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1. Introduction   

The current perspectives in the aerospace sector require a particular attention for the 
analysis of several phenomena involving the coupling between the mechanical behaviour 
and the other physics fields such as the fluid-structure interaction problem. This issue is 
particularly felt in the design of Reusable Launch Vehicle (RLV) since, during reentry, such 
kind of vehicles carries large quantities of Main Engine Cut Off (MECO) residual 
propellants. The management of the residual propellant remaining in the reusable stage 
after MECO during a nominal mission is a crucial point for the design with respect to: 
dimensioning and weight, landing safety issues, and post-landing procedures. 
Generally speaking, the motion of a fluid inside the RLVs’ tank (e.g. propellant sloshing) can 
affect the stability of the spacecraft and, when it is too much violent, could damage the 
structure, generating  the vehicle failure. As a consequence, the structural design of 
propellant tanks should take adequately into account for the propellant slosh load in 
combination with all other loads and inputs. Therefore, there is a need for explaining what 
happens with a fluid subjected to loading environment of a typical RLV reentry trajectory 
(Bucchignani et al. 2008). Sloshing of propellants describes the free-surface oscillations of a 
fluid in a partially filled tank. These oscillations are due to lateral and longitudinal or 
angular motions of the spacecraft, as well as, when there are no tank disturbances, to the 
interchange of kinetic energy and the potential energies due to gravitational and surface 
tension forces (NASA, 1968). In particular, these free oscillations may persist since the 
damping provided by the wiping of the fluid against the tank’s wall is negligible. Therefore, 
forced oscillations result in large free-surface waves. The magnitude of propellant sloshing 
depends upon the following parameters: acceleration field, propellant properties, tank 
geometry, effective dumping, height of propellant in the tank, and perturbing motion of the 
tank (NASA, 1968). 
In recent times, the phenomenon of sloshing in partially filled tanks has been widely 
investigated by means of analytical methods or experimental techniques.  The problem of 
small horizontal oscillations has been extensively investigated in the past, using analytical 
and experimental methods (Faltinsen et al., 2000) (Faltinsen et al., 2001). It has been shown 
that the response is the same as that of the undamped Duffing equation and changes from 
soft-spring (decreasing amplitude with increasing frequency) to hard-spring (increasing 
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amplitude with increasing frequency) behaviour as the ratio width–depth passes through a 
certain value. This value has analytically been determined (Faltinsen, 1974)  and is given by 
L/H = 0.3374. On the other side, there is a lack in numerical simulations based on 
Computational Fluid Dynamics (CFD) codes, because they often require large amount of 
computational resources.  
The goal of this chapter is to describe an innovative numerical method, based on a 

multiphysics approach, aimed to the simulation of an unsteady RLV-like tank configuration,  

such as liquid Oxygen (LO2) and/or liquid Hydrogen (LH2), subject to a typical reentry 

loading environment. The flow-field pressure and the stress field in the tank structure have 

been evaluated considering the motion of an incompressible fluid with a mobile free surface, 

in a tank with deforming walls under the action of the liquid pressure. An unsteady Finite 

Element formulation is used, instead, for modelling the tank. The global solution procedure 

uses a multiphysics approach, which allows to simultaneously simulate all the fields involved 

in order to capture the physical effects arising from the interaction phenomena.  In 

particular, the coupling algorithm, based on a semi-implicit staggered method, belongs to the 

class of the partition treatment techniques, which allow solving the fluid and structural 

fields by means of two distinct models.  

This paper is structured as follows: after a short overview of the theory of non-linear sloshing 

in par. 1.1,  in Sec. 2 the mathematical model is discussed; Section 3 is dedicated to the 

numerical implementation and finally in Section 4 results related to several unsteady 

numerical simulations of the motion of a LO2 and/or LH2 propellant in a tank made of 

Aluminium-Lithium alloy (Al 2195) are presented: the main aim is the estimation of the 

pressures exerted by the sloshing fluid on the tank with the consequent stress field in the 

structure.  

1.1 Theory of non-linear sloshing 

The fluid motion in a partially filled tank forced to oscillate in a frequency domain close to 

its natural frequencies can be rather violent. The ratio between maximum free surface 

amplitude and characteristic tank motion amplitude is then high and significant non-

linearities occur. The theoretical predictions by Faltinsen (Faltinsen et al., 2000) can be used 

as a basis for our studies. It is assumed that the tank is forced to oscillate with amplitude  

L ε sin ωt in the horizontal x-direction. The non-dimensional parameter ε assumes usually 

values between 0 and 0.05 and it is defined in order to express the smallness of the motion. 

Let ω=2 ┨/T be the circular frequency of the excitation signal. The wave amplitude response 

A of the lowest primary mode and the excitation period T are coupled by a cubic secular 

equation: 

 T T A L m A L P H2 3
1 1 1( / ) 1 ( / ) ( / )⎡ ⎤− + =⎣ ⎦  (1) 

where T1 is the highest natural period of the tank, L is the tank width, H is the water 

depth, m1 is a function of H/L and T/T1. P1H is a dimensionless excitation amplitude. It 

can be observed that this response is equal to the one of Duffing equation (Zeeman, 2000) 

and changes from soft-spring (decreasing amplitude with increasing frequency) to hard-

spring (increasing amplitude with increasing frequency) behaviour as the ratio width–

depth passes through a certain value, given by L/H =0.3374. Fig. 1 shows typical hard-

spring behaviour. 
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Fig. 1. The typical hard-spring behaviour 

There exists a particular value of ω (i.e. ω t) such that the discriminant of the cubic equation 
is zero. For ω < ω t the secular equation has only one real root. For ω > ω t (e.g., ω 1) there will 
be three real valued solutions. What solution the physical system will select depends on 
how the value ω1 is approached. If one starts to oscillate the tank with a much lower 
frequency, the solution will be y1. If one does the opposite, the solution will be y3. The 
physical system never select y2 because it is an unstable solution. If we approach ω t from 
below and continue increasing ω, the solution will suddenly jump from y6 to y7. On the 
other hand, if one starts with a high frequency and decreases the frequency, the solution will 
follow the lower stable branch and suddenly jump from y4 to y5. 
The first (upper) branch implies stable solutions. The second (lower) branch displays stable 
and unstable steady-state solutions with a turning point between them. The turning point 
defines a jump from the lower to the upper branch. Another jump from the upper to the 
lower jump occurs as A/L increases along the upper branch. It defines a downshift of 
maximum wave amplitude response. This pair of jumps constitutes the hysteresis between 
two stable solutions. 

2. Mathematical model 

2.1 Fluid dynamics 

The evolutions of waves on the surface of a fluid enclosed in a box are described by means 
of the equations governing the motion of the flow with appropriate boundary conditions. As 
we are considering structures with characteristic dimensions larger than those of 
characteristic wavelengths, the viscous effects and surface tension have been neglected, 
whilst non-linear free surface effects have been taken into account. It has also been assumed 
that the amplitude of the oscillations is small if compared with the wavelength of the 
perturbation and with the depth of the box. All the physical quantities are referred to a 

A
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coordinate system rigid with the tank, so in the case of a moving tank the apparent forces 
must be taken into account. The equation governing the motion of an irrotational 
incompressible flow is the classical Laplace equation: 

 
x z

2 2
2

2 2
0

φ φφ ∂ ∂
∇ = + =

∂ ∂
 (2) 

where φ  is the potential velocity and the components of the velocity vector u(u,w) are given 

by: 

 u
x

φ∂
=
∂

  w
z

φ∂
=
∂

 (3) 

Let η(x,t) be the function describing the wave height measured with respect to the 
undisturbed configuration (Fig.2). The boundary conditions are imposed in the following 
way:  
- on the rigid walls, the compatibility condition on the velocity field is: 

⋅ = ⋅su n u n  

where n is the outer normal to the boundary and us is the velocity deformation of the wall.  
- on the free surface, a cinematic and a dynamic conditions are imposed. The first one 

states that the velocity of the surface must be equal to the vertical component of 
velocity:  

 
( )

0
η

η φ η φ
=

∂ ∂ ∂ ∂
+ − =

∂ ∂ ∂ ∂ zt x x z
 (4) 

 

 

Fig. 2. Reference System for the Fluid 

The dynamic condition states that the pressure on the free surface is equal to the external 
one (e.g., tank pressure). The Bernoulli theorem can be successfully used: if the volume 
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forces are reduced to the weight and the external pressure is set equal to zero, we obtain 
(Faltinsen et al., 2001): 

 
2 2

1
0

2

φ φ φ φη
⎡ ⎤∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ + + + =⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

cg
t x z t

 (5) 

where g is the gravitational acceleration, 
φ∂
∂
c

t
is the acceleration of the tank with respect to 

an inertial coordinate system. This last term vanishes if the tank is motionless.  
The Laplace equation and the boundary conditions have been set in non-dimensional form 

assuming the width of the tank L as reference length and a reference time equal to (L/g0)1/2 

(g0 is the gravity acceleration at earthly level). At the end of each time step, the liquid 

pressure on the solid walls is evaluated using the Bernoulli equation: 

 
2 2

1

2

φ φ φ φ⎡ ⎤∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= − − + − −⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

cp gz
t x z t

 (6) 

2.2 Structure 

When the walls of a tank are thin, their vibrations under the effects of variable liquid 

pressure cannot be neglected. In this case it is essential to develop a mathematical model 

that keeps into account the deformations of the walls. 

It is assumed that the tank is made up of an elastic isotropic material and that the 
constitutive law is the Hook's one. 
The governing equations for the structure are the usual undefined equilibrium relations for 

continuous media. Under these hypotheses, a Finite Element discretization of the tank can 

be performed. If the displacement of the structure changes in the time, it is necessary to keep 

into account the inertial forces and the frictional resistances opposing the motion. These can 

be due to microstructure movements, air resistance etc. As a consequence, the equilibrium 

general condition for the structure in a Finite Element formulation assumes the following 

expression: 

 M d C d Kd f+ + =
f f f$$ $

 (7) 

where d
f

 is the displacement vector, M, C, K are respectively the mass matrix, the damping 

matrix and the stiffness matrix; f is the force vector. All the matrices are obtained by 

assembling related to each element (Me, Ce and Ke). Ke is obtained according with reference 

(Golub et al., 1990) as:  

 e T

S

K B DBds= ∫  (8) 

where B is the strain-displacement matrix and D is the material matrix (depending on the 
Young modulus E and on the Poisson coefficient ν of the material).  Me is given by: 

 e T

S

M N Ndsρ= ∫  (9) 
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where ┩ is the density and N is the shape function matrix. The definition of Ce is in practice 
difficult and therefore it is assumed that Ce is a linear combination of stiffness and mass 
matrices, that is:  

 e e eC M Kα β= +  (10) 

where  and β are determined experimentally. 

3. Numerical methodology 

The flowfield has been solved using a time-dependent algorithm, in order to obtain accurate 
true transient solutions. A Fully Implicit approach has been adopted for the time integration 
in order to guarantee high stability to the method. As shown in (Guj et al., 1993) this kind of 
approach represents a useful compromise among numerical efficiency, robustness and 
flexibility in applications. Particular care has been adopted for the treatment of the non-
linear conditions on the free surface (Zienkiewicz et al., 1977) (Zienkiewicz et al., 1977). 
Linearization has been performed by freezing one of the terms at the previous time step.  

  
t x x z z

* *1
0

2

η φ η φ φ⎛ ⎞∂ ∂ ∂ ∂ ∂
+ − + =⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

 (11) 

 cg
t x x z z t

* *
*1 1 1

( )
2 2 2

φ φ φ φ φ φη η∂ ∂ ∂ ∂ ∂ ∂
+ + + + = −

∂ ∂ ∂ ∂ ∂ ∂
 (12) 

Where all the quantities are considered at the current time step, with the exception of the 
quantities marked with a * that are considered at the previous time step. 
Few remarks can be made on this use of quantities evaluated at the previous time step. For 

what concerns the terms zφ∂ ∂  and η respectively in the first and second equation, the 

discrete form is obtained following the well known Cranck-Nicholson formula (Crank et al., 
1947). Concerning the quadratic terms, since they are all non-linear, a linearization is 
required in order to approach the resulting algebraic problem with a linear solver. In this 
case one of the factors has been frozen at the previous time step, reducing the problem to a 
linear one (Galpin et al., 1986).   
This technique guarantees a good coupling between all the equations. 
As a result of the simplifying assumptions, the lack of viscosity may cause an undesirable 
contribution from the high frequency components to the numerical solution of the problem. 
This contribution is undesirable because the high frequency modes are poorly represented 
in the discretized system. As a consequence, a dispersion error may develop in the 
numerical solution. This effect may occur when the liquid is in the resonance zone or when 
the excitation level is relatively high. Numerical dissipation could be used to damp out the 
high frequency wave components propagating near the free surface, as proposed in (El-
Zeiny, 2000).   This strategy, however, has not been considered in the present work, as our 
goal is the investigation of the system for small amplitude oscillations. The Laplace equation 
has been discretized using a Finite Volume technique on a grid made up of quadrilateral 
elements. The computational grid is updated at each time step, in order to take into account 
the variation of the domain shape due to the movement of the free surface and of the solid 
walls. A transient procedure requires particular care, as the mass conservation could be 
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violated. The staggering of the variable location provides the maximum accuracy of the 
discretized derivatives and ensures the discrete conservation of mass at each time step. In 
fact, as shown in reference (Guj et al., 1993), it is possible to obtain mass conservation to 
round off error if the horizontal velocity is located at the middle of the vertical face of the 
computational cell and the vertical velocity is located at the middle of the horizontal face. As 

a consequence, the potential φ  is naturally located at the centre of the cell.  

For what concerns the boundary conditions, spatial derivatives are discretized using two-point 
backward differences, while time derivatives are discretized using three-point backward 
differences. At each time step the original system of partial differential equations gives rise to a 
large linear system of equations of the type Ax=b, where x is the unknown vector. The 
coefficient matrix A has a large sparse structure. The solution of this linear system via a direct 
method is not recommended due to the size of the problem, so an iterative procedure has been 
preferred: the Bi-CGSTAB algorithm (Van der Vorst, 1992) (Gluck et al., 2001), associated with 
a ILU decomposition of the matrix A as preconditioner has been employed. The Bi-CGSTAB 
algorithm is an iterative method belonging to the class of the Krylov subspace methods; it has 
been chosen for its good numerical stability and speed of convergence even in dealing with 
non-symmetric problems, as shown in references (Stella et al., 1996). 
The spatial discretization of the structure has been performed using triangular elements 

with linear shape functions. The discretization of the time derivatives has been performed 

using Finite Difference approximations with a three-point formula for the second-order 

derivative and a two-point formula for the first-order derivative. Also in this case, the large 

sparse linear systems arising from discretization at each time step are solved using the Bi-

CGSTAB algorithm without preconditioning. 

3.1 Coupling between fluid and structural fields: the Multiphysics approach 

Multiphysics (Bucchignani et al., 2008) is the science that simultaneously studies two or 

more different physical problems which interact dynamically. Each interacting physical 

entity is named component. The collection of the single components constitutes the dynamical 

system to be studied.  

Other investigators (Felippa, 2001) prefer the term coupled field problems, by idealizing the 

interacting components as fields. Generally, the denomination Multiphysics tends to be 

applied to computational physics problem, whereas coupled field problems to mechanics. 

The numerical simulation of components (or fields) of a system (or a coupled problem) as 

isolated entities has been pursued and refined within of each separate discipline. The 

challenge of these last years is to solve simultaneously the whole system in order to capture 

the physical effects arising from the interaction. This approach requires innovative 

mathematical modelling, new numerical methods and a strong interdisciplinary approach. 

The fields of a coupled problem are usually governed by partial differential equations in 

space and time. Three approaches to the time advancing of the whole system can be 

followed: 

1. Elimination: At each time step one or more fields can be eliminated by appropriate 
techniques such as integral transform, and the remaining component solved by a 
standard time integration scheme. 

2. Partitioned integration: The system components are treated as isolated entities which 
separately advance in time. Interaction effects are viewed as forcing effects during the 
time advancing. This approach can be of two types: 
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• Loose or weak coupling. Data generated by a system during its time advancing are 
used as input data from the other(s) system (one way interaction) 

• Tight or strong coupling: At each time step data generated by the single systems 
are exchanged among them (mutual interaction). 

3. Monolithic or simultaneous integration: The whole system is treated as monolithic 
entity, that is the fields are coupled at the fundamental equation level and advance 
simultaneously in time. 

The methodology proposed here for the solution of the fluid-structure interaction problems 
is based on a partitioned approach with a strong coupling. One of the advantages of the 
Partitioned methods is the software reuse to solve each field involved in the simulation 
(Felippa et al., 2001), whereas a monolithical approach requires the development of an 
unified mathematical model and therefore a dedicated software.  
Another important advantage in the specific case is that a partitioned treatment preserves 
the different approaches used for CFD, that is based on an “eulerian” formulation, and 
Computational Structural Dynamics (CSD), which adopts a “Lagrangian” point of view. 
The coupling between fluid and structure is obtained by using a semi-implicit staggered 
algorithm (Felippa et al., 2001) (Matthies et al., 2003). 
A staggered method introduces an external (physical) time loop and considers the two 
solvers as partitions or sub-systems of the whole system to be solved. They can be classified 
as follows: explicit, when both solvers use the values computed at the previous time step; 
semi-implicit, when one of the two subsystems uses the values computed by the other 
solver; implicit, when both solvers use the values at the current time. In the latter case some 
linearization procedures have to be used. 
In the applications of interest, there are other important problems to be considered, such as 
the data transfer between the different grids, the fluid domain deforming, which could be 
well represented by an ALE formulation, the relationship between the external time step 
and those used by each solver, which are limited by their stability regions.  
Structural motions are typically dominated by low frequency vibration modes, which means 
that large time step can be used. On the other hand, the thermo fluid dynamics response 
must be captured in a smaller time scale because of unsteady effects involving shock, 
vortices, turbulence and chemical reactions. Thus, the use of a smaller time step for the fluid 
is natural. This device is called sub-cycling. The ratio of structural to fluid time steps may 
range from 10:1 through 1000:1, depending on the problem characteristics and the use of 
explicit or implicit fluid solver (Strain, 1999). 
The semi-implicit staggered approach proposed in this work can be illustrated as follows: 
 

do n= 1,  ntime 
|    Call fluid (F(n-1),S(n-1),F(n))
|    Call transf 

|    Call struct (S(n-1), F(n),S(n) 
|    Call grid_deforming 
End do 

 

where fluid and struct represent, respectively, the fluid and the structural solvers, transf the 
subroutine for the data transfer between fluid and structural fields and grid-deforming the 
subroutine which updates the fluid domain on the basis of the solid deformations.  Details 
about these subroutine are given in the following. 
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As described above, in a general approach the CFD and CSD solvers use different 
formulations and discretizations. The two computational grids are not continuously 
interconnected, in the sense that the nodes on the interface of the fluid domain do not 
coincide with the ones of the interface of the solid domain (see Fig.3). Therefore, the data 
exchange between the two solvers is not immediate, but requires some interpolation 
operations. The data transfer from CFD to CSD is realized by evaluating the forces acting on 
the nodes of the solid interface starting from the values of the pressure in the nodes of the 
liquid interface. This operation must be performed carefully, in such a way that the global 
energy of the system is conserved.  
To this end it is worth nothing that the lateral sloshing of liquid propellant in a tank results 
in a distributed pressure loading on the walls, which is of importance for detailed structural 
design.  Indeed, the forces acting on the CSD nodes are: 

 i i i

S

F N p nds= −∫  (13) 

where the pressure pi in the CSD nodes is the integral of the liquid pressure on the faces of 
the CSD cells (Fig.4): 

  
i

i

x x

i

x x

p p x dx
x

/2

/2

1
( )

+Δ

−Δ

=
Δ ∫   (14) 

Otherwise, in many practical problems the liquid pressure distribution is rather regular and 
so it is convenient to have an analytical representation of the pressure distribution by means 
of a polynomial interpolation; in this case a second-order polynomial is adopted. 
 

 

Fig. 3. Solid-fluid interface 

The data transfer from CSD to CFD is less difficult and is performed by a simple data 
interpolation on the deformations. This is due to a better regularity of the physical 
phenomenon of structural deformation with respect to the pressure fluctuations. 
The time-stepping algorithm works as follows. First, the partition method that we have 
developed performs a fluid dynamics simulation and the pressures on the solid walls and 
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displacements of the points of the free surface are evaluated. Then, data are transferred to 
the CSD solver and the structural simulation is performed, in order to evaluate the 
deformations of the tank. These values are transferred to the CFD solver to update the 
boundary conditions. Besides, it is now possible to draw the new shape of the CFD domain 
and to update the computational grid, performing a new time step and continuing the time 
marching procedure with a new CSD simulation (performed on the grid which has been 
updated on the basis of the previous deformations). 
 

 

Fig. 4. Pressure distribution on a cell face 

4. Numerical results 

As practical applications, several unsteady numerical simulations of the motion of a LO2 
and/or LH2 propellant in a tank made of Aluminium-Lithium alloy (Al 2195) have been 
performed in order to estimate the pressures exerted by the sloshing fluid on the tank with 
the consequent stress field in the structure.  
It is worth nothing that LO2 and LH2 propellant have been chosen considering that for RLV 
the higher thrust-to-weight ratio of other propellants such as LO2-Kerosene are offset by 
their lower specific impulse, which leads to a higher propellant demand, higher launch mass 
and hence to a higher residual propellant.  
The reentry trajectory, provided in Fig. 5, has been considered as a typical RLV flight 
scenario to take into account in the numerical simulations. 
Among the specific critical issues that can be envisaged within RLV design, two basic ones 
are of general interest in the framework of fluid-structure interaction. They are: 
1. the propellant management, since it influences the operability of a RLV considering the 

automatic fly-back and landing needs. Indeed, a large quantity of propellants filling the 
tanks determines high safety constraints. 

2. the alternative between an aeroshell or loads-carrying tanks structures may heavily 
affect the vehicle design in terms of: launch mass, complexity, safety and operability. 
Therefore, it can be influence sloshing analysis.    

The post-MECO propellant management issue is even more important in case of mission 
abort, since the time available to expel the residual propellant in atmosphere may be 
extremely short.  
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4.1 RLV reentry flight scenario 

Figure 5 shows the nominal reentry scenario investigated to assess the fluid-structure 
interaction issue (Spies, 2003).  
The RLV mission starts from launch site, where the two-stage-to-orbit (TSTO) vehicle lifts-
off with all the engines running. Hence the upper stage separates from the booster and after 
MECO, it transports the payload into the final target orbit. At the end of mission, the 
reusable launcher follows a gliding downrange re-entry flight to a landing site. 
When entering the densest layers of the atmosphere, the aerodynamic forces rapidly 
increase and, finally, stabilize the vehicle attitude at an angle of attack of about 30÷40 deg. In 
this trajectory phase, certain constraints typically apply. For instance, the dynamic pressure 
is confined below certain limits, the heat flux at stagnation point does not exceed the 
allowable value for the vehicle thermal protection system (TPS), the total load factor is 
smaller than the one bearable by the launcher structure design, etc. Those trajectory 
constraints identify the admissible flight envelope, well known as reentry corridor of the 
RLV, thus defining the most severe dimensioning criteria of the launcher. 
 

 

Fig. 5. Typical RLV re-entry trajectory in the Altitude-velocity map (Spies, 2003) 

During reentry, the launcher decelerates taking advantage of aerodynamic forces (e.g., lift 

and drag) by flying at an angle of attack (AoA) α, thus performing a gliding descent.  
The free body diagram of the RLV is recognized in Fig.6. 
Then, at the peak deceleration region, it must be noted that by imposing the equilibrium 
both in the axial (A) and lateral (L) direction, it results that: 

 

( )

( )

A A o

L L o

A a gsen g

A a g g

0.1 0.3

cos 2.0 3.0

ϕ

ϕ

⎧ = − ≅ ÷
⎪⎪
⎨
⎪ = + ≅ ÷⎪⎩

f fj

f fj
 (15) 
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where the value of the gravity acceleration at the flight altitude H is determined according 
with the well known formula: 

  Earth

Earth

R
g g

R H

2

0

⎛ ⎞
= ⎜ ⎟

+⎝ ⎠
 (16) 

where go is sea level acceleration (e.g., 9.81 m/s2), REarth is the Earth’s radius (e.g., 6378 km).  
Note that, the gliding descent helps to mitigate the acceleration environment that the vehicle 
has to withstand during descent. 
 

 

Fig. 6. Typical RLV free body diagram 

So, as the lowest sloshing frequency corresponds to the lateral excitation of the tank (lateral 
sloshing), the design considerations are generally governed by the lateral slosh (NASA, 
1968). In this case the linear theory of sloshing in rigid tanks states that, on the tank is 
applied a time dependent pressure, which is a function (f1) of: 

 Tank Ap f p y A t1( , , sin )ρη ω=  (17) 

where ω is the fundamental lateral frequency (sloshing frequency), pTank is the tank 

pressurization, ρ is the fluid density, and y is the free-surface height.  
For a rigid cylindrical tank, the second-mode sloshing mass is only about few percent of the 
first-mode sloshing mass; therefore, the second and higher mode sloshing effects are 
generally negligible (NASA, 1968). This means that the resulting fluid force decreases rather 
substantially in the higher modes of oscillation. 
In particular, in the case of rigid cylindrical tank with a flat bottom, the frequency rad/s of 
free-surface motion is a function (f2) of: 

 A
n n

Tank

h a
f

R
2ω ε
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

f
 (18) 
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where εn is a coefficient that take into account for the slosh mode, h is the height of quiescent 
fluid surface and RTank is the tank radius. For example, when h>>RTank  we have that (NASA, 
1968): 

  A
n n

Tank

a

R
ω ε≅

f
 (19) 

Moreover, Eq. (19) can be used to estimate the natural sloshing frequency of tanks of many 
other shapes, filled to various heights (NASA, 1968).  
For what concerns numerical simulations, the test cases presented herein assume that the 
undeformed tank and flow are the ones shown in Fig. 7 (Bucchignani et al., 2008). 
The external dimensions are L=5 m and H=1 m in the case of LO2 tank while L=15 m and 
H=3 m for the LH2 tank. The walls are made up of Al 2195 (e.g., Young module: E=84000 
MPa at 20 K, 83100 MPa at 80 K, and 76000 MPa at 300 K; Poisson module: ν=0.33, and 

density ρAl2195=2700 Kg/m3) and are characterized by a thickness section s=0.1 m (LO2) and 
s=0.3 m (LH2). The frictional resistance opposing the motion is neglected. The density of LO2 

is ρLO2=1300 Kg/m3, while the one of LH2 is ρLH2=3 Kg/m3. 
The fluid dynamics domain, in the undisturbed configuration, ranges from 0.1 m to 4.9 m in 
the horizontal direction, and from 0.1 m to 0.8 m in the vertical direction for the LO2 
sloshing.  
 

Zoom 

 

Fig. 7. The computational grid for the structure-flow in the case of LO2 test case 
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For the CFD solver, a grid with 101 by 51 nodes has been adopted, while for the CSD solver 
an unstructured grid of 238 nodes and 312 elements is used. These grids (undisturbed 
configurations - see Fig.7) have been generated by means of the commercial code ANSYS 
ICEM CFD 10.  
The time step is set equal to 10-3 (non-dimensional units). 
Figure 8 shows the deformed grid as evaluated automatically by the code during the time 
stepping.  
 

 

Fig. 8. The computational grid for the fluid 

The deviation with respect to tank pressure pTank=120 kPa for ω=2π is recognized in Fig. 9 
(up) and Fig. 9 (down) for LO2 and LH2 simulation, respectively. These results refer to the 
time t=3 [min]. 
 

 

 

Fig. 9. Streamlines at a fixed time step superimposed on the pressure field in the plane of 
oscillation. LO2 simulation (up) and LH2 (down) 
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This distributed pressure loading on the walls is of importance for detailed structural 
design, since it resulted in a stress field in the tank structure, as recognized in Fig. 10 for the 
case of LH2, and in Fig.11 for the case of LO2 (Bucchignani et al., 2008). 
 
 
 
 
 

 
 
 
 

 
 
 

Fig. 10. σX and σY tensions field (MPa) in the plane of oscillation. LH2 simulation 
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Fig. 11. σX and σY tensions field (MPa) in the plane of oscillation. LO2 simulation 

5. Conclusions 

A software environment for the analysis of coupled liquid-structure fields has been 
developed. A staggered partitioned procedure has been employed using finite volume (FV) 
for the fluid and finite element (FE) for the structure. 
A tank configuration typical of RLV has been considered. It is filled with liquid propellant 
such as LH2 and/or LO2. Stress distributions in the structure and flow field in the liquid 
phase have been shown as well as transient history of structure displacement. Maximum 
stress as a function of maximum acceleration has also been shown and compared with 
structure limit. 
In the future, it is our intention to implement a sub-cycling strategy in order to reduce the 
computational time, and to develop a fully implicit staggered scheme based on a Newton- 
Krylov algorithm. 
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