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Robust Sampled-Data Control Design of Uncertain
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Delays
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1. Introduction

Nonlinear time-delay systems appear in many engineering systems and system formulations
such as transportation systems, networked control systems, telecommunication systems,
chemical processing systems, and power systems. Hence, it is important to analyze and
synthesize such time-delay systems. Considerable research on nonlinear time-delay systems
has been made via fuzzy system approach in (2), (6), (9), (12), (13) where stability conditions
of fuzzy systems with discrete delays have been given in terms of Linear Matrix Inequalities
(LMIs). Takagi-Sugeno fuzzy systems, described by a set of if-then rules which gives local
linear models of an underlying system, represent a wide class of nonlinear systems. In
the last two decade, Takagi-Sugeno fuzzy system has been extensively used for nonlinear
control systems since it can universally approximate or exactly describe general nonlinear
systems((8)). Theory has been extended to fuzzy systems with distributed delays in (7), (11),
(15). Those results are based on continuous-time delay systems. From a practical point of view,
sampled-data control is of importance. However, only a few results on sampled-data control
for fuzzy system with discrete delays have been given in the literature ((1), (5), (14), (16)).
Sampled-data controller design has been made for fuzzy systems with distributed delays in
(3) and (4). To the best of our knowledge, no result for fuzzy sampled-data control systems
with neutral and distributed delays has appeared yet.

In this paper, we propose a design method for robust sampled-data control of uncertain fuzzy
systems with discrete, neutral and distributed delays. A zero-order sampled-data control
can be regarded as a delayed control. Hence, a time-varying delay system approach is taken
to design a sampled-data controller. We first obtain a stability condition by introducing an
appropriate Lyapunov-Krasovskii functional with free weighting matrices, which reduce the
conservatism in our stability condition. Then, based on such an LMI condition, we propose a
robust sampled-data control design method of fuzzy uncertain systems with discrete, neutral
and distributed delays. We also propose a sampled-data observer design method of fuzzy
time-delay systems. A similar approach is taken for analysis of a sampled-data observer,
and a condition for an existence of an observer is given by another LMI, which is a dual
result of stabilizing controller. Finally, we give some illustrative examples to show our design
procedures for sampled-data controller and observer.
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2 Fuzzy time-delay systems

In this section, we introduce Takagi-Sugeno fuzzy systems with discrete, neutral and
distributed delays. Consider the Takagi-Sugeno fuzzy time-delay model, described by the
following IF-THEN rule:

IF ¢1is Mj1 and -+ - and &p is My,
THEN  #(t) — (Apj + AAy) % (E —7) = (Aj + AA;)x(t) + (Agi + AAg;)x(t — a(t))

+(D; + AD;) /tt_ﬁx(s)ds + (B; + AB;)u(t),
y(t)=Cix(t),i=1,---,r

where «a(t), 5 and 7y are time-varying discrete delay, constant distributed delay, and constant
neutral delay, respectively. They may be unknown but they satisfy 0 < a(t) < apy, &(t) <d <
1,0<B<Bm, 0<7 <ypwhereay, d, By and ypr are known numbers. x(t) € R" is the state
and u(t) € R™ is the input. The matrices A;, Ag;, A,i, Bi and D; are of appropriate dimensions.
r is the number of IF-THEN rule. M;; is a fuzzy set and ¢y, -+, {p are premise variables. We

set &= [&1, -, &)

form

and &(t) is assumed to be available. The uncertain matrices are of the
[ AAi(H)  AAg(t) AAy(t) ABi(t) AD;(t) | '
=HF(t)[ By Ex Es Ep Eg ], i=1--r

where H;, Ey;, Ey;, Esi, Ep; and E; are known matrices of appropriate dimensions, and each
F;(t) is unknown real time varying matrices satisfying

Fr(OHE@#) <I, i=1,---,r

1
The system is defined as follows:

7

£t - Di@(t))(Am-+AAni>x<t—v>:iw(t»{mimm)x(w

i=1
+(Adi —+ AAdi)x(t — Dé(t)) + (Di + ADZ') /t x(s)ds + (Bi + ABi)u(t)}, (1)

(P
y(t) = Y Ai(E(1)Cix(t)

i=1

where A;(¢) = Z{lif)@)’ 1i(g) = ]_[;7:1 M;j(Gj) and M;;(-) is the grade of the membership
function of M;;. We assume p;(g(t)) >0,i=1,---,r, Yi_ p;i(G(t)) > 0 for any ¢(t). Hence
Ai(G(t)) satisfy A;(G(t)) >0,i=1,---,r, Yi_1Ai(C(t)) =1 for any (t). We consider the

sampled-data control input. It may be represented as delayed control as follows:

u(t) =ug(ty) =ug(t — (t —t)) =ug(t —h(t)), tp <t <t

where 1, is a zero-order control signal and the time-varying delay 0 < h(t) =t — t; is piecewise
linear with the derivative /i(t) = 1 for t # t;. A sampling time f; is the time-varying sampling
instant satisfying 0 < t; <t < --- <t} <---.Sampling interval hj = t; 1 — t; may vary but
it is bounded. Thus, we assume h(t) < t; 1 — t;y = hy < hyy for all t, where hy; is known
constant. We consider the following rules for a controller:

IF C1(tx) is Mj; and --- and Gp(ty) is M
THEN u(t) =Kx(t), i=1,---,r

ips
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where K; is to be determined. Then, the natural choice of a controller is given by

r

u(t) =Y Ai(E(H))Kix(te)- 2)

i=1

We represent a piecewise control law as a continuous-time one with a time-varying piecewise
continuous(continuous from the right) delay h(t). Hence, we look for a state feedback
controller of the form

u(t) = Y A(E (k) Kix(t — h(t)). )
=1

that robustly stabilizes the system (1).The system is said to be robustly stable if it is
asymptotically stable for all admissible uncertainties. The closed-loop system (1) with (3)
becomes

T

¥ — YA A+ AAE— 1) = 3 Y AEEDA(E () {(Ai + AA)(D)

= i—1j=1
+(Ag + AAg)x(t—wa(t)) + (D; + AD;) /tt—ﬁX(S)dS + (B; + ABi)K]‘x(t — h(t))}

When we consider a nominal system, we have

£(t) - 21 M) At —7) = 2121 MDA () L Aix() + Agix(t — a(t))
] t
+D; /tﬁx(s)ds-l—B,-K]-x(t—h(t))}. @)

3. Stability analysis
First, we make stability analysis of the nominal closed-loop system (4).
Theorem 3.1 Given control gain matrices K;, i = 1,---,r, the closed-loop system (4) is

asymptotically stable if there exist matrices P; >0, R>0,X >0,Y;>0,1=1,2,3,Q; >0, Z; >
0,i=1,2,and

Np = [N ML NG ONGONLONG NG NG NG

;o= [l Sk % Sk Sk Sk Sk % S|

My = | My M3 ML ML MI; MG M MG M, }Tf

Wy o= [ W owg W W w Wl owh ol g

0y = [Of; O Of Of Of Of Of Of O | ij=1--r,
R
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such that
| Puij Praij o
= [ Pl P2 <O np=leer ©)
where
(I)llzj = &1+ q)Zi]' + CI)%;] + CI)31-]' + q)gij/
r P11 0 0 0 0 0 0 P Py 7

0 0 0 0 0 0 0 0 0

0 0 —R 0 0 0 0 0 0

0 0 0 —-(1-d)Q; 0 0 0 0 0

o = 0 0 0 0 0 0 0 -P 0o |,

0 0 0 0 0 -0y 0 0 0

0 0 0 0 0 0 0 0 0

P, 0 0 0 -, 0 0 —X-— ﬁLMu 0

P, 0 0 0 0 0 0 0 Dio9
P11 = Qi+ R+ BmU+ X,
Q99 = Qx+amYr+PmYo+rmY3+hm(Z1+22),
Qyj = [ Nj+Mj+Wi+0;;+ Vi —Nj+S; —M;—S; —Wy
—0; 0 -V, 0 0],

®y; = [ -TA; ~TBK; 0 —TA; 0 -TA, 0 -TD; T],
@ip;j = [ hmNij hmSij hmMi  apmWip BuOi vymVi |,
Oy = diag| —hmZi —hmZi —hmZy —amYr —BmYze —ymY3 |.

Proof: First, it follows from the Leibniz-Newton formula that the following equations hold for

any matrices Njj, Sj;, Mjj, Vij, Wj; and Ojj, the forms of which are given in Theorem 3.1.

t

2 X SAGONCOT 0N [x0 26 n) — [ sois] =0 @
t—h(t)

23 3 MO EETOS; [x(t = h(0) =t =)~ [ 3] =0, ()

i=1j=1 —hy
25 GO OM[x0) <t~ [ sioas] =0 @

i=1j=1 g
Zi Y A(E0)A (G ()T (1) [x(t) —x(t—7) — /tt X(s)ds} _o, ©)

i=1j=1 —

t

2121j:17\1(‘:(l‘»/\](‘:(tk))CT(t)Wi] {x(t) —x(t—a(t)) — /t_a(t) x(s)ds] —0, (10)
21 LA 00; w05t [ x| =0 .
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where
gty=1[ 2T(t) xT(t—ht) x"(t—hm) x"(t—a(t)) xT(t—p)
¢ T
W=y x=) [T 5T
t_
It is also clear from the closed-loop system (4) that the following is true for any matrix T.
r r
2Y Y MG (E(BNET (T [2(t) — Agx(t)
i=1j=1
—Agx(t— a(t)) — Ayt — 7 D/ s)ds — BK;x(t—h(£)] =0.  (12)

Now, we consider the following Lyapunov-Krasovskii functional:
V(xt) = Vl(x) + Vz(xt) + V3(xt) + V4(xt)

where x; = x(t + 0), —max(hpg, apng, Par) < 60 <0,

Vi(x) = xT(H)Px(t)+ [/tiﬁx(s)ds] TPZ/t x(s)ds,

t
Volx) = /ta(t) T(5)Qux(s)ds + / 5)Q(s)ds + / (s)Rx(s)ds,

V3(xr) = / /9 s)Ux(s)dsdo + /9 s)Y1x(s)dsdo
t+ —apm J i+

// $)Yox(s dsd9+/ / $)Y3x(s)dsdo
+9 +9

/hM /+9 )(Z1 + Z3)x(s)dsdb,

Vi(xy) = /tiﬁ {/Gth(s)ds} X{/Gtx(s)ds} de + /Oﬁ /tig(s —t+0)xT(s)Xx(s)dsdo,

and P, >0,R>0,U>0,X>0,Y;>0,i=1,23,0Q;>0,Z;, >0,i=1,2 are to be determined.
We take the derivative of V(x;) with respect to ¢ along the solution of the system (4) and add

www.intechopen.com
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the left-hand-sides of (6)-(12):

V(x) < 25cT(t)P1x(t)—|—2xT(t)P2/tt_ x(s)ds—2xT(t—[3)P2/tt x(s)ds

+x! (£)(Q + R+ Brl + B X)x(t) — (1= d)x"(t — a(t)) Qux(t — a(t))

—iT(t V)szg — ) = xT(t = har)Rx(t — hy)

o] ggulf e

+5CTt(t) [Q2 +apmY7 + ﬁMthJr YmY3 +ha(Z1 + %2)]56(15)
- / ¥ (s)Yy x(s)ds — / T (s) Yok (s)ds — / T (s)Ya%(s)ds
t—ap t—B t—

t t—h(t)
o T . B .T .
/th(t)x (s)Z1x(s)ds / o * (s)Z1x(s)ds

t—hm

t t t

_/t o %1 (s)Zpx(s)ds — [/t_ﬁxT(s)ds}X{/t_ﬁx(s)ds]
ror t

#21 VGO T ON [x0 —xt-h0) - [ st
roor —h

22 Zzllzlm (00T O [ 1)~ — [ 50008
ror t

23 VA EE (0Myx(0) ~x(t — )~ [ x(s)s
i=1j=1 —hu
ror t

+2 lzl,zfl )T OVy [x(0) ~x(t =) = [ x(s)s]

£23 VA EET (Wi () 21— ale) — [ x(o)as
i=1j=1 —a(t)

+2 lz‘ijzla £ (0 [x() —x(t=p) = [ s(s)s]

12)° Y MO EENET T — Ar(t) — Agie(t — (1)
i=1j=1

At — ) — Dift_ﬁx(s)ds — BiKx(t — h(t))]

< L LAGEON T O¥5E)
i=1j=

_/tih(t [@T(t)Nij—lrxT(s)Zl} z;! [Ngé(tHZp‘c(s)
_/t:;&) [gT(t)Sij +xT(S)zl} z! [sfg(t) + Z1%(s)
_/tihM [T (My; + 27 (5)20] 757 M (1) + Zo%(s)
—/t;(t) {CT(t)Wijan (s )Yl] Y, [WTg( )+ Yp2(s)
- [ 800y 4T o] v ol + vax(e)] s
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t
= [T @y ] v [V + v (9)] ds} (13)
where
— —1n\jT —1gT —1AgT —1yA7T

+/3Moin2—1o§ + fyMVinglVi]T.
Now, if (5) is satisfied, then by Schur complement formula we have
‘PZ‘]'<O, i,jZl,---,?’. (14)

If (14) holds, we have }i_;}_; /\i(é(t)))\]-(C(tk))gT(t)‘PijC(t) < 0, which implies that V (x;)
< Obecause Y; >0, Z; >0, i =1,2 and the last five terms in (13) are all less than 0. This proves
that conditions (5) suffice to show the asymptotic stability of the system (4).

4. Sampled-data control design

In this section, we seek a design method of a sampled-data control for fuzzy time-delay
systems based on Theorem 3.1. Unfortunately, however, Theorem 3.1 does not give feasible
LMI conditions for obtaining state feedback control gain matrices K;. To this end, we take
an appropriate congruence transformation to obtain feasible LMI conditions and a design
method of a sampled-data state feedback controller.

Theorem 41 Given scalars p;, i = 1,---,9, the sampled-data controller (2) asymptotically
stabilizes the nominal system (4) if there exist matrices P; >0, R >0, U >0,X>0,Y; >0, i =
1,2,3,0,>0,72;>0,i=1,2, L, Gj,j=1--,1,

Ny o= [N N NG ONGNLONG NG NG NG
o= [ Sh % S Sy K % S
My = | M MI MY M MI; MG NG ME M }Tf
Wy o= | W W WE WG WG WG WERG WG |
Dij = :OlTij Oy O35 Oy Osy Of; O Og O9Tij}Tl Lj=1,r
such that
@ij:[giz %222”]<0, ij=1,r (15)
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where
@111']' = 0O+ @21']' + (H);ij + @31']' + ®?::rij'
[ ©O111 O 0 0 0 0 0 P, pl ]
0 0 0 0 0 0 0 0 0
0 0 —R 0 0 0 0 0 0
0 0 0 —-(1-d0; 0 0 0 0 0
0, = 0 0 0 0 0 0 0 -b 0 ,
0 0 0 0 0 —-Q 0 0 0
0 0 0 0 0 0 0 0 0
B, 0 0 0 P 0 0 -X-g U 0
| P, 0 0 0 0 0 0 0 O199
Om = Qi +R+Bul+p3X,
@199 = Qx+amV1+BmYa+rmYs+hm(Z1 +2Z2),
@21']' = [ Nl']' + Mi]' + Wi]' + O,']' + Vz] —Ni]' + 51']' —Mi]' — Si]' _Wij
~0; 0 ~V 0 0],
[ o1 ALT piBiGp 0 piAglT 0 p1AuLT 0 piDiLT —pi LT ]
P2ALT 0BG 0 ppAyLT 0 ppAuLT 0 poDiLT —poLT
p3ALT  p3BiG; 0 p3A4LT 0 p3AuLT 0 paDiLT —psL!
paALT  p4BiGi 0 pgAgLT 0 pgAuLT 0 pgDiLT —pgL”
@si; = —| psALT psBiGi 0 psAgiLT 0 psA,LT 0 psDiLT  —psLT |,
06ALT  p6BiG; 0 peAgiLT 0 peAnuLT 0 peDi LT —pgLT
p7AiLT  p7BiG; 0 p7AgLT 0 pzAuLT 0 p7DiLT —psLT
psALT  pgBiG; 0 pgAguLT 0 pgAuLT 0 pgD;LT —pgLT
L poAiLT p9BiGj 0 poAgLT 0 poA,LT 0 poD; LT —poLT |
Oj = [ hmNij hmSij hmMi; apWip BuOi; ymVi |,
@22 = diag[ _thl _thl _hMZZ —DCMYl _ﬁMYZ —’)/MY3 ]
In this case, state feedback control gains in (2) are given by
Ki=GL T, i=1,---,r (16)

Proof: We let T; = p;L, i =1,--- ,9 where each p; is given and L is defined later, and substitute
them into (5). If (5) holds, it follows that (9,9)-block of ®q1;; must be negative definite. It

follows that To + Td = pg(L + LT) < 0, which implies that L is nonsingular. Then, we define
L =L!and calculate Q= Z(ID,-]-ZT with¥ =diag[ LLLLLLLLLLLLLLL].Defining P; =
LPLT, R=LRLT, X = LXLT, ¥; = LY;LT, i =1,2,3, Q; = LQ1 L7, Z; = LZ,LT, i = 1,2, Ny;j =
LN;jLT, Skij = LSyi;LT, Myjj = LMy LT, Vig; = LViii LT, Wyjj = LW LT, Ogjj = LOkj; LT, i,j =
1,---,r,k=1,---,9, we obtain ®ij in (15) where we let Gj = K]-LT. If the conditions (15) hold,
state feedback control gain matrix K; is obviously given by (16).

We extend the result to the case of the uncertain system (1). The following lemma is necessary
to prove Theorem 4.3.
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Lemma 42 ((10)) Given matrices Q = QT, H, E and R = RT > 0 of appropriate dimensions
Q-+ HF(E+ETFT(t)HT <0

for all F(t) satisfying FT (t)F(t) < R if and only if there exists a scalar € > 0 such that
1
Q-+ _HH' +¢E"RE <0.

Theorem 43 Given scalars p;, i =1,---,9, the sampled-data controller (2) robustly stabilizes the
uncertain system (1) if there exist matrices P; >0, Q; >0, Z; >0,i=1,2,R>0,U>0,X>0,Y; >
0,i=1,23,L, G]-, j=1,---,r,and

Ny o= [ N N NG ONG NG NG NG NG ONG |

S = | Sy Sy Sk S S S S S Sy |

My = [ W MG N MG WL owg g Mg wg ]

_ij = — Vlj;] VZZ V3€] V4€] VSZ} V6];] V%] VSI;] V9];] :| ’

W= | WEWE W W WE WG WE WG WG|

Dij = :OlTij 05; O3 O O O 07 O O9Tz'jr/ Lj=1,-r

and scalars gjj > 0,1,j=1,---,r such that

@1‘]‘ + SiHl-TI:Ii EZ

<0, i,j=1,---,r (17)
Eij —El']' J
where @ij is given in Theorem 4.1, and
A = —[ pH' poH psH puH psHT  pgHT  pHT  psHT .
poHI 0 0 0 0 0 0],
Ej = [ EuL" EuGj 0 EyL™ 0 ExLT 0 EZzLT 0 0 0 0 0 0 0.

In this case, state feedback control gains in (2) are given by (16).

Proof: Replacing A;, Ayi, Ay, Bi, D; by A; + H,F;(t)Ey;, Agi + HiFi(t)Ey;, Ani + HiFi(t)Es;,
Bi —+ HiFi(t)Ebi/ Di + HiFi(t)Edi/ we have

It follows from Lemma 4.2 that the above LMIs hold if and only if there exist ¢;; > 0 such that

- 1 - - ..
®ij + giniHi + ;EijEij <0, 1] = 1,---,r.
1]

Applying the Schur complement formula, we have (17).
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5. Numerical examples for controller design

Let us design robust sampled-data controllers for the system (1) with the following matrices.

0 0 0 0 1 1 1
01 0 0i 0 0.1 o1
R AR T
01 O 02 0
D1: |: 0 03 :|/D2: |: 0 0.4 :|,H1:H2:0.2I, E11:E12:O.2I,

0

Eyy = Epp =021, E3; = Ezp = 0.11, Epy = Epp = [ o1

] ,Ej1 =Ep =011

The grades are given by Aq(x;) = sin®(x;) and Ax(x1) =1 — A1(x;). The maximum upper
bound of the sampling time /) = 0.1 and d = 0.5 are assumed. First, we let Ba; = ypr = 0.1.
Theorem 4.3 with p; = 5.46, p» = —0.01, p3 = —2.19, p4 = 0.60, p5 = —0.01, pg = —0.01, p7 =
0.50, pg = 0.10, pg = 1.96 guarantees the existence of the sampled-data controller for the
maximum upper bound of the time-delay a); = 0.42. In this case, control gains in (2) are
given by

Ky =] —0.1800 —0.9934 |, Ky = —0.1808 —0.9942 |.

Next, we let ap; = yp = 0.1. Theorem 43 with p; = 5.74, pp = 0.50, p3 = —2.19, pg =
—0.60, p5 = —0.01, pg = —0.42, p; = —0.50, pg = 0.16, pg = 1.96 gives a robust sampled-data
controller for the maximum upper bound S,; = 3.43. In this case, control gains in (2) are given
by

Ki=1[ 01794 -26198 |, Ky=[ 0.1795 —2.6194 |.

Finally, we let ap; = By = 0.1. Theorem 4.3 with py = 4.74, pp = —0.01, p3 = —2.19, pg =
—0.60, p5 = —0.01, pg = 0.01, p7 = —0.50, pg = 0.07, pg = 1.96 gives a robust sampled-data
controller for the maximum upper bound s = 2.90. In this case, control gains in (2) are
given by

Ky=[ —0.0265 —0.7535 |, Ky =[ —0.0260 —0.7515 ].

6. Application to observer design

In this section, using the results in the previous sections we consider an observer design for the
system (1), which estimates the state variables of the system using sampled-data measurement
outputs. Here, we assume that the system does not contain any uncertain parameters so that
itis given by

r

£() = Y A(E (D) At — ) = iwm){fww

i=1

+Ad,-x(t—zx(t)) +Di /tt_ﬁx(s)ds-i-B,-u(t)}, (18)

=
=
I
-

Ai(&(8))Cix(t) (19)

i=1
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where all the time delays are assumed to be measurable.
The sampled-data measurement output may be represented as delayed measurement as

follows:

y() = ya(te) = ya(t = (t = 1)) = ya(t = h(t)), e <t <ty
where y; is a zero-order measurement signal and the time-varying delay 0 < h(t) =t — ; is
piecewise linear with the derivative hi(t) =1 for t # t; as before. We consider the following
rules for a system to estimate the state variables:

IF gl(tk) is Mil and --- and gp(tk) is Mipl

THEN £(t) — A,;£(t — ) = A;&(t) + Agi®(t — a(t)) + D; /tt £(s)ds
+Bu(t) + R(y(ty) — Cik(ty), i=1,- 7

where £ is the estimated state and K = Z]r':1 Aj(&(tx))K; is an observer gain to be determined.
Then, the overall system is given by
r r r

2(t) = Y MEM)Aut(t =) = 3} MG (E(t)){AiR(t) + Agik(t — a(t))

i—1 i=1j=1

+D; [ #(s)ds+ Bu(t) + K (y(t) ~ (1)}

(20)
where we see the measurement output as
y(t) =Y Ai(E(t))Cix(t — h(t)).
i=1
It follows from (18), (19) and (20) that the error e(t) = x(t) — £(t) satisfies
é(t) = Y MG Awie(t =) =} ) Ai(E(0)A;(E (k) {Ase(t) + Agie(t — a(t))
i=1 i=1j=1
t _
+Di /t_ﬁe(s)ds - chie(tk)}. (21)

We shall find conditions for (21) to be asymptotically stable. In this case, (20) becomes an

observer for the system (18) and (19).
The following theorem gives conditions for the error system (21) to be asymptotically stable.
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Theorem 6.1 Given control gain matrices K;, i =1, ,r, the error system (21) is asymptotically
stable if there exist matrices P; >0, R>0,X>0,Y;>0,i=1,2,3,Q;>0,Z; >0,i=1,2, and

- T
T T T T T T T T T
N;j = _ Njj Ny N Ny Nsio Ngio Ny Ngg N9ij} /
. T
T T T T T T T T T
Sij = _ Stj  Saj S3ij Saij Ssii Seij  S7ij  Ssij 591']'} ,
- T
T T T T T T T T T
M = _ My My Mg, My Mg, Mg Mg, Mg, M9ij} y
- T
T T T T T T T T T
Vij = _ Viie Vo Ve Vi Vsip Ve Voo Vsi V9ij} /
- T
T T T T T T T T T
Wi = | Wiy Wi Way Wy Wa W Wy Wy W9z'j] ,
- T
T T T T T T T T T .
O; = _ Orj O Ozij Oy Osii Ogi Oz Ogii Oy } y =1,
_ T T T T T T T T T 1T
T = [1f T, 13 Tf T3 T, T; Tg Ty ]
such that
| Puij Projj L
(Dij = [ q)%“zﬁ (I)22 < O, 1,] = 1,' s, (22)
where
Dpyjj = Py +¢2ij+q>gij+q>3ij+©3Tij,
[ P17 O 0 0 0 0 0 P P T
0 0 0 0 0 0 0 0 0
0 0 —R 0 0 0 0 0 0
0 0 0 —-(1-d0Q; ©0 0 0 0 0
P, = 0 0 0 0 0 0 0 —b 0 ,
0 0 0 0 0 -0y 0 0 0
0 0 0 0 0 0 0 0 0
P, 0 0 0 -, 0 0 —-X-— ﬁLMu 0
P, 0 0 0 0 0 0 0 DBro9
P11 = Q1 +R+BmU+BYX,
D99 = QxtamYi+BmYo+rmYs +hp(Zi + Zy),
q>2ij = [ Nij—i-Mij—l-Wij-l-Ol’j—{—Vi]’ —Ni]'-f—Si]' —Mi]'—si]' —Wl']'
~0; 0 —V; 0 0],
®y; = [ -TA; TKC; 0 -TAz; 0 -TA,; 0 -TD; T],
@p;; = [ hmNij hmSij hmMi; apmWi; BuOi; vmVi |,
Oy = diag| —hmZ1 —hmZi —hmZy —amYr —BmY2 —ymYs |.
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Proof: Proof is similar to that of Theorem 3.1. We first note that the following is true for any
matrix T.

23" T AEOA T O T - Ae(t)

i=1j=1

—Agie(t —a(t)) — Apé(t —v) — D; /ttﬁe(s)ds —KiCie(t = h(t))] =0 (23)

where
Zy=[ 7)) T(t—h(t) oT(t—hy) T(t—a() oT(t—p)
i) elt=m) [ s eT()
-

T

Now, we take the derivative of V(e;), which is defined as V' (x;) with replacing x; by e;, with
respect to t along the solution of the error system (21) and add the left-hand-sides of (6)-(11)
with replacing x by e and (23):

23" [MEZ() + Zaé(s) | ds (24)
Y

where

= » L7—1n\jT ..7—1gT 7—1agT v—wT
+,3MO,']'Y2_1O£ + ')/MVl]Yglvl]T

Now, if (22) is satisfied, then by Schur complement formula we have

@1']' <0, i,j =1,---,r. (25)

If (25) holds, we have Yj_; Yi_; Ai(E()A;(E(1))ZT (1)¥4iC(t) < 0, which implies that V()
< Obecause Y; >0, Z; >0, i = 1,2 and the last five terms in (24) are all less than 0. This proves
that conditions (22) suffice to show the asymptotic stability of the system (21).

Theorem 6.1 still does not propose an observer design method. Hence, we give the following
result.
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Theorem 6.2 Given scalars p;, i =

1,---,9, (20) becomes an observer for the nominal system (18)

and (19) if there exist matrices P; >0, R>0,U>0,X>0,Y;>0,i=1,2,3,0Q;,>0,2Z;>0,i=
1/2/ L/ G]/]: 1/ ey

such that

] T
T T T T T T T T T
i Nyjji Ny N Ny Nsiio Ngio Npio Ngiio N ] ,
) T
T T T T T T T T T
i Stij Sy S3ij Saij Ssii Seij  S7ij Ssij  Soij } ’
) T
T T T T T T T T T
i My My Mg My, Mg, Mg, Mz Mg, Mg } ,
) T
T T T T T T T T T
i Vii Vaii Vi Vi Vs Vei Vg Ve Vo } ’
) T
T T T T T T T T T
i Wi Waij Way Wy Wa W Wy Wy Wy } ’
) T
T T T T T T T T T .
I Olij OZij OSij O4ij OSij O61’j O7ij OSij O9ij } s =1
©O115; O1zj
Qii=| 1 Il <0, ij=1,--,r (26)
g [ ®12ij ©2, /
O + O + @y;; + O3 + O3,
[ ©O111 O 0 0 0 0 0 P, P T
0 0 0 0 0 0 0 0 0
0 0 —R 0 0 0 0 0 0
0 0 0 —-(1-d40Q; ©0 0 0 0 0
0 0O 0 0 0 0 0 ) 0 ,
0 0 0 0 0 -0y 0 0 0
0 0 0 0 0 0 0 0 0
P, 0 0 0 P 0 0 —X-—g U 0
| P 0 0 0 0 0 0 0 ®199
Q1 + R+ Byl + B3, X,
Q2 +amY1 + BmYa +vmYs + hyv(Z1 + Z2),
[ Ni]' + Mi]' + Wi]' + Ol']' + Vz] —Ni]' + Si]' —Mi]' — Si]' —Wl']'
~0;; 0 =V 0 0],
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[ plLAi —plG]-Ci 0 plLAdi 0 plLAni 0 PlLDi —PlL i
p2LA;  —p2GiCi 0 pLAg 0 ppLAy; 0 poLD; —poL
psLA;  —p3GiCi 0 p3sLAy; 0 p3LA, O psLD;  —psL
paLA;  —psGiCi 0 psLAgz 0 psLAy; O psLD;  —pslL
@31']' = — |05LA1' —p5G]‘C1‘ 0 P5LAdi 0 p5LAm' 0 p5LDi —p5L ,
peLA;  —psGiCi 0 peLAz 0 psLAy; 0 peLD; —peL
p7LAl' —.07jS1‘ 0 P7LAdi 0 p7LAni 0 p7LDi —p7L
psLA;  —psGjCi 0 pgLAgz O pglA, O pgLD; —pgL
| p9LA;  —p9GiCi 0 pgLAg 0 p9LAn; 0 p9LD; —p9L |
Oij = [ hmNij hmSi; hmMi; apmWi o BmOi; ymVi |,
Op = diag| ~hmZ1 —hmZi —hmZas —amY1 —BmYz —TmY3 |-
In this case, observer gains in (20) are given by
Ri=L7'G;, i=1,---,r (27)

Proof: We let T; = p;L, i =1,--- ,9 where each p; is given and L is defined later, and substitute
them into (26). If (26) holds, it follows that (9,9)-block of ®11;; must be negative definite. It

follows that Ty + Tj = po(L + L") < 0, which implies that L is nonsingular. Then, we calculate
Q;; = ZCI)ijZT withE =diag[LLLLLLLLLLLLLLL]J, and obtain ®;; in (26) where we
let G; = LK]-. If the conditions (26) hold, observer gain matrix K; is obviously given by (27).

7. Numerical examples for observer design

Let us design sampled-data observers for the system (18) and (19) with the following matrices.

0 0 0 0 U !
Al—[o 17 M2= 0 15 P40 =| o —0-9}'14’12_- 0 _1'4}/
01 0 01 0 0.1 0.1
A’“_{ 0 0.2]’A”z_{ 0 0-3J'Bl_{ 1 ]'BZ_{M]I
0.1 [ 02 0
Ci=[02 05],C=[03 1-2]rD1:[ 0 0.3}'D2: 0 0-4}

The grades are given by A1 (x1) = 1—{-6;7*1 and Ay (x1) =1 — Aq(x1). The maximum upper bound
of the sampling time /); = 0.1 and d = 0.4 are assumed. We let ap; = Bp1 = 0.2. Theorem 6.2
with py =4.76, pp = —0.03, p3 = —2.19, p4 = —0.60, p5 = —0.01, pg = 0.01, py = —0.50, pg =
0.09, pg = 1.96 guarantees the existence of the sampled-data observer for the maximum upper

bound of the time-delay y); = 2.41. In this case, observer gains in (2) are given by

- -1.1239 | . ~1.1254
Kl_{ 0.7925 }'Kz_[ 0.7916 ]

8. Conclusion

In this paper, robust sampled-data control and observer design for uncertain fuzzy systems
with discrete, neutral and distributed delays has been considered. Less conservative robust
stability conditions were obtained as LMI conditions via time-varying delay system approach.
Then, a controller design method was proposed via LMI conditions. As a dual result, an
observer design method was also given. Finally, some examples were given to illustrate our
design approach.
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