges uniformly to zero on Ω  as , 1,i i Nη →∞ = . That is 0ξ∀ >  there exist 

, 1,i i Nη =  such that ,i i iη η> ∀  implies sup ( )x xε ξ∈Ω <  (Stone 1948).  
The following standard assumptions are required. Although the bounds mentioned are 
assumed to exist, they are not used in the design and do not have to be known. They appear 
in the error bounds in the proof of Theorem 1. (Though not required, if desired, standard 
methods can be used to estimate these bounds including [27].)  
Assumption 1.  

a. The unknown disturbance iw  is bounded for all i . Thus the overall disturbance vector 

w  is also bounded by Mw w≤  with Mw  a fixed bound. 

b. Unknown ideal NN weight matrix W  is bounded by MF
W W≤ . 

c. NN activation functions iϕ are bounded i∀ , so that one can write for the overall 

network that Mϕ φ≤ . 

d. The unknown consensus variable dynamics 0 0( , )f x t  as well as the target output vector 

are bounded so that 0 0( , ) ,Mf x t F t≤ ∀  respectively. 

e. The target trajectory is bounded so that 1 1 2 2
0 0 0 0( ) , ( ) ,x t X x t X t< < ∀  

The next definition for robust practical stability, or uniform ultimate boundedness, is 

standard and the following definition extends it to multi-agent systems 

Definition 2. Any vector time function ( )y t  is said to be uniformly ultimately bounded (UUB) [27] 

if there exist a compact set NRΩ ⊂  so that 0( )y t∀ ∈Ω  there exist a bound mB  and a time 

0( , ( ))f mt B y t  such that 0( ) ( ) m fx t y t B t t t− ≤ ∀ ≥ + . 

Definition 3. The control node state 0( )x t  is said to be cooperative uniformly ultimately bounded 

(CUUB) if there exist a compact set RΩ ⊂  so that 0 0 0( ( ) ( )ix t x t∀ − ∈Ω  there exist a bound mB  

and a time ( )0 0 0, ( ), ( )f mt B x t x t  such that 0 0( ) ( ) ,i m fx t x t B i t t t− ≤ ∀ ∀ ≥ + . 

The next key constructive result is needed. An M-matrix is a square matrix having nonpositive 

off-diagonal elements and all principal minors nonnegative (Qu 2009; Horn & Johnson 1994). 

Lemma 3. (Qu 2009) Let L  be irreducible and B  have at least one diagonal entry 0ib > . Then 

( )L B+  is a nonsingular M − matrix. Define  

 [ ] ( ) 1
1 2 1

T
Nq q q q L B

−= = +A  (25) 

 { } { }diag diag 1 /i iP p q= ≡  (26) 
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Then 0P >  and the matrix Q defined as  

 ( ) ( )TQ P L B L B P= + + +  (27) 

is positive definite.  
It is important that the matrix P is diagonal, as will be seen in the upcoming proof. The main 
result of the Chapter is now presented. 
Theorem 1. Distributed Adaptive Control Protocol for Synchronization. 
Consider the networked systems given by (3) under the Assumption 1. Let the communication 
digraph be strongly connected. Select the auxiliary control signal μ(x,t) in (23) so that the local node 
control protocols are given by 

 2ˆ ( ) i
i i i i i

i i

u cr f x e
d b

λ
= − +

+
 (28) 

with 0i iλ λ= > ∀ , control gains c > 0, and ( )ir t  defined in (14). Then 

 ( ) 1 2ˆ ( )Tu cr W x D B eϕ λ −= − + +  (29) 

with local node NN tuning laws be given by  

 ˆ ˆ( )T
i i i i i i i i iW F r p d b F Wϕ κ= − + −$

 (30) 

with 
ii iF Iη= Π , 

i
Iη the i iη η×  identity matrix, 0iΠ >  and 0κ >  scalar tuning gains, and 0ip >  

defined in Lemma 3. Define  

 ( )
( ) ( )

D B

P A

σ
λ

σ σ
+

=  (31) 

and select the control gain c and NN tuning gain κ  so that  

 ( )

( ) ( )

2 1
. 0

1
. 1

2
m

i c
Q

ii P A

λ
σ λ

ϕ σ σ κ λ

⎛ ⎞= + >⎜ ⎟
⎝ ⎠

≤ ≤ −

 (32) 

with 0, 0P Q> >  define in Lemma 3 and A  the graph adjacency matrix. 

Then there exist numbers of neurons , 1,i i Nη =  such that for ,i i iη η> ∀  the overall sliding mode 

cooperative error vector ( )r t , the local cooperative error vectors 1 2( ), ( )e t e t  and the NN weight 

estimation errors W#  are UUB, with practical bounds given by (53)-(55) respectively. Moreover the 

consensus variable 1 2
0 0 0( ) [ , ]Tx t x x=  is cooperative UUB and all nodes synchronize such that 

1 1
0( ) ( ) 0ix t x t− → , 2 2

0( ) ( ) 0ix t x t− → . Moreover, the bounds (53)-(55) can be made small by 

manipulating the NN and control gain parameters. 
Proof: 

Part A: We claim that for any fixed 0Mε > , there exist numbers of neurons , 1,i i Nη =  such 

that for ,i i iη η> ∀  the NN approximation error is bounded by Mε ε≤ . The claim is proven 

in Part b of the proof. Consider now the Lyapunov function candidate 
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 ( )1 1 11 1 1

2 2 2

T
T TV r Pr W F W e e−= + +# #  (33) 

with 0TP P= >  and 1 0TF F− −= > . Then 

 { } ( )1 1 1
T

T TV r Pr tr W F W e e−= + +$# #$ $ $  (34) 

Using (24) and (29)  

 ( ) ( )( ) ( ) ( ) 1 2
0 01 ( , )r L B f x cr w L B f x t A D B e

−= − + + + + + + + Λ#$  (35) 

Therefore  
 

 
( ) ( )( ) ( )

( ) { } ( )
0 0

1 2 1 1 2

1 ( , )T T T

T
T T

V r P L B W x w cr r P L B f x t

r PA D B e tr W F W e e

ϕ ε

− −

= − + + + + + + +

+ Λ + +

#$

$# #
 (36) 

 
( ) ( ) ( ) ( )( )

( ) ( ) { } ( ) ( )1 2 1 1 1
0 01 ( , )

T T T T

T
T T T

V r P L B cr r P L B W x r P L B w

r P L B f x t r PA D B e tr W F W e r e

ϕ ε
− −

= − + − + − + + +

+ + + Λ + + − Λ

#$

$# #
 (37) 

 
( ) ( ){ }

( ) ( ) ( )( ) ( ) ( )
0 0

1 2 1 1 1 1

1 ( , )T T

T TT T T

V cr P L B r r P L B w f x t

r PA D B e tr W F W x r P L B e r e e

ε

ϕ− −

= − + − + + − +

⎡ ⎤+ Λ + − + + − Λ⎢ ⎥⎣ ⎦

$

$# #  (38) 

 
( ) ( ){ }

( ) ( ) ( ) ( )( ) ( ) ( )
0 0

1 1 1 1 1 1

1 ( , )T T

T T
T T T

V cr P L B r r P L B w f x t

r PA D B r e tr W F W x r P L B e r e e

ε

ϕ− −

= − + − + + − +

⎡ ⎤+ Λ − Λ + − + + − Λ⎢ ⎥⎣ ⎦

$

$# #  (39) 

( ) ( ){ } ( ) ( )( )
( ) ( ) ( ) ( ) ( )

1
0 0

1 1 2 1 1 1 1

1 ( , )T T T T

T T
T T T T

V cr P L B r r P L B w f x t tr W F W x r P D B

tr W x r PA r PA D B r r PA D B e e r e e

ε ϕ

ϕ

−

− −

⎡ ⎤= − + − + + − + − + +⎢ ⎥⎣ ⎦

⎡ ⎤ + + Λ − + Λ + − Λ⎣ ⎦

$# #$

#
 (40) 

 

Since L is irreducible and B has at least one diagonal entry bi>0, then (L+B) is a nonsingular 
M-matrix. Thus, according to Lemma 3, one can write  
 

 
( ){ } ( ) ( )( )

( ) ( ) ( ) ( ) ( )

1
0 0

1 1 2 1 1 1 1

1
1 ( , )

2
T T T T

T T
T T T T

V cr Qr r P L B w f x t tr W F W x r P D B

tr W x r PA r PA D B r r PA D B e e r e e

ε ϕ

ϕ

−

− −

⎡ ⎤= − − + + − + − + +⎢ ⎥⎣ ⎦

⎡ ⎤ + + Λ − + Λ + − Λ⎣ ⎦

$# #$

#
 (41) 

 

Adopt the NN weight tuning law ˆ( )T
i i i i i i i i iW F r p d b F Wϕ κ= + +$# . Taking norm both sides in 

(41) one has 
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( )

( ) ( ) ( )
( ) ( )

22

2
22 1 1

1

2

1

M M MF F F
V c Q r P L B B r W W W P A W r

P AP A
r r e e

D B D B

σ σ σ κ κ φ σ σ

σ σ σσ σ σ
σ

σ σ

≤ − + + + − + +

⎛ ⎞ΛΛ ⎜ ⎟+ + − Λ
⎜ ⎟+ +
⎝ ⎠

# # #$

 (42) 

where ( )M M M MB w Fε= + + . Then 
 

( )
( ) ( ) ( )

( )

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

2

1
2

1

1
1 0

2

1 1 1
1

2 2 2

1
0

2

MF

F

M
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D B

e
P A P A

V e r W c Q P A r
D B D B

W
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σ σ σ
σ

σ

σ σ σ σ σ σ
σ φ σ σ

σ σ

φ σ σ κ

⎡ ⎤⎛ ⎞Λ
⎢ ⎥⎜ ⎟Λ +
⎢ ⎥⎜ ⎟+

⎝ ⎠⎢ ⎥ ⎡ ⎤⎢ ⎥⎛ ⎞ ⎢ ⎥Λ ⎛ ⎞Λ⎢ ⎥⎜ ⎟⎡ ⎤ ⎢ ⎥≤ − + − +⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦ ⎜ ⎟+ + ⎢ ⎥⎝ ⎠⎢ ⎥⎝ ⎠ ⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

#$

#

 

 ( ) ( )

1

0 M M

F

e

P L B B W r

W

σ σ κ

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ + ⎤⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

#
 (43) 

Write this as  

 T TV z Hz h z≤ − +$  (44) 

Clearly 0V ≤$  iff 0H ≥  and  

 
( )

h
z

Hσ
>  (45) 

According to (33) this defines a level set of ( )V z , so it is direct to show that 0V ≤$  for V  

large enough such that (45) holds (Khalil 1996). To show this, according to (33) one has 

 
2 22 22 21 11 1

2 2
max min

1 1 1 1
( ) ( )

2 2 2 2F F
P e W e V P e W eσ σ+ + ≤ ≤ + +

Π Π
# #  (46) 

( ) ( )

21

1 1

1 1

max min

1 1 1 1

2 2

11

F F

F F

SS

P Pe e

e r W r V e r W r

W W

σ σ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥≤ ≤⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥Π Π⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

# #

# #
'***(***)'***(***)

 (47) 

with min max,Π Π  the minimum and maximum values of iΠ . Equation (47) is equivalent to 

 1 1
2 2

T Tz Sz V z Sz≤ ≤  (48) 

where ( )1S Sσ=  and ( )2S Sσ= . Then  
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2 21 1

2 2
( ) ( )S z V S zσ σ≤ ≤  (49) 

Therefore, 

 
2

2

( )1

2 ( )

S h
V

H

σ
σ

>  (50) 

implies (45). 

For a symmetric positive definite matrix, the singular values will be equal to its eigenvalues. 

Define 
( )
( ) ( )

,
D B

I
P A

σ
λ λ

σ σ
+

Λ = = , 
( )
2 1

c
Q

λ
σ λ

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
 and ( ) ( )1

2
m P Aγ ϕ σ σ= . Then (43) can 

be written as 

 ( ) ( )

1 1

1

1 0

1 0

0
M MF

F F
H

e e

V e r W r P L B B W r

W W

λ
λ γ σ σ κ
γ κ

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎡ ⎤ ⎢ ⎥ ⎢ ⎥≤ − + ⎡ + ⎤⎣ ⎦⎢ ⎥⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

#$

# #
'*(*)

 (51) 

The transformed H matrix is symmetric and positive definite under assumption given by 
(32). Therefore from Gershgorin circle’s theorem  

 ( )Hσ κ γ≥ −  (52) 

with 0 1γ κ λ< ≤ ≤ − . Therefore ( )z t  is UUB (Khalil 1996). 

In view of the fact that, for any vector z, one has 
1 2

z z z ∞≥ ≥ ≥A , sufficient conditions 

for (45) are: 

 
( ) ( )

( ) ( )1

2

M M

m

B P L B W
r

P A

σ σ κ

κ ϕ σ σ

+ +
>

−
 (53) 

or 

 
( ) ( )

( ) ( )
1

1

2

M M

m

B P L B W
e

P A

σ σ κ

κ ϕ σ σ

+ +
>

−
 (54) 

or 

 
( ) ( )

( ) ( )1

2

M M

m

B P L B W
W

P A

σ σ κ

κ ϕ σ σ

+ +
>

−

#  (55) 

Note that this shows UUB of 1( ), ( ), ( )r t e t W t# . Therefore from Lemma 2, the boundedness of 

r  and 1e  implies bounded 2e . Now Lemma 1 shows that the consensus error vector ( )tδ  is 

UUB. Then 0( )x t  is cooperative UUB. 
Part B: See (Ge & C. Wang 2004) 

According to (44) 
2

( )V H z h zσ≤ − +$  and according to (49) 
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 V V Vα β≤ − +$  (56) 

with 2 ( ) / ( ), 2 / ( )H S h Sα σ σ β σ≡ ≡ . Thence 

 /2 /2( ) (0) (1 ) (0)t tV t V e e V
β βα α
α α

− −≤ + − ≤ +  (57) 

Using (49) one has 
 

2221 1( ) ( )
( ) ( ) (0) (0) (0)

( ) ( ) ( )F

hS S
e t z t e W e

S S H

σ σ ρ
σ σ σ

≤ ≤ + + + ≡#  

and 

 
222 1( ) ( )

( ) ( ) (0) (0) (0)
( ) ( ) ( )F

hS S
r t z t e W e

S S H

σ σ ρ
σ σ σ

≤ ≤ + + + ≡#  (58) 

Then from (8)  

 1 1 1
0

1
( ) ( ) ( )

( )
x t e t N x t

L Bσ
≤ +

+
 (59) 

 1 1 1
0 0( )

( )
x t NX h

L B

ρ
σ

≤ + ≡
+

 (60) 

Similarly from (58) and using (16) in Lemma 2 

 
( )

2 1( ) ( ) ( )

1

e t e t r tλ

ρ λ

≤ +

≤ +
 (61) 

This implies  

 
( )2 2 2

0 0

1
( )

( )
x t NX h

L B

ρ λ
σ

+
≤ + ≡

+
 (62) 

where 2 2
0 0 ( )X x t=  and ( ) ( )M Mh B P L B Wσ σ κ≤ + + . Therefore, the state is contained for 

all times 0t ≥  in a compact set 1 1 2 2
0 0 0{ ( )| ( ) , ( ) }x t x t h x t hΩ = < < . According to the 

Weierstrass approximation theorem (Fact 1), given any NN approximation error bound Mε  

there exist numbers of neurons , 1,i i Nη =  such that ,i i iη η> ∀  implies sup ( )x Mxε ε∈Ω < . 

□ 

Discussion:  

If any one of (53), (54) or (55) holds, the Lyapunov derivative is negative and V decreases. 

Therefore, these provide practical bounds for the neighborhood synchronization error and 

the NN weight estimation error.  

The elements ip  of the positive definite matrix { }iP diag p=  required in the NN tuning law 

(30) are computed as ( ) 11 1 1P L B
−− = +  (see Lemma 3), which requires global knowledge of 

the graph structure unavailable to individual nodes. However, due to the presence of the 
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arbitrary diagonal gain matrix 0iF >  in (30), one can choose 0i ip F >  arbitrary without loss 

of generality.  

It is important to select the Lyapunov function candidate V in (33) as a function of locally 

available variables, e.g. the local sliding mode error r(t) and cooperative neighborhood 

error 1( )e t  in (15) and (18) respectively. This means that any local control signals ( , )i x tμ  

and NN tuning laws developed in the proof are distributed and hence implementable at 

each node. The use of the Frobenius norm in the Lyapunov function is also instrumental, 

since it gives rise to Frobenius inner products in the proof that only depend on trace 

terms, where only the diagonal terms are important. In fact, the Frobenius norm is ideally 

suited for the design of distributed protocols. Finally, it is important that the matrix P of 

Lemma 3 is diagonal. 

4. Simulation result 

For this set of simulations, consider the 5-node strongly connected digraph structure in Fig. 

1 with a leader node connected to node 3. The edge weights and the pinning gain in (4) were 

taken equal to 1.  
 

 

Fig. 1. Five-node SC digraph with one leader node 

Consider the node dynamics for node i given by the second-order Lagrange form dynamics 

 
1 2

1
2 2 1sin( )

i i

i i i

r
i i i i i

q q

q J u B q M gl q−

=

⎡ ⎤= − −⎣ ⎦

$

$
 (63) 

where 2
1 2,

i i

T

iq q q R⎡ ⎤= ∈⎣ ⎦  is the state vector, Ji is the total inertia of the link and the motor, 

r
iB  is overall damping coefficient, iM  is total mass, g  is gravitational acceleration and il  is 

the distance from the joint axis to the link center of mass for node. , ,r
i i iJ B M  and il  are 

considered unknown and may be different for each node.  
The desired target node dynamics is taken as the inertial system 

 0 0 0 0 0 0om q d q k q u+ + =$$ $  (64) 

with known 0 0 0, ,m d k . Select the feedback linearization input 
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 ( ) ( ) 2
0 1 0 2 0 0 0 0 0 0sin( ) cos( ) sin( )u K q t K q t d q k q m tβ β β β β⎡ ⎤= − − + − + + +⎣ ⎦$ $  (65) 

for a constant ǃ>0. Then, the target motion q0(t) tracks the desired reference trajectory sin (ǃt).  
The cooperative adaptive control protocols of Theorem 1 were implemented at each node. 
As is standard in neural and adaptive control systems, reasonable positive values were 
initially chosen for all control and NN tuning parameters. Generally, the simulation results 
are not too dependent on the specific choice of parameters as long as they are selected as 
detailed in the Theorem and assumptions, e.g. positive. The number of NN hidden layer 
units can be fairly small with good performance resulting, normally in the range of 5-10. As 
in most control systems, however, the performance can be improved by trying a few 
simulation runs and adjusting the parameters to obtain good behavior. In on-line 
implementations, the parameters can be adjusted online to obtain better performance.  

For NN activation function we use log-sigmoid of the form 
1

1 kte−+
 with positive slope 

parameter k. Number of neurons used at each node is 3. So, φm≈1 and Ǆ≈0.04. NN gain 

parameter we selected as 1.5κ = . According to (32) the pinning gain should be selected 

large and it was taken as c=1000. 

In the simulation plots we show tracking performance of positions ( 1i
q ) and velocities ( 2i

q ) 

for all i. At steady state all 1i
q  and 2i

q  are synchronized and follow the second order single 

link leader trajectory given by 0q  and 0q$  respectively. 

Fig. 2 shows the tracking performance of the system. One can see from the figure that 

positions and velocities of all the five nodes are synchronized in two different final values 

which are given by the final values of [ ]0 0,
T

q q$ . More specifically 1i
q ’s are synchronized 

with 0q  and 2i
q ’s are synchronized with 0q$  at steady state. The figure also shows the 

inputs iu  for all agents while tracking. 
Fig. 3 describes the position and velocity consensus disagreement error vectors namely 

( )1 0 2 0, ,
i i

T
q q q q i− − ∀$ and also the NN estimation error in terms of ˆ( ) ( )

T

i if x f x i⎡ ⎤− ∀⎣ ⎦
. One 

can easily see that all the errors are minimized almost to zero.  
 

 
 

Fig. 2. Tracking performance (position and velocity) and control input 
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Fig. 3. Disagreement vector and NN estimation error vector 
 

 

 
 

Fig. 4. Comarison of ( )f x  and ˆ( )f x  

Fig. 4 describes the comparison of unknown dynamics f(x) with estimated dynamics ˆ( )f x . 

The figure also shows that the steady state values of ( )f x  and ˆ( )f x  are almost equal. 
Fig. 5 shows the NN weight dynamics. 

Fig. 6 is the phase plane plot of all agents, i.e. the plot of 1i
q i∀  (along the x -axis) and 2i

q i∀  

(along the y − axis). At steady state the Lissajous pattern formed by all five nodes is the 

target node’s phase plane trajectory. 
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Fig. 5. NN weight dynamics 
 

 

Fig. 6. Phase plane plot for all the nodes 

5. Conclusion 

This Chapter presents a method for synchronization control for multi-agent systems of 
order two with unknown dynamics. It gives the design of distributed adaptive controllers 
for second order nonlinear systems communicating on general strongly connected digraph 
network structures. The agent dynamics and command generator dynamics are considered 
unknown. Moreover the agent dynamics need not to be same. It is shown that with the use 
of pinning control based on the exchange of cooperative neighborhood errors among the 
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agents, one can guarantee synchronization of all the robots to the single command 
trajectory. A simple neural network parametric approximator is introduced at each node to 
estimate the unknown dynamics and disturbances. The choices of control protocol as well as 
neural net tuning laws are selected through a Lyapunov formulation to induce 
synchronization within the networked multi-robot team. A Lyapunov-based proof shows 
the ultimate boundedness of the tracking error. Simulation results for Lagrangian agent 
dynamics are shown to illustrate the effectiveness of the proposed method. 
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