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1. Introduction 

In epidemiological and in experimental biology studies, the existence of an increasing 
interest in biomonitoring markers to achieve both a measurement and an estimation of 
biologically active/passive exposure to genotoxic pollutants, is nowadays a real fact. 
Significant contributions to the advancement of pesticide toxicology came and continue to 
come from many sources, e.g., academic, governmental/regulatory, and industrial. 
Regulatory agencies, private sector, and academia worldwide combine expertise to assess 
pesticide safety and risk potential demanding adequate data of high quality to serve as the 
basis for establishing safe exposure levels. The extent of testing was and is often determined 
by the depth of the science, as well as the chemical and physical properties of the agent and 
the extent of exposure. The importance of pesticide toxicology has evolved from listing 
poisons to protecting the public from the adverse effects of chemicals, from simply 
identifying effects (qualitative toxicology), to identifying and quantifying human risks from 
exposure (quantitative toxicology), and from observing phenomena to experimenting and 
determining mechanisms of action of pesticide agents and rational management for 
intoxication. Humans and living species may, therefore, be exposed to a number of different 
chemicals through dietary and other routes of exposure.  
Nonetheless, there continues to be concern that the presence of multiple chemical residues 
in foods may cause adverse health side effects, including effects that would not be predicted 
from consideration of single exposures to individual compounds. It is known that the 
regulatory system for pesticide products found in foods does not routinely address the toxic 
effects of different substances in combination. The implications, both for risk assessment and 
for approval processes, of exposure to mixtures of pesticides are among the topics examined 
by different international agencies, e.g., World Health Organization (WHO, www.who.int), 
International Agency for Research on Cancer (IARC, www.iarc.fr), United States 
Environmental Protection Agency (EPA, www.epa.gov), European Chemicals Agency 
(ECHA, www.echa.auropa.eu), Health Canada Pest Management Regulatory Agency 
(PMRA, www.pmra-arla.gc.ca), among others. These international agencies, particularly 
WHO and EPA, have contributed a great deal in their attempts to control pesticide 
poisoning. They continue their efforts, with particular emphasis on safety in the use of 
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pesticides and applied research activities, playing the role of intermediary for the 
involvement of agrochemical industries in safety activities. 
It has been strongly recommended that the nature and extent of combined exposure to 
pesticides and related chemicals, together with the likelihood of any adverse effects that 
might result, should be evaluated, when carrying out risk assessment. Furthermore, a 
scientific and systematic framework should be established to decide when it is appropriate 
to carry out combined risk assessments of exposures to more than one pesticide. Finally, it 
has been also recommended that groups of pesticides having common targets of 
toxicological action should be identified (www.food.gov.uk). 
Pesticides are ubiquitous on the planet and they are employed to control or eliminate a 
variety of agricultural and household pests that can damage crops and livestock and reduce 
the productivity. Despite the many benefits of the use of pesticides in crops field and its 
significant contribution to the lifestyles we have come to expect, pesticides can also be 
hazardous if not used appropriately and many of them may represent potential hazards due 
to the contamination of food, water, and air, which can result in severe health problems not 
only for humans but also for ecosystems (WHO-FAO, 2009). The actual number of pesticide-
related illnesses is unknown, since many poisonings go unreported. It has been estimated 
that at least three million cases of pesticide poisoning occur worldwide each year 
(www.who.int). The majority of these poisonings occur in developing countries where less 
protection against exposure is achieved, knowledge of health risks and safe use is limited or 
even unknown. Studies in developed countries have demonstrated the annual incidence 
intoxication in agricultural workers can reach values up to 182 per million and 7.4 per 
million among full time workers (Calvert et al., 2004) and schoolchildren (Alarcon et al., 
2005), respectively. However, the number of poisonings increases dramatically in emerging 
countries where the marketing of pesticides is often uncontrolled or illicit and the 
misbranded or unlabelled formulations are sold at open stands (www.who.int). Yet, cases of 
pesticide intoxication may be the result of various causes in different regions of the world. 
In emerging countries, where there is insufficient regulation, lack of surveillance systems, 
less enforcement, lack of training, inadequate or reduced access to information systems, 
poorly maintained or nonexistent personal protective equipments, and larger agriculturally 
based populations, the incidences are expected, then, to be higher (IFCS, 2003).  Despite the 
magnitude of the problem of pesticide poisoning, there have been very few detailed studies 
around the world to identify the risk factors involved with their use. The use of pesticides 
banned in industrialized countries, in particular, highly toxic pesticides as classified by 
WHO, EPA, and IARC, obsolete stockpiles and improper storage techniques may provide 
unique risks in the developing world, where 25% of the global pesticide production is 
consumed (WHO-FAO, 2009). Particularly, the impact of increased deregulation of 
agrochemicals in Latin America threatens to increase the incidence of pesticide poisoning, 
which has already been termed a serious public health problem throughout the continent by 
the WHO. Many of the pesticides used in Latin America are United States exports and the 
companies can make a number of changes to ensure the “safe” use of their products. 
However, the social, economic and cultural conditions under which they are used, 
pesticides acutely poison hundreds of thousands each year, including many children. In the 
majority of Latin American countries, poisoning registries are so inadequate that most acute 
poisoning cases never get recorded. Meanwhile, health effects of chronic or long-term 
pesticide exposures such as cancer or birth defects are not available, omissions that serve to 
hide the epidemic proportion of pesticide-related illness in the region. In Argentina, e.g., 
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available official data revealed that 79% of the intoxications due to pesticides are related 
with the use of herbicides followed by insecticides and fungicides (www.msal.gov.ar), 
values that correlate with the evolution of the phytosanitary market demonstrating that 
herbicides accounted for the largest portion of total use (69%), followed by insecticides 
(13%), and fungicides (11%) (www.casafe.org). Consequently, Argentina a larger producer 
of cereals, including soy, is actually the world eight-largest agrochemical market. The 
country has seen an explosion in genetically modified soybean production with soy exports 
topping $16.5 billion in 2008 (www.casafe.org). The fertile South American nation is now the 
world's third largest producer of soy, trailing behind the United States and Brazil. 

2. Herbicides. Auxinic herbicides 

The most widely applied agrochemicals around the world are herbicides and consequently 
the environment is inevitably exposed to these chemicals. Such large amount of herbicides 
released into the environment may present an impending hazard to living organisms. 
Exposure to some of these herbicides may lead to alterations in the genetic material thereby 
causing mutagenicity, carcinogenicity, teratogenicity, and immunotoxicity among other side 
effects (IARC, 1977, 1999; Dearfield et al., 1999). 
The auxinic herbicides have been around since World War II and were the first selective 
herbicides developed. Herbicides are classified as auxinic based on their growth-promoting 
effects observed in plant cell cultures, specific tissue systems (coleoptiles, roots), and in 
whole plants (Pipke et al., 1987; Liu et al., 1999). Generally, the auxinic herbicides are used 
to selectively control broadleaf weeds in grass crops such as cereal grains and turfgrass 
swards (Pipke et al., 1987; Reinbothe et al., 1996). These agrochemicals are usually applied as 
foliar treatments but at higher doses can be used as pre-emergent treatments (Reinbothe et 
al., 1996). The general susceptibility of dicotyledonous species and tolerance of 
monocotyledonous species to these herbicides is primarily determined by differences in 
plant morphology, rate of herbicide translocation and metabolism. For instance, the 
destruction of the phloem of dicotyledonous species results from abnormal tissue 
proliferation after exposure to auxinic herbicides. Monocotyledonous species are tolerant 
since the phloem is scattered in bundles surrounded by protective sclerenchyma tissue. 
Broadleaf species can be tolerant because they metabolize the herbicide to a less toxic form. 
These herbicides are considered mimics of the natural plant auxins and are thought to 
induce changes in gene expression leading to plant death (Reinbothe et al., 1996; Liu et al., 
1999). Although they continue to be a very important class of herbicides, their precise mode 
of action is still unknown. In plants, as it has been stated, these chemicals mimic the action 
of auxins, hormones that stimulates growth, but in mammals and other species no mimic 
hormonal activity has been reported (Osterloh et al., 1983). 
Among this family of herbicides, the 2,4–dichlorophenoxyacetic acid, commonly known as 
2,4-D, and the 3,6-dichloro-2-methoxybenzoic acid, commonly known as Dicamba, are two 
post-emergent auxinic herbicides released in large amount daily into the environment 
worldwide. This family of herbicides includes many very effective broadleaf weed killers 
employed in lawns, golf courses, rights-of-way, and agricultural fields. 
2,4-D is an herbicide from the phenoxy acid family that is used post-emergence for selective 
control of a wide variety of broadleaf and aquatic weeds and forestry applications. It is 
produced in a variety of forms, including: acid, salt, amine and ester. While at low 
concentrations 2,4-D acts as an auxin analogue promoting plant growth, increasing cell-wall 
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plasticity, biosynthesis of proteins and the production of ethylene, at high concentrations it 
is lethal and is employed as herbicide against broad-leafed and woody plants (Sinton et al., 
1986; Devine, 1993; Tripathy et al., 1993). Worldwide, it is the most extensively used 
herbicide, and third most widely employed in the United States (www.epa.gov).  
Dicamba, member of the benzoic acid family, is a chlorinated benzoic acid-derivative 
compound registered in the United States as a post-emergent herbicide in 1967 (EPA, 1983). 
It is produced in a variety of forms, including acid and different kinds of salts, e.g., 
dimethlylammonium salt, potassium salt, and sodium salt, among others (FAO, 2001). This 
compound is used in different crops, e.g. cereals, maize, sorghum, sugar cane, asparagus, 
perennial seed grasses, turf, pastures, rangeland, and non-crop land against annual and 
perennial broad-leaved weeds and brush species (FAO, 2001).   

3. Genotoxicity and cytotoxicity of 2,4-D 

On the basis of its acute toxicity, 2,4-D has been classified as a class II member (moderately 
hazardous) by WHO (http://www.who.int/ipcs/publications/pesticides hazard/en/) and 
slightly to moderately toxic (category II-III) by EPA (EPA, 1974). 
Genotoxicity and cytotoxicity studies have been conducted with this auxinic member using 
several end-points on different cellular systems. A summary of the results reported so far is 
presented in Table 1. On bacterial systems, either the Ames test or reverse mutation tests 
performed on both Salmonella typhimurium and Bacillus subtilis gave negative results 
regardless of the presence or absence of a rat liver metabolic activation system (Charles et 
al., 1999; Grabinska-Sota et al., 2002). Whereas the herbicide induced DNA adducts on 
Saccharomyces cerevisiae (Teixeira et al., 2004), negative results were obtained for the 
induction of unscheduled DNA synthesis in primary rat hepatocytes (Charles et al., 1999). 
When tested for its carcinogenic potential, the transformation assay in Syrian hamster 
embryo assay gave positive results (Maire et al., 2007). Induction of DNA single-strand 
breaks estimated by the alkaline comet assay was evaluated in normal and transformed cells 
exposed in vitro to 2,4-D. González et al. (2005), Maire et al.  (2007), and Sandal and Yilmaz 
(2010) observed an increased frequency of DNA primary lesions in CHO and SHE cells as 
well as in human lymphocytes. On the other hand, negative results were also revealed when 
this end-point was assayed on the same cell type by others researchers (Sorensen et al., 2005; 
Sandal & Yilmaz, 2010). However, Maire and co-workers (2007) showed that 2,4-D was 
unable to induce DNA fragmentation in SHE cells. Both González et al. (2005) and Soloneski 
et al. (2007) demonstrated the ability of the herbicide to induce sister-chromatid exchanges 
(SCEs) in CHO cells and human lymphocytes treated in vitro, respectively. An increased 
frequency of chromosomal aberrations was reported in V79 cells and human lymphocytes-
treated in vitro in the presence/absence of rat liver metabolic activation system (Pavlica et 
al., 1991; Zeljezic & Garaj-Vrhovac, 2004) but not when the S9 fraction was absent 
(Mustonen et al., 1986). Zeljezic and Garaj-Vrhovac (2004) reported the induction of 
micronuclei in human lymphocytes regardless of the presence or absence of S9 fraction. The 
induction of alterations in the cell-cycle progression of different cellular systems including 
plant and V79 cells, human lymphocytes and bovine cells were reported to occur after in 
vitro exposure to 2, 4-D (Basrur et al., 1976; Bayliss, 1977; Pavlica et al., 1991, 2005; Soloneski 
et al., 2007).  However, González and co-workers (2005) were  unable to demonstrate such 
cytotoxic effect in CHO cells. Finally, controversial results were reported for the cell viability 
assay on yeast and mammalian cells (Sorensen et al., 2004; Teixeira et al., 2004). Similar 
end-points for both genotoxicity and cytotoxicity were also applied in in vivo  
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End-point System Concentrationa Results Referencies 

In vitro assays    
Ames test  
   Salmonella typhimurium + S9     

 

96.1 - 9610 μg/plate 
 
- 

 
Charles et al., 1999 

H17 Rec+, M45 Rec- reverse 
mutation  
   Bacillus subtilis 

 
 
3x10-5 - 90 kg m-3 

 
 
- 

 
 
Grabinska-Sota et al., 2002 

Transformation assay 
   SHE cells 

 
11.5 - 23 μM 

 
+ 

 
Maire et al., 2007 

DNA adducts 
   Saccharomyces cerevisiae 

 
0.45 - 0.65 mM 

 
+ 

 
Teixeira et al., 2004 

UDS 
Primary rat hepatocytes 

 

2.42 - 96.9 μg/ml 
 
- 

 
Charles et al., 1999 

Alkaline comet assay 
   CHO cells 
   CHO cells 
   SHE cells 
   Non-smokers HL 
   Smokers HL 

 
200 μM - 4 mM 
2 - 10 μg/ml 
11.5 - 23 μM 

1 - 10 μM 
10 μM 

 
- 
+ 
+ 
- 
+ 

 
Sorensen et al., 2005 
González et al., 2005 
Maire et al., 2007 
Sandal & Yilmaz, 2010 
Sandal & Yilmaz, 2010 

DNA fragmentation analysis 
   SHE cells 

 
4.5 - 34 μM 

 
- 

 
Maire et al., 2007 

SCE assay 
   CHO cells 
   Non-smokers HL 

 

2 - 10 μg/ml 
10 - 50 μg/ml 

 
+ 
+ 

 
González et al., 2005 
Soloneski et al., 2007 

Chromosomal aberrations  
   V79 cells  
   Non-smokers HL +/- S9  
 
   Non-smokers HL 

 
10 μg/ml 

0.4 - 4μg/ml 
 
0.125 – 0.350 mM 

 
+ 
+ 
 
- 

 
Pavlica et al., 1991 
Zeljezic & Garaj-Vrhovac, 
2004 
 Mustonen et al., 1986 

Micronuclei assay  
   Non-smokers HL +/- S9  

 
0.4 - 4 μg/ml + 

 
Zeljezic & Garaj-Vrhovac, 
2004 

Alteration in CCP 
   Daucus carota cells 
   CHO cells  
   V79 cells  
   Bovine cells 
   Non-smokers HL 

 
15 - 30 μg/ml 
2 - 10 μg/ml 
10 μg/ml 
2 - 20 mg/L 
25 - 50 μg/ml 

 
+ 
- 
+ 
+ 
+ 

 
Bayliss, 1977 
González et al., 2005 
Pavlica et al., 1991 
Basrur et al., 1976 
Soloneski et al., 2007 

Cell viability  
   Saccharomyces cerevisiae 
   CHO cells 

 
0.45 - 0.65 mM 

100 - 750 μM 

 
+ 
- 

 
Teixeira et al., 2004 
Sorensen et al., 2004 

    

In vivo assays    

Root tip assay 
    Allium cepa 

 
25 - 100 ppm 

 
+ 

 
Kumari & Vaidyanath, 
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End-point System Concentrationa Results Referencies 

Chlorophyll mutation, specific 
locus  
    Oryza sativa 

 
 
25 - 100 ppm 

 
 

+ 

1989 
 
Kumari & Vaidyanath, 
1989 

Wing spot test  
Wing spot and SLRL test  
Wing spot and white-ivory eye 
spot test  
    Drosophila melanogaster 

1 - 10 mM 
NA 
5 mM 

+ 
+ 
+ 

Kaya et al., 1999 
Tripathy et al., 1993 
Graf & Wurler, 1996 

TCRG-TCRB recombination 
    Mice thymocytes 

 
0-100 mg/Kg/day 

 
- 

 
Knaap et al., 2003 

Alkaline comet  
    Clarias batrachus  
    erythrocytes 
    Non-smokers HL* 

 
25 - 75 ppm + 

 
+ 

 
Ateeq et al., 2005 
 
Garaj-Vrhovac & Zeljezic, 
2001 

SCE assay 
    Chick embryo cells  
    Mouse bone marrow and     
    spermatogonial cells  
    Non-smokers HL*         

 
4 mg/embryo 
100 - 200 mg/Kg bw

+ 
+ 
 

+ 
 

 
Arias, 2003, 2007  
Madrigal-Bujaidar et al., 
2001 
Garaj-Vrhovac & Zeljezic, 
2001; Zeljezic & Garaj-
Vrhovac, 2002 

Chromosomal aberrations     
    Allium cepa cells 
    Shallot root-tip cells 
    Mouse bone marrow cells  
    Mouse bone marrow and  
    spermatogonial cells  
    Rat bone marrow cells 
 
    Non-smokers HL* 

 
NA 
45 - 450 μM 
NA 
3.3 - 33 mg/Kg bw 
 
NA 

 
+ 
+ 
+ 
+ 
 

+ 
 

+ 
 

 
Ateeq et al., 2002a 
Pavlica et al., 1991 
Venkov et al., 2000 
Amer & Aly, 2001 
 
Adhikari & Grover, 1988 
 
Garaj-Vrhovac & Zeljezic, 
2001 

Hair follicle nuclear aberration  
    Mouse bone marrow cells 

 
1/32 LD50 

 
+ 

 
Schop et al., 1990 

Micronuclei 
    Clarias batrachus and Channa 
     punctatus erythrocytes 
    Mouse bone marrow  
    Non-smokers HL*  
 

 
25 - 75 ppm 
25 - 75 ppm 
 
NA 

 
+ 
+ 
 
- 
+ 
 

 
Ateeq et al., 2002b 
 Farah et al., 2003. 2006 
  
Schop et al., 1990 
 Garaj-Vrhovac & Zeljezic, 
2001 

Alteration in CCP 
    Allium cepa 
    Shallot root-tip cells 

 
NA 

45 - 450 μM 

 
+ 
+ 

 
Ateeq et al., 2002a 
Pavlica et al., 1991 
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End-point System Concentrationa Results Referencies 

    Chick embryos      
    Mouse bone marrow and 
     spermatogonial cells  
    Mouse bone marrow 
    Non-smokers HL* 

2 mg/embryo 
50 - 200 mg/Kg bw 
 
NA 

+ 
- 
 

+ 
- 

 Arias, 2003, 2007 
Madrigal-Bujaidar et al., 
2001 
Venkov et al., 2000 
Zeljezic & Garaj-Vrhovac, 
2002 

Table 1. Evaluation of 2,4-D-induced genotoxicity and cytotoxicity on different target 
systems. a, expressed as reported by authors; *, from agricultural workers occupationally 
exposed to several pesticides, including 2,4-D. UDS, unscheduled DNA synthesis; HL, 
human lymphocytes; CCP, cell-cycle proliferation; NA, data not available.  

systems. 2,4-D has been reported to induce mutations in plants (Kumari & Vaidyanath, 
1989) as well as in insects (Tripathy et al., 1993; Graf & Wurler, 1996; Kaya et al., 1999) but 
not in mice exposed in vivo (Knaap et al., 2003). Ateeq and co-workers (2005) reported an 
increased frequency DNA single-strand breaks in piscine erythrocytes and in the peripheral 
lymphocytes of a group of agricultural workers occupationally exposed to the herbicide 
(Garaj-Vrhovac & Zeljezic, 2001). It should be noted that this later positive result could not 
be totally committed to the 2,4-D but to other pesticides, since the cohort of donors included 
in the study was exposed to a panel of diverse pesticides. Several reports were able to 
revealed that 2,4-D increased the frequency of SCEs in chick embryo and mammalian cells 
(Garaj-Vrhovac & Zeljezic, 2001; Madrigal-Bujaidar et al., 2001; Zeljezic & Garaj-Vrhovac, 
2002; Arias, 2003, 2007), and chromosomal aberrations in plants, mouse, rat and human 
cells, including human lymphocytes from occupationally exposed workers (Adhikari & 
Grover, 1988; Schop et al., 1990; Pavlica et al., 1991; Venkov et al., 2000; Amer & Aly, 2001; 
Garaj-Vrhovac & Zeljezic, 2001; Ateeq et al., 2002a). When the micronuclei induction end-
point was employed, whereas positive results were found in the piscine system (Ateeq et al., 
2002b; Farah et al., 2003, 2006) and human lymphocytes (Garaj-Vrhovac & Zeljezic, 2001), no 
induction was found in mouse bone marrow cells  (Schop et al., 1990). Finally, non-
congruent results were reported when the analysis of the cell-cycle progression was used as 
and end-point for cytotoxicity. Alterations in the progression of the cell-cycle was reported 
to occur after 2,4-D exposure of plants, chick embryo, and mouse bone marrow cells (Pavlica 
et al., 1991; Venkov et al., 2000; Ateeq et al., 2002a; Arias, 2003, 2007). However, others 
authors were unable to revealed such alterations after in vivo exposure to the herbicide in 
bone marrow and spermatogonial mouse cells as well as in non-smokers human 
lymphocytes (Madrigal-Bujaidar et al., 2001; Zeljezic & Garaj-Vrhovac, 2002).  

4. Genotoxicity and Cytotoxicity of Dicamba 

Based on its acute toxicity, Dicamba has been classified as a class II member (moderately 
hazardous) by WHO (http://www.who.int/ipcs/publications/pesticides hazard/en/) and 
slightly to moderately toxic (category II-III) by EPA (EPA, 1974). 
Genotoxicity and cytotoxicity studies have been conducted with this auxinic member using 
several end-points on different cellular systems. A summary of the results reported so far is 
presented in Table 2. When mutagenic activity was assessed in bacterial systems with the 
Salmonella typhimurium Ames test either positive or negative results have been reported 
(Simmon, 1979; Plewa et al., 1984; Kier et al., 1986). Furthermore, similar situation were 
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observed in Escherichia coli and Bacillus subtilis when the reverse mutation assay was applied 
(Simmon, 1979; Leifer et al., 1981; Waters et al., 1981). Whereas the herbicide was unable to 
induce mitotic recombination in Saccharomyces cerevisiae (Zimmermann et al., 1984), negative 
and positive results were obtained for the induction of unscheduled DNA synthesis in 
human primary cells regardless of the presence or absence of a rat liver metabolic activation 
system (Simmon, 1979; Perocco et al., 1990). Induction of DNA single-strand breaks, 
estimated by the alkaline comet assay, was evaluated in CHO cells exposed in vitro to 
Dicamba. González et al. (2007) demonstrated an increase in the frequency of DNA lesions 
in this cell line. Similar observations were reported by Sorensen et al. (2004, 2005) on 
Dicamba-treated CHO cells cultured in the presence of reduced-clay smectites but not when 
the clay system was not included within the culture protocol. Both González et al. (2006, 
2007, 2009) and Perocco et al. (1990) demonstrated the ability of the herbicide to induce SCEs 
in CHO cells and human lymphocytes with and without S9 fraction treated in vitro, 
respectively. The induction of alterations in the cell-cycle progression of different cellular 
systems including CHO cells and human lymphocytes were reported to occur after in vitro 
exposure to Dicamba (González et al., 2006, 2007, 2009). Finally, similar results were 
reported for the cell viability assay in CHO cells (Sorensen et al., 2004; González et al., 2009). 
In genotoxic and cytotoxic studies in vivo, Dicamba was able to induce different types of 
lesions. It has been reported the ability of the herbicide to give positive results by using the 
gene mutation and recombination assays when Arabidopsis thaliana was used as 
experimental model (Filkowski et al., 2003). However, both negative and inconclusive 
results were reported for the sex-linked recessive lethal mutation end-point on Dicamba-
exposed Drosophila melanogaster (Waters et al., 1981; Lee et al., 1983). Perocco and co-workers 
(1990) reported an increased frequency of DNA unwinding rate in rat hepatocytes. It has 
been also reported that the herbicide is able to enhance the frequency of chromosomal 
aberrations in the root- and hoot-tip cells of barley (Hordeum vulgare) and in rat bone 
marrow cells (Hrelia et al., 1994). On the other hand, no increased frequency of 
chromosomal rearrangements has been observed in the durum wheat Triticum turgidum by 
Satyavathi and co-workers (2004). Finally, when the micronuclei induction end-point was 
employed, positive results were reported in Tradescantia sp (clone 03) by Mohamed and Ma 
(1999). 
 

End-point System Concentrationa Results Referencies 

In vitro assays    
Ames test  
   Salmonella typhimurium +/- S9 

 
 0 - 5000 μg/plate + 

- 

 
Plewa et al., 1984 
Simmon, 1979; Kier et al., 
1986 

Rec A- reverse mutation 
     Bacillus subtilis 

 
0.01 - 5.0 mg/disk

 
+ 

 
Leifer et al., 1981 

Pol A reverse mutation   
    Escherichia coli 

 

0 - 5000 μg/plate 
0 - 5000 μg/plate 

+ 
- 

 
Waters et al., 1981 
Simmon, 1979; Leifer et 
al., 1981 

Mitotic recombination/Gene 
conversion  
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End-point System Concentrationa Results Referencies 
    Saccharomyces cerevisiae 0.1 - 5.0 % (w/v) - Zimmermann et al., 1984 
UDS 
    Human diploid fibroblasts +/-S9
    Non-smokers HL +/- S9 

 

0.1 - 3000 μg/ml 
 
0.1 - 0.8 mg/ml 

 
- 
 

+ 

 
Simmon, 1979 
 
Perocco et al., 1990 

Alkaline comet  
    CHO cells 
    CHO cells 
 
    CHO cells + reduced  clay 

 

50 - 500 μg/ml 
10 μM - 10 mM 
 
10 μM - 10 mM 

 
+ 
- 
 

+ 

 
González et al., 2007 
Sorensen et al., 2004, 2005 
Sorensen et al., 2004, 2005 

SCE assay 
    CHO cells 
 
    Non-smokers HL 
    Non-smokers HL +/- S9 

 

1 - 500 μg/ml 
 
200 μg/ml 
0.1 - 0.8 mg/ml 

 
+ 
 

+ 
+ 

 
González et al., 2007, 2009 
González et al., 2006 
Perocco et al., 1990 

Alteration in CCP 
    CHO cells 
 
    Non-smokers HL 

 

200 - 500 μg/ml 
 
100 - 200 μg/ml 

 
+ 
 

+ 

 
González et al., 2007, 2009 
González et al., 2006 

Cell viability  
    CHO cells 
    CHO cells 

 
500 μg/ml 
>1000 μM 

 
+ 
+ 

 
González et al., 2009 
Sorensen et al., 2004 

    

In vivo assays    

A → G/T → G mutation and 
recombination assay  
    Arabidopis thaliana 

 
 

120 μg/L 

 
 

+/- 

 
 
Filkowski et al., 2003 

Sex-linked recessive lethal 
mutations  
    Drosophila melanogaster 

 
 
NA 
3 - 2000 ppm 

 
 
- 

IN 

 
 
Waters et al., 1981 
Lee et al., 1983 

DNA unwinding rate  
    Rat hepatocytes 

 
NA 

 
+ 

 
Perocco et al., 1990 

Chromosomal aberrations    
    Hordeum vulgare root- and      
    hoot-tip cells,  
    microsporocytes 
    Triticum turgidum 
    Rat bone marrow cells 

 
NA 
 
 
2 mg/L 
NA 

 
+ 
 
 
- 
+ 

 
Hrelia et al., 1994 
 
 
Satyavathi et al., 2004 
Hrelia et al., 1994 

Micronuclei assay  
    Tradescania sp. Clone 03 

 
50 - 200 mg/L 

 
+ 

 
Mohammed & Ma, 1999 

Table 2. Evaluation of Dicamba-induced genotoxicity and cytotoxicity on different target 
systems. a, expressed as reported by authors; CCP, cell cycle proliferation; NA, data no 
available; IN, inconclusive results.  
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Fig. 1. Comparative genotoxicity and cytotoxicity effects induced by 2,4-D and Dicamba 
pure herbicides Pestanal® analytical standards (grey bars) and their technical formulations 
(black bars) commonly used in Argentina on mammalian cells in vitro (plain bars, CHO-K1 
cells; dotted bars, human lymphocytes). Results are expressed as fold-time values over 
control data. Evaluation was performed using end-points for genotoxicity [Sister Chromatid 
Exchanges frequency (A), Comet Assay (B)] and cytotoxicity [Mitotic Index (C), Viability 
(D), Proliferative Rate Index (E), 3(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
bromide (MTT) and Neutral Red (NR) (F)].  
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5. Comparison of the genotoxicity and cytotoxicity of 2,4-D and Dicamba and 
some Argentinean technical formulations 

One of the major goals of our research laboratory is to evaluate comparatively the genotoxic 
and  cytotoxic  effects  exerted  by  several   pure   pesticide  Pestanal®   analytical  standards 
 (Riedel-de Haën, Germany) and their technical formulations commonly used in Argentina 
on mammalian cells in vitro. In this section we evaluate comparatively the genotoxic and 
cytotoxic effects induced in CHO cells and human lymphocytes from non-smoker donors 
exposed in vitro to the auxinic pure herbicides 2,4-D (CAS 94-757) and Dicamba (CAS 1918-
00-9) and their technical commercial formulations commonly used in Argentina 2,4-D 
DMA® (60.2% 2,4-D, Delente Laboratories SRL, Buenos Aires, Argentina) and Banvel® 
(57.7% Dicamba, Syngenta Agro S.A., Buenos Aires, Argentina), respectively. Evaluation 
was performed using end-points for genotoxicity [Sister chromatid exchanges frequency 
and Comet assay] and cytotoxicity [Mitotic index, Cell viability, Proliferative rate index, and 
3(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Neutral Red 
assays] (González et al., 2005; González et al., 2006, 2007, 2008, 2009; Soloneski et al., 2007). 
A summary of the results obtained is presented in Fig. 1. The figure clearly reveals that all 
compounds assayed are able to inflict DNA damage in CHO cells and human lymphocytes 
when analyzed at chromosomal and DNA level. We observed that 2,4-D/2,4-D DMA® and 
Dicamba/Banvel® caused SCEs in mammalian cells indicating that they have clastogenic 
activity (Fig. 1A). It has been suggested that at the chromosomal level, the induction of SCEs is 
a reliable indicator for the screening of clastogens, since the bioassay is more sensitive than the 
analysis of clastogen-induced chromosomal aberrations (Palitti et al., 1982). The results also 
demonstrate the ability of 2,4-D/2,4-D DMA® and Dicamba/Banvel® to induce DNA single-
strand breaks quali- and quantitative analyzed by the comet assay (Fig. 1B). The analysis of the 
mitotic (Fig. 1C) and the proliferative replication indexes (Fig. 1D) demonstrated that both 2,4-
D/2,4-D DMA® and Dicamba/Banvel® are able to exert a marked reduction of the cellular 
mitotic activity as well as to delay the cell-cycle progression in vitro with a concomitant 
reduction of the proliferative rate index in both cell types. Besides, 2,4-D/2,4-D DMA® and 
Dicamba/Banvel® are able to induced a clear cellular cytotoxicity, estimated by means of the 
ethidium bromide/acridine orange assay in CHO cells (Fig 1.E). Finally, a loss of lysosomal 
activity, indicated by a decrease in the uptake of neutral red, as well as alteration in energy 
metabolism induced by 2,4-D/2,4-D DMA® and Dicamba/Banvel®, measured by 
mitochondrial succinic dehydrogenase activity in the MTT assay, were clearly revealed in 
herbicides-treated CHO cells (Fig. 1F) which corroborate the results obtained applying 
different end-points for cytotoxicity. Overall, the results clearly demonstrated that the damage 
induced by the commercial formulations of both herbicides is in general greater than that 
produced by the pure pesticides, suggesting the presence of deleterious components in the 
excipients with a toxic additive effect over the pure agrochemicals (Fig. 1). Unfortunately, the 
identity of the components present within the excipient formulations was not made available 
by the manufactures. Moreover, though almost improbable, the possibility that the amount of 
the active ingredient incorporated into the technical Argentinean formulations could be higher 
than that officially registered cannot be discarded. 

6. Final remarks 

In agriculture, agrochemicals are generally not used as a single active ingredient but as part 
of a complex commercial formulation. An active ingredient is a substance that prevents, 
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kills, or repels a pest or acts as a plant regulator, among others. In addition to the active 
component, the formulated products contain different solvents, carriers and adjuvants, 
some of which have been reported to induce damage in mammalian cells, among other 
cellular systems (Lin & Garry, 2000; Zeljezic et al., 2006; González et al., 2007, 2009; 
Soloneski et al., 2008; Molinari et al., 2009; Soloneski & Larramendy, 2010). Hence, risk 
assessment must also consider additional toxic effects caused by the excipient/s. Thus, both 
the workers as well as non-target organisms are exposed to the simultaneous action of the 
active ingredient and a variety of other chemical/s contained in the formulated product.  
Finally, the results highlight that a complete knowledge of the toxic effect/s of the active 
ingredient of a pesticide is not enough in biomonitoring studies as well as that 
agrochemical/s toxic effect/s should be evaluated according to the commercial formulation 
available in the market. Furthermore, the deleterious effect/s of the excipient/s present 
within the commercial formulation should be neither discarded nor underestimated. 
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