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1. Introduction     

Ferroelectric oxides with perovskite structure such as PbLaTiO3 (PLT), BaTiO3, PbTiO3, 

SrBi2Ta2O9 and LiNbO3 are very attractive class of materials which possess numerous useful 

properties such as high dielectric constant, large spontaneous polarization, and remarkable 

optical nonlinearity. Potential applications of these materials include real-time holography, 

correlation filtering and various novelty filter applications (Sutherland 1996 and Eaton 

1991). They are also popular materials for the fabrication of nonvolatile memories (Ramesh 

2001). Over the past few years, ferroelectric oxides have been widely investigated for 

various nonlinear optical applications (Shi 2006; Xuan 1998; Zhang 1999; Zhao 1996) 

especially for optical switches. Optical switches are devices invented to perform 

multiplexing at very fast speeds and with less delay than the customary switches works 

with electronic signals. A ferroelectric optical switch is expected to allow the processing of 

millions of signals at a speed of terahertz.  

To obtain optical bistability phenomenon, two ingredients are necessary, a nonlinear process 

and a feedback mechanism (Gibbs, 1977, 1979, and 1985). In all optical systems, the feedback 

can be “distributed”, “extrinsic” or “intrinsic”. In multilayer systems with alternating 

nonlinear materials, the feedback is “distributed”; it arises from the interaction of the 

propagating wave with many cross-sections of a nonlinear medium. In a Fabry-Perot (FP) 

resonator, the feedback is “extrinsic”; it arises as a result of reflection from the mirrors 

placed at its interface. In a single nonlinear layer, the feedback can be “intrinsic” or 

“mirrorless”; it arises in each elementary oscillator due to the strong local nonlinear 

response of an individual atom or molecule. 

In the usual or the standard analysis to study the optical bistability (Marburger 1978, Gupta 

1987, Biran 1990, Danckaert 1989, Shen 1984, and  Haelterman 1989) in nonlinear optics, the 

governing equation for optical propagation within the nonlinear medium is a nonlinear 

wave equation in the electric field derived from Maxwell’s equations. The usual constitutive 

relation between the nonlinear polarization and the electric field is then obtained by 

expanding the nonlinear polarization as a Taylor series in the electric field. The usefulness of 

this constitutive relation is that the polarization is a natural source term in the Maxwell’s 
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equation. Even though such constitutive relation is used to describe majority of the 

nonlinear optical phenomena, it is not essential or unique. Goldstone and Garmire 

(Goldstone 1984), in their work on the intrinsic bistability in semi-infinite nonlinear 

medium, used an inverted form of the usual constitutive relation. They expressed the 

electric field in terms of the total polarization ussing the nonlinear Duffing anharmonic 

oscillator equation and solved the nonlinear wave equation in terms of  polarization as the 

independent variable. They stressed that the usual analysis in nonlinear optics is not 

suitable to describe a potentially important class of bistable interactions which result from 

intrinsic material bistability. 

The advantage of Duffing constitutive relation is that the driving field is treated as 

dependant on the material response which allows to account for the optical bistability 

results from the intrinsic feedback mechanisim even in microscopic domain. An additional 

advantage of using the Duffing Oscillator over the usual constitutive relation is that the 

exact nature of the nonlinear susceptibility 3( )χ  of the material is not required because the 

nonlinearity of the system is automatically contained in the induced polarization (Ibrahim 

2007). Moreover if we are dealing with operating wavelength in the neighborhood of 

resonance where the nonlinear material usually exhibits a huge third order nonlinearity , the 

usual constitutive relation becomes really questionable since the undepleted wave 

approximation is clearly violated.  
Recently, Murgan et al. (2002) have derived expressions of the tensor elements for various 
second- and third-order nonlinear optical effects including optical Kerr effect for bulk FE 
materials having various symmetries. They have shown that many of these elements have 
large linear and nonlinear optical coefficients even in the visible and near-infrared frequency 
regions. Particularly near resonance, the FE materials becomes highly nonlinear.  They have 
found that it is the combination of the temperature divergence and the resonant frequency, 
which is typically in the THz region, dependence that underlies their large values. For these 
reasons, it is believed that the Maxwell-Duffing analysis is more suitable for investigating 
optical bistability in Kerr FE materials especially when the operating frequency is in the 
resonance region. 
In this chapter, the Maxwell-Duffing approach will be applied to investigate the optical 
bistability in ferroelectric materials with Kerr nonlinearity. For ferroelectric materials, the 
Landau-Khalatnikov dynamical equation is used with anharmonic potential as the 
constitutive relation. Such nonlinear binding potential is provided from the Landau-
Devonshire free energy for bulk ferroelectric exhibiting second-order phase transitions. A 
nonlinear polarization equation is derived and integrated across the ferroelectric medium. 
Through the application of the exact boundary conditions, expressions for reflectance R, 
transmittance T, are derived as a function of the polarization P and the driving field E. 
Results for both Fabry-Perot resonators filled with a ferroelectric medium and for a 
ferroelectric slab without coating mirrors will be presented. The nonlinear response of the 
polarization, reflectance and transmittance as a function of the electric field incident 
amplitude will be illustrated. The effect of thickness, operating frequency, and temperature 
on the bistable characteristics of the FE slab will also demonstrated.  In the case of FP 
resonator with partially reflecting mirrors, the effect of mirror reflectivity on the optical 
bistability is studied. The possibility of obtaining a reliable optical switch from such system 
will be explored. The examples shown in this chapter are based on the available 
experimental data of BaTiO3.   
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2. Mathematical formulation 

Consider a Fabry Pérot resonator filled with bulk ferroelectric crystal and coated with a pair 

of thin identical partially-reflecting mirrors as illustrated in Fig. 1. A high intensity incident 

infrared radiation is impinging the material at normal incidence. The nonlinear ferroelectric 

material (BaTiO3) is assumed in the ferroelectric phase and exhibits a second-order like 

phase transitions. To derive a nonlinear polarization wave equation for medium 2, we begin 

by considering Landau-Devonshire free energy F expression written in terms of the 

polarization ( )P ,z t  as following (Lines and Glass, 1977) 

 ( ) 2 4

2

0 0
2 4

α β
ε ε

= + −P P P E P, .F T  (1) 

 

The parameter ( )α = − ca T T  is temperature-dependent with a  being the inverse of the 

Curie constant, T is the thermodynamic temperature, and cT  is the Curie temperature. The 

parameter β  is the nonlinear coefficient; it is material-dependent with mechanical 

dimension 3 -1m J  and 
0
ε is the dielectric permittivity of vacuum. The term E P.  accounts for 

the coupling of the far infra-red (FIR) radiation with the driving field E. The response of a 

FE material exposed may be described by the time-dependent Landau-Khalatnikov 

dynamical equation of motion in terms of polarization, P, as 

                                                              
2

2

∂
+ Γ = −

∂tt

P P

P

d d F
M

dd
  (2) 

 

In the above, M is the inertial coefficient with mechanical dimension 3 -2 -2Kg.m A .s . The 

term Γ tPd d represents the linear loss and Γ is a damping parameter with mechanical 

dimension 3 -2 -3Kg.m .A .s . The driving field E in the FE medium is considered to have a 

form of uniform time-harmonic plane wave propagating in the negative z-direction at 

fundamental frequencyω  

                                     ( ) ( ) ( )2 2 2

1

2
ω ω⎡ ⎤= − + +⎣ ⎦t t tE

*, exp( ) exp( )z E z i E z i  (3) 

 

In equation (3), ( )2
E z  and  ( )2

*E z  are the electric field amplitude in the  ferroelectric medium 

and it complex conjugate respectively. The total polarization ( )tP ,z  is also considered to be 

time harmonic, in phase, and propagates in same direction as the E field, which is 

                                   ( ) ( ) ( )1

2
ω ω⎡ ⎤= − + +⎣ ⎦t t tP

*, exp( ) exp( )z P z i P z i  (4) 

In equation (4), ( )P z  and ( )*P z  are the polarization amplitude and its complex conjugate 

respectively. Therefore, substituting (1), (3) and (4) into (2) gives the following time-

independent Landau-Khalatnekov equation 

                    ( ) ( ) ( ) ( ) ( ) ( )22 2

2 0 0
3 4ω ω ε β ε⎡ ⎤= − − Γ + − +⎣ ⎦cE z M i a T T P z P z P z  (5) 
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Equation (5) is the time-independent form of equation (2); it describes the electric field in the 

ferroelectric medium in terms of polarization and other material parameters. In deriving 

equation (5), the third-harmonic term is usually ignored.  The corresponding magnetic field 

is derived from equation (5) using the relation ( ) ( )( )2 0 2
ωμ=, ,x yH z i dE dz , where here for 

simplicity we have considered E2 to be purely polarized in the y-direction ( )0 0, ,yE , and H is 

purely polarized in the x-direction ( )0 0, ,xH . Therefore, 

                         

( ) ( ) ( )

( ) ( ) ( ) ( )

2

2 0

0

22

2

0

3 3
4

8

3 6

ω ω ε
ωμ

β
ε

⎧⎪ ⎡ ⎤= − − Γ + −⎨ ⎣ ⎦⎪⎩
⎫⎡ ⎤⎪+ +⎢ ⎥⎬

⎢ ⎥⎪⎣ ⎦⎭

,

*

x c

dP zi
H z M i a T T

dz

dP z dP z
P z P z

dz dz

 (6) 

In linear régime ( )0β = , equation (5) may be combined with the linear equation 

( )0
ε χ ω=P E   to obtain the linear dielectric function ( )ε ω for ferroelectric medium 

                                                 ( ) ( )
1

2

0
ε ω ε ω ω ε

−
∞ ⎡ ⎤= + − − Γ + −⎣ ⎦cM i a T T  (7) 

From equation (7), the linear refractive index of the FE medium may be evaluated as 

( ) 1 2

2
ε ω= ⎡ ⎤⎣ ⎦n . ε∞ is the high-frequency limit of the dielectric function ( )ε ω . Equation (7) is 

essentially similar to that of typical dielectric except that it is temperature-dependent 

function.  For convenience in the numerical work, it is helpful to scale the relevant equations 

and use dimensionless variables (Lines and Glass 1977). Therefore the dimensionless 

parameters are being introduced; 

                     
2 2 0 0

ω ω ω= = = = =, , , ,c s ce E E f p P P t T T u z c  (8) 

Equation (8) shows that the coercive field of ferroelectric material at zero temperature cE   is 

used to scale the dimensional electric field inside the FE medium to give the scaled electric 

field 
2

e . In similar fashion, the resonance frequency 
0

ω  is used to scale the operating 

frequency ω  to give a scaled operating frequency f. The polarization P and the 

thermodynamic temperature T are scaled in terms of spontaneous polarization at zero 

temperature sP  and the Curie temperature cT  respectively. Finally, the thickness z is scaled 

by dividing out 
0

ωc to give a scaled thickness
0

ω=u z c . In fact, any physical variable can 

be made dimensionless just by dividing out a constant with similar dimension. For helpful 

discussion about scaling analysis of physical equations, the reader is referred to Snieder 

(2004). Therefore, substituting the scaled parameters of equation (8) into equation (5), we 

obtain the following dimensionless form of Landau-Khalatnikov equation; 

                                       ( ) ( ) ( )22

2

3 3
4 1 3

8

⎡ ⎤= − − − +⎢ ⎥⎣ ⎦Fe t mf ifg p u p u   (9) 

In equation (9), the coefficient 2

0 0
ω ε⎡ ⎤= ⎣ ⎦cm M aT is the scaled inertial coefficient while 

[ ]0 0
ω ε= ΓF cg aT  is the scaled damping parameter. To describe the propagation in the 

ferroelectric medium, the time-independent electromagnetic wave equation 2 2

2
d E dz  

( )2 2 2

2 0
0ω ε ω μ∞+ + =c E P  is employed.  However, this equation has to be converted to 
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dimensionless form using the scaled parameters in equation (8) as well. This yields the 

following scaled form of the electromagnetic wave equation; 

                                                     ( )
2

2 2 02

22

0 0

0ε
ε∞+ + =

Pd e
f e f p u

Edu
 (10) 

Substituting the electric field expression from equation (9) into the wave equation (10), the 
following nonlinear polarization equation is obtained; 

  ( )
22 2

2 22 2

2 2
2 2 3 3 12 6 4 3 0ε ξ∞

⎡ ⎤⎡ ⎤ ⎡ ⎤+ + + + + + + =⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
¥ ¥

* *
*d p d p dp dp dp

p p p p f p p
du du dudu du

 (11) 

Equation (11) is a nonlinear equation describes the evolution of the polarization in a 

ferroelectric medium with thickness u. For simplicity, we have introduced the scaled 

coefficients ξ  and ¥  in equation (11), where  ( )( )0
2 3 9ξ ε ε∞= s cP E  and =¥  

2
1− − − Ft mf ifg . For ferroelectric material exhibits a second-order phase transitions, the 

coercive field at zero temperature is 3 3

0
4 27ε β= +c cE a T  while the spontaneous 

polarization at zero temperature is 
0
ε β=s cP aT . Upon substituting the value of sP  and 

cE , the value of  ξ  reduces to ( ) 1ξ ε −
∞= caT  which is basically a constant value for each 

specific material. The coefficient ¥  is also important since it contains contributions from 

thermodynamic temperature t, operating frequency f, and the damping parameter Fg .  

To obtain numerical solution, it is helpful to eliminate the term 2 2*d p du  from equation 

(11). This can be done as follows; first, the complex conjugate of equation (11) is obtained. 

Second, the term 2 2*d p du is eliminated between equation (11) and its complex conjugate. 

This leads to the following nonlinear propagation equation,  

 
( ) ( )

( ) ( ) ( )

222
2 4 22 3

2

2 2 42

16 24 27 12 2 3 18

12 4 3 16 12 2 9 0ε ξ ξ∞

⎡ ⎤⎡ ⎤⎡ ⎤+ + + + + − ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎣ ⎦

⎡ ⎤+ + + + + + + =⎢ ⎥⎣ ⎦

¥ ¥ ¥ ¥

¥ ¥ ¥ ¥

*
* * *

*
* *

d p dp dp
p p p p p

du dudu

dp dp
p p f p p p

du du

 (12) 

In equation (12), the coefficient 2
1= − − +¥*

Ft mf ifg  is the complex conjugate of ¥ . Equation 

(12) may be integrated numerically across the ferroelectric medium as an initial value 

problem to evaluate the desired polarization. 

3.  Analysis of the Fabry-Perot Interferometer 

The analysis to find the complex reflection r, and transmission coefficients τ, is basically 

similar to the standard analysis in linear optics (Born & Wolf 1980); where 
2=R r  and 

2τ=T represent the reflected and transmitted intensities respectively. Referring to Fig. 1, 

the electric fields in medium1 and 3 are assumed to have the form of a plane wave 

propagating in free space with propagation constants
1 3 0 0

ω= = =k k k n c  and 
0

1=n . 

Therefore, we may write 

                            [ ]1 0 1 1
= − +exp( ) exp( )E E ik z r ik z  (13) 
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 ( )[ ]1 0 1 0 1 1
ωμ= − −exp( ) exp( )H E k ik z r ik z  (14) 

 ( )3 0 3
τ= ⎡− + ⎤⎣ ⎦expE E ik z L  (15) 

 ( ) ( )3 3 0 0 3
ωμ τ= ⎡− + ⎤⎣ ⎦expH k E ik z L  (16) 

where, 
0

E is the amplitude of the incident electric field. At top interface, The tangential 

components of the electric field E is continuous with ( ) ( )1 2
0 0= = =E EE z E z  where

1
E  and 

2
E  

are substituted  from equation (13) equation (5) respectively. The standard scaling procedure 

then yields the following expression for complex reflection coefficient r;    

 ( ) ( ) ( ) 2

0

3 3
4 3 1

8

⎡ ⎤= + −⎢ ⎥⎣ ⎦
¥ t t tr p u p u p u

e
 (17) 

 

Fig. 5.1. Geometry of the Fabry-Pérot resonator. 

The subscript t of tp  in equation (17) refers to the polarization at top interface. Due to the 

existence of the mirrors at both interfaces , the boundary conditions for the magnetic field at 

top interface becomes ( ) ( ) ( )1 1 2
η− =x y xH z E z H z (Lim, 1997) where 

1xH , 
1yE , and 

2xH are 

represented by equations (6), (13), and (14) respectively. The parameter η η η= −a bi  

0
σ δ ωε ε δ= −M M M Mi  is the mirror coefficient with conductivityσM , thicknessδM , and 

permittivity of the mirror medium εM  respectively. For perfect dielectric mirror with 

conductivity 0σ →M  the termηa becomes zero. In such a case the wave propagates into the 

mirror material without attenuation. Experimentally such coating mirror can be designed to 

meet the required reflectance at optimized wavelength using various metallic or dielectric 

materials. The standard scaling procedure, then yields following dimensionless equation for 

the magnetic field at top interface;  

 ( ) ( ) 2 2

0

27 3 81
1 1

4 2 16
η ⎡ ⎤⎡ − + + ⎤ = + +⎣ ⎦ ⎢ ⎥⎣ ⎦

¥
*

t t
s t t

dp dp
r r fe i i p i p

du du
 (18)                          
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In equation (18), 
0

η μ η η η= = −, ,s s a s bc i  accounts for the scaled mirror parameter and for 

purly dielectric mirror 0η =,s a  and ηs reduces to η− ,s bi . If we eliminate the complex 

reflection coefficient r between equations (17) and (18), the following equation is obtained; 

  ( ) ( )2 2 2

0

3
3 1 4 3 9 2 2 3 3

16
η

⎧ ⎫⎡ ⎤⎪ ⎪⎡ ⎤= − + + + +⎢ ⎥⎨ ⎬⎢ ⎥⎣ ⎦ ⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭
¥ ¥

*
t t

s t t t t t

dp dp
e f p p p i p p

f du du
 (19) 

Equation (19) will be used later to evaluate the amplitude of incident electric field 

0
e numerically as a function the polarization at top interface. In similar fashion, the 

boundary conditions at the bottom boundary = −z L  are applied. Continuation of the 

tangential components of E at = −z L  ( )2 3
=E EE E  yields an expression for the complex 

transmission coefficient;  

 ( ) ( )2

0

3 3
4 3

8
τ ⎡ ⎤= +⎢ ⎥⎣ ⎦

¥ b bp u p u
e

 (20) 

In the above, the subscript b in the polarization bp  refers to the bottom boundary. On the 

other hand, the boundary conditions for the H-field ( )3 3 2
η+ =x y xH E H  are also applied 

where 
2 xH ,

3yE , and 
3xH  are represented by equations (6), (15), and (16) respectively. The 

standard scaling procedure, then yields the following dimensionless equation 

 ( ) 2 2

0

27 3 81
1

4 2 16
τ η ⎡ ⎤+ = + +⎢ ⎥⎣ ⎦

¥
*

b b
s b b

dp dp
fe i p i p

du du
  (21)                          

Substituting the complex transmission coefficient τ from equation (20) into equation (21), 

and then eliminating the derivative *
bdp du  from the resultant equation, the following 

equation is obtained; 

 
( )( ) ( )( )( )

( )( )
2 2 2 2

2 2 4

3
6 1 4 3 4 1 2 3 4 3

9

4 2 3 2 3 9

η η⎡ ⎤− − + + − + +⎢ ⎥⎣ ⎦=
⎡ ⎤+ + −⎢ ⎥⎣ ⎦

¥ ¥ ¥

¥ ¥

* * *

*

b s b b s b b
b

b b b

i fp p p p p
dp

du p p p
 (22) 

In the former equation, the coefficient ¥* and η *
s are the complex conjugates of ¥ and ηs  

respectively. Equation (22) is used to evaluate the derivative udp du for arbitrary values of 

bp at the bottom interface z = -L. Both bp  and bdp du are used as initial conditions to 

integrate equation (12) across the ferroelectric medium. . It should be noted that the top 

boundary z = 0 is u = 0 in the scaled unit while the bottom boundary z = -L is u = -l where 

0
ω=u z c and 

0
ω=l L c . 

4. Intrinsic optical bistability in ferroelectrics 

Recently, experimental results concerning intrinsic optical bistability in a thin layer of 
BaTiO3 monocrystal were presented (Ciolek in 2006). The intrinsic optical bistability in the 
BaTiO3 monocrystal was achieved through the interaction of two lasers without the 
application of any optical resonator or external feedback. Further, experimental results 
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concerning optical bistability of polarization state of a laser beam, induced by the optical 
Kerr effect of the B5NH4 monocrystal was recently observed (Osuch 2004). The 
measurements were performed by the means of an ellipsometer of a special construction, 
which allows for the simultaneous measurement of all four polarization parameters of the 
laser light beam. Other examples of experimentally demonstrated intrinsic optical bistability 
with different setups of laser sources and geometries of samples have been reported (Hehlen 
1994, Pura 1998, Hehlen 1999 & Przedmojski 1978).  Therefore, it is equally important to 
investigate the intrinsic as well as extrinsic optical bistability in FE material and here comes 
the advantage of Maxwell-Duffing approach over the standard approach. Mathematically, 
for FE slab without partially reflecting mirrors, the mirror parameter is set to zero ( )0η =s in 
the relevant equations. Therefore, we will show graphical results of polarization, reflectance, 
and transmittance versus the electric field input intensity for FE slab as well as for FP 
resonator.   

5. Material aspects 

Generally speaking, the mathematical formulation presented here to investigate the optical 
bistability is valid for any ferroelectric insulating crystal. Particularly, ferroelectrics with 
high Kerr nonlinearity and photorefractivity. However, in order to obtain more realistic 
results, material parameters used in simulation are based on published data of BaTiO3. We 
should point out that below the Curie temperature cT , all BaTiO3 phase transitions are of 
the first-order type except that the transition from the cubic to tetragonal phase is a first-
order transition close to second-order transitions. Therefore, close to cT the 6th order term 
has to be added to the free energy F in equation (1) apart from the type of the transition 
since at cT the coefficient β is zero (Ginzburg 2005). However, well below the transition 
temperature ( < cT T ) the form provided in equation (1) may be used as an approximation 
provided that only tetragonal symmetry is considered. 

To integrate equation (12) numerically, it is necessary to evaluate certain material-

dependent parameters such as 2

0 0
ω ε⎡ ⎤= ⎣ ⎦cm M aT , damping coefficient [ ]0 0

ω ε= ΓF cg aT , 

and the coefficient ( ) 1ξ ε −
∞= caT . To determine these scaled parameters, it is necessary to 

know the dimensional parameters for BaTiO3 such as  Curie temperature cT , the inverse of 

the Curie constant a , resonance 
0

ω , and ε∞ . The value of cT  for BaTiO3 used here is  

120
o
C  which gives 393 15= K.cT . We note that, some ferroelectric literature show different 

values of cT  which slightly differ from120
o
C . However, BaTiO3 single crystals obtained are 

usually not so pure because they are grown by the flux method which makes their Curie 

point usually about 120
o
C  (Mitsui 1976). 

The inverse of the Curie constant a  is 1/C  where 5
1 7 10= × K.C  (Mitsui 1976). It should be 

noted that, several ferroelectric books uses the free energy density F in CGS units where 

4π= /a C  oC-1.  For example, as in Fatuzzo (1967), the a parameter becomes 
5

4 7 4 10π −= = × o -1
C/ .a C .  Here, the SI units of measurements are adopted for all 

dimensional physical variables. It should also be noted that other values of the Curie 

constant C (Within the range 4 5
0 8 10 1 7 10× − ×. . ) have been reported which differs 

considerably. It seems that the method of preparation and the electronic conductivity of the 

samples have great influence on the Curie constant. For further details, the reader is referred 

to Seitz (1957). To estimate the resonance 
0

ω  for BaTiO3, we use the temperature-dependent 

relation ( ) 1 2

0 0
2ω ε⎡ ⎤= − −⎣ ⎦ca T T M  for FE material exhibiting a second-order phase 
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transitions. Knowing the value of M for BaTiO3 to be -21 -26.44×10 JmA  (Murgan 2004), 
0

ω  

is found to be ( )1 213

0
1 437 10ω = × −. cT T . At room temperature, 

0
ω becomes 14

1 43 10≈ ×.  Hz. 

Other fixed material parameters are damping parameter Γ = -53.32×10 3 -2 -3Kg.m .A .s  

(Murgan 2004), and the high frequency limit of the dielectric function 3 84ε∞ = .  (Dawber 

2005).  With these values for the dimensional parameters a, Tc, 0
ω , Γ , and ε∞ , the scaled 

input parameters like m, g and ξ  may be calculated. 

Since the dimensional polarization amplitude P is scaled in terms of the spontaneous 

polarization sP at zero temperature. Therefore, the value of sP at zero temperature is 

required. An early measurement of spontaneous polarization sP  by Merz (1949) shows 

0 16≈ .sP C.m-2 at room temperature then the value drops to 0 1≈ .sP C.m-2 at zero 

temperature. However, here we will consider the value of sP  at zero temperature based on a 

later measurement on a very good BaTiO3 crystal by Kanzig (1949) and confirmed by Merz 

in (1953). The later experiment shows a value of sP  = 0.26 C.m-2 at room temperature, then it 

drops to 0 22≈ .sP C.m-2 at zero temperature. The discrepancies between the earlier and the 

later measurements of  sP  were attributed to domains which can not be reversed easily 

(Seitz 1957). The spontaneous polarization curve sP as a function of temperature (-140 oC - 

120 oC) obtained by Merz (1953) for BaTiO3 may be also found in various FE books such as  

Cao (2004) and Rabe (2007). 

Because both the dimensional electric field amplitude inside the FE medium E2 and the 

incident electric field amplitude E0 are scaled in terms of the coercive field at zero 

temperature. Therefore, the value of cE  at zero temperature is also required. First, we 

discuss the estimated value of  cE  using thermodynamic theory and its agreement with the 

experimentally observed value for BaTiO3. It is possible to estimate the value of cE  using 

the relation 3 3

0
4 27ε β= +c cE a T  once the value of the nonlinear coefficient β  is known. To 

do so, we may use the relation ( )2

0
ε β= −s cP a T T  which yields ( ) 2

0
β ε= −c sa T T P . 

Substituting the value of  0 22≈ .sP C.m-2  at zero temperature (Merz 1953),  this yields 
13

1 3 10β −≈ × 3 -1. m J . Therefore, the value of the coercive field is estimated to be 
7

4 10≈ × -1VmcE  at zero temperature. It is important to note that the value of β  obtained 

here is not comparable with those provided by Fatuzzo (1976) and Mitsui (1976) due to the 

difference in the system of units. In fact their free energy coefficients have different 

dimensions based on the CGS system of units. However, the value of β  obtained here is 

comparable with that of Murgan (2002) who estimated the value of β  to be 
13

1 9 10
−≈ × 3 -1. m J at room temperature based on a value of sP  = 0.1945 C.m-2 and 

5
1 669 10= × K.C . The small difference between the value of β  obtained here and that of 

Murgan (2002) is due to the difference in the value of the spontaneous polarization sP  and 

thermodynamic temperature.   

The theoretical value of the coercive field value 7
4 10≈ × -1VmcE  calculated at zero 

temperature using the formula 3 3

0
4 27ε β= +c cE a T  is in good agreement with other 

theoretical values calculated elsewhere. For example, a theoretical value of  
7

1 5 10≈ × -1. VmcE  for bulk BaTiO3 was mentioned by Mantese (2005). However, the 

theoretical value of cE  predicted by thermodynamic theory is found to be two orders of 

magnitude larger than the experimentally observed value (Seitz 1957). For example, an 

experimental value of 5
3 34 10= × -1. VmcE  for BatTiO3 at room temperature was mentioned 

by Feng (2002). Here, we use 5
1 2 10= × -1. VmcE  for bulk BaTiO3 at zero temperature based 

on  the measurements by Merz (1953) which is more familiar in ferroelectric literature. 
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6. Numerical procedure 

In linear régime, reflectance R and transmittance T are independent of the electric field 

input intensity
0

E and the usual results presented in linear optics are R and T versus the 

scaled thickness
0

ω=l L c . However, in nonlinear optics, as seen from equations (17) and 

(20), R and T are directly dependent on the electric field incident amplitude
0

e , and other 

material parameters such as temperature and thickness. Nonlinear optics text books usually 

illustrate the optical bistability by showing T versus 
2

0
e for fixed value of thickness L and 

frequencyω .  Therefore, our aim here is to generate graphs of this type within our current 

formalism. Since there is no incoming wave in medium 3, it is more convenient to integrate 

equation (12) across the FE medium from the bottom interface at 
0

ω= − = −u l L c  to the top 

interface at 
0

0ω= =u z c . 

Our numerical strategy is basically similar to the computation presented in chapter three 

which can be summarized as follows: we assume the polarization at the bottom boundary 

bp  to take an arbitrary real value *( )b bp p=  and evaluate the first derivative bdp du  from 

equation (22).  The choice bp to be real rather than complex is justified in the work by Chew 

(2001). We then integrate equation (12) as an initial value problem from the bottom 

boundary = −u l  to the top boundary 0=u . The integration process keep tracks of the 

polarization and its derivative across the medium up to the top boundary 0=u . As a result, 

for each arbitrary value of bp  at bottom boundary, we obtain the corresponding value of the 

polarization at top boundary tp ,  its complex conjugate tp∗ , its first derivative tdp du  and 

its first-derivative complex conjugate *
tdp du . For certain input parameters, substituting tp , 

*
tp , tdp du , and *

tdp du  into equation (19), we obtain the corresponding value of electric 

field incident amplitude 
0

e . Similarly, the reflectance 
2=R r  is obtained by substituting tp  

and *
tp  into equation (17). On the other hand, we evaluate the transmittance 

2τ=T at 

bottom boundary by substituting the polarization at bottom boundary bp  and its complex 

conjugate *
bp  into equation (20). The integration procedure is then repeated for a large 

number of arbitrary bp values and for each time we evaluate  
0

e , R, and T.   

Similar numerical scheme to integrate a nonlinear dielectric FP resonator is used by Chew 

(2001) to evaluate the transmittance of dielectric FP resonator. However, Chew (2001) have 

generated their plots based on a fixed-step 4th order Runge-Kutta solver modified for 

complex variable. They therefore, had to perform an interpolation and curve fitting to a raw 

set of points in the 
0

−T e plane to obtain the optical bistability curves. Here, we have found 

that the explicit Runge-Kutta method with variable-step solver (Dormand 1980) is capable of 

producing more accurate results and therefore, an interpolation or any curve fitting is not 

required and the Bistability curves are generated naturally.  

7. Effect of mirror reflectivity 

To make a physical significance of the mirror parameter ηs  that appeares as a result of the 

existance of partially reflecting mirrors at the interfaces of the Fabry-Perot resonator, it is 

useful to to find the corresponding mirror reflectivity MR  of each value of ηs . To do so, we 

use 
1 1

ρ ρ+ += *
, ,M j j j jR where 

1 1 1
ρ η η+ + +⎡ ⎤ ⎡ ⎤= − − + +⎣ ⎦ ⎣ ⎦,j j j j j jk k k k  (Lim 1997) is the elementary 

reflection coefficient off medium 1+j to medium j . jk and 
1+jk are the wavenumbers of 

medium j and medium j+1 respectively. The coeffecient
1

ρ +
*

,j j  is the complex conjugate of 

1
ρ + ,j j and η accounts for the mirror contribution. In fact, MR gives the reflectivity of a 
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mirror placed at the interface of a medium in linear regeme. If both media are nonabsorbing 

dielectric with ω=k n c , the coefficient 
1

ρ + ,j j  may be written in terms of refractive index n 

and a scaled mirror parameter ηs  as 
1 1 1, [ ]/[ ]j j j j s j j sn n n nρ η η+ + += − − + + . If a perfect 

dielectric nondispersive mirror with conductivity 0σ =M  is considered, the mirror 

coefficient ηs reduces to η− ,s bi  and the mirror reflectivity MR becomes; 

 ( ) ( )2 2
2 2

1 1
η η+ +

⎡ ⎤ ⎡ ⎤= − + + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦, ,M j j s b j j s bR n n n n  (23)                          

For convenience in numerical simulation, it is simpler to consider MR assuming a range of 

values between 0 and 1, and then evaluating the corresponding mirror parameterη ,s b using 

equation (23).  

Fig. 2 shows the mirror parameter η ,s b  versus power reflectivity of the coating mirror 

MR based on equation (23). Here, the linear refractive index [ ]1 2

2
( )n ε ω=  of the ferroelectric 

medium calculated using equation (7) is 
2

2≈n  at frequency
0

1 1ω ω= = .f .  The curve 

shows that at 0η =,s b , the reflectivity of the surface is 0 11≈ .R and he mirror reflectivity MR  

increases gradually with increasing the mirror parameterη ,s b . The corresponding value of  

MR  is then found for each value of η ,s b using Fig. 2. To examine the effect of the mirror 

parameters η ,s b on the propagation of the polarization wave, we may use equation (12) to 

plot p  versus l for different values of  η ,s b  (Fig. 3). The solid curve in Fig. 3 shows  p  

versus l for 0η =,s b (corresponding to 0 11≈ .R ), the dashed curve is for 2η =,s b  

(corresponding to 0 38= .MR ), the dotted curve for 5η =,s b  (corresponding to 0 76= .MR ), 

and finally the thin-solid curve for 10η =,s b  (corresponding to 0 92= .MR ). A comparison 

between these curves shows a significant increment of the polarization amplitude 

p accompanied by a phase shift which becomes more noticeable with increasing mirror 

reflectivity MR . Such increment in the wave amplitude and the corresponding phase change 

may be due to the constructive interference that gradually builds up as the result of the 

mirror coating.  A highly reflecting mirror plays an important role in improving the bistable 

performance of a FP resonator particularly it improves its threshold value of bistable 

operation as will be explained in the upcoming graphs. 

As explained in the previous section, the integration of equation (12) as initial value problem 

together with the boundary conditions allows us to determine the polarization at top and 

bottom boundary. Further, the electric field incident amplitude is also determined using 

equation (19). Therefore, we are able to plot the polarization at each boundary as a function 

of the electric field incident amplitude. To plot the reflectance R = |r|2 versus electric field 

incident amplitude 
0

e , both equation (17) and equation (19) are used. Finally, to plot the 

transmittance T = |τ|2, versus
0

e , both equation (20) and equation (19) are used. 
In Figs. 4 we present the optical bistability of a Fabry-Perot resonator coated with an 
identical pair of partially reflecting dielectric mirrors. The effect of mirror parameter 

,s bη (mirror reflectivity RM) on the optical bistability is is investigated  for various system 

variables namely, the polarization p, the reflectance R and the transmittance T.  In each 
graph of Figs. 4 family, the curves are generatd for various mirror parameters (η ,s b = 0, 0.1, 

0.2, 0.5 and 1, which correspond to RM = 0.11, 0.128, 0.13, 0.15 and 0.2 respectively) while 
other parameters are fixed at frequency f = 1.1, thickness l = 1.9, 3 84ε∞ = . , resonance 

14

0
1 4 10.ω = × Hz (evaluated at room temperature). The graphs in general feature typical 
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Fig. 2. Scaled mirror parameter [ ]η ε δ ω=,s b M M c  versus mirror reflectivity 
21 21

ρ ρ= *
MR  

placed at single interface between 2 media for scaled frequency f = 1.1, linear refractive 

index
2

2=n and 
1

1=n .   

 

 

Fig. 3. Scaled polarizations
0

p P P= versus scaled thickness 
0

l L cω=  for different mirror 

parameters ,s bη . Other parameters are f = ω/ω0 = 1.1 and ε∞ = 3.84. 
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bistability curves.  They demonstrate the enhancement of the optical bistability due to the 

external feedback provided by the coating mirrors. In  case η ,s b = 0 (solid curves in Figs. 4) 

which correspond to a ferroelectric slab, the curves do not show any bistability and the 

response is essentially linear. In this case, it seems that the intrinsic feedback mechanism is 

insufficient to generate a bistable behavior. The rest of the curves illustrate that for each 

value of mirror parameter η ,s b , the bistability in p , R, and T is extended over the same 

range of 
0

e .  Further, as the mirror reflectivity increases, the bistable behavior becomes 

more pronounced. For example at 0 1η =, .s b , (the dashed-curves in Figs. 4) the bistability is 

barely noticeable, it extends over the range 
0

52040e to 
0

52270e .  At 0 2η =, .s b , (the 

dotted-curves in Figs. 4) the bistability is more noticeable and its range is shifted to much 

lower values of 
0

e , where it extends over the range 
0

50380e  to 
0

51200e . At 0 5η =, .s b , 

(the -o- curves in Figs. 4), a wider range of optical bistability is obtained, which begins at 

0
47200e  and ends at 

0
49100e . Finally, at 1η =,s b , (the -□- curves in Figs. 4), the 

bistability range is shifted to even lower values of 
0

e , ranging from 4535  and end at 4725 . 

This certainly suggests that the bistability operation is improved upon increasing the mirror 

reflectivity. However, from the experimental point of view some important factors should 

be taken care of, first, the mirror material should be chosen in such a way it does not react 

chemically with the nonlinear medium. Second, crystal surface should be parallel to the 

mirror surface which requires careful alignment. Third the operating frequency should not 

be very close to resonance to avoid highly-absorption rates of the crystal.  Unfortunately, we 

are unable to generate graphs for higher values of η ,s b due to numerical instability. 

However, the curves here are sufficient to show the relationship between the optical 

bistability and mirror reflectivity.  

Next is to draw the attention to the relationship between the bistability in the polarization 

p and reflectance R or transmittance T. Observation of these graphs shows that the 

bistability in R (Fig. 4(b)) is basically a manifestation of the bistability in tp (Fig. 4(a)) 

while the bistability in T (Fig. 4(d)) is a manifestation to the bistability in bp (Fig. 4(c)). 

This is explained by equations (17) and (20) where reflectance R and transmittance T are 

basically a function of the polarization and other material parameters. Further, the optical 

bistability in the macroscopic polarizarion is in fact due to the optical bistability in the 

microscopic polarization where the individual molecules responds nonlinearly to the 

driving field (Goldstone and Garmire 1984, Ibrahim and Osman 2008). In fact, this is 

where the advantage of Maxwell-Duffing approach is affirmed over the standard analysis 

in nonlinear optics, the ability to model both intrinsic and extrinsic optical bistability in 

one approach. 

Finally, curves in Figs. 4 suggest that the threshold value of 
0

e for bistability is significantly 

reduced by increasing mirror parameter or equivalently the mirror reflectivity. For 

0 1η =, .s b ,  (the dashed-curves in Figs. 4), the threshold value of the optical bistability occurs 

at 
0

52040
th

e , and, for 0 2η =, .s b , (the dotted-curves in Figs. 4) the optical bistability starts 

at
0

50380
th

e . For 0 5η =, .s b , (the -o- curves in Figs. 4), the optical bistability starts at 

0
47200

th
e and for 1η =,s b , (the -□- curves in all Figs. 4), the optical bistability begins at 

0
45350

th
e . Therefore, a systematic decrease of the threshold value of the driving field 

0 th
e required for optical bistability is obtained upon increasing the mirror parameter η ,s b or 

the mirror reflectivity. 
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Fig. 4.(a) Polarization t tp = P Ps  at top boundary versus electric field incident amplitude 

0 0 ce E E= for different mirror parameters ,s bη = 0, 0.1, 0.2, 0.5 and 1 corresponds to mirror 

reflectivity RM = 0.127, 0.128, 0.13, 0.15 and 0.2. Other parameters are
0

= 1.1f ω ω= , 

0
= 1.9l L cω= , 3.84ε∞ =  with = ct T T  evaluated at room temperature. 

 

 

Fig.  4.(b) Reflectance R
2

= r  versus 0e  for different mirror parameters. Other parameters 

remain as in Fig. 4(a) 
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Fig . 4.(c)  Polarization b bp = P Ps  at bottom boundary ω0u = - L c = - l  versus electric 

field incident amplitude 0 0 ce = E E for different mirror parameters ,s bη  as on Fig. 4(a). 

Other parameters remain as in Fig. 4(a). 

 

 

Fig. 4.(d) Transmittance τT
2

=  versus electric field incident amplitude 0 0 ce = E E  for 

different mirror parameters as in Fig. 4(a). Other parameters remain as in Fig. 4(a) 
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An increment in the mirror reflectivity seems to have its effect on both R and T, the 

switching “on” and “off” values. Observation of Fig. 4(b) shows that, for 0 1η =, .s b , (the 

dashed-curve), the reflectance switches between 0 27≈R .off  “off state” and 0 45≈R .on “on 

state”. For 1η =,s b , (the -□- curve), the R “off” state increases up to 0 32≈R .off while the “on” 

state remains at 0 45≈R .on . Similar behavior of transmittance T is also noticed in Fig.  4(d), 

while the “off” state remains at nearly  0≈Toff , the “on” state decreases gradually with 

increasingη ,s b . This is an ideal optical switch switches between “1” and “0” as the “on” and 

“off” state. Therefore, a better bistable operation seems to be a trade-off between mirror 

reflectivity and other material parameters.  In other words, even a highly-reflective mirror 

may decrease the threshold value of the optical bistability and yet it may decrease the 

quality of the device as an optical switch.    

It is also observed that, the nonlinear response of the system exists only for a certain range 

of input intensity
0

e . Interestingly, the system’s response to the driving field becomes linear 

again above this range. For example, for 1η =,s b , the optical bistability starts at 
0

45350
th

e , 

below that threshold value of 
0 th

e  the system response is linear, and then the system starts 

a bistable period up to 
0

47250
final

e , beyond this value, it responds linearly to the driving 

field again. We have found that obtaining one bistable period through variation of ..over a 

wide range  is basically due to a choice of relatively thin sample (
0

1 9ω= = .l L c ). Increasing 

the thickness usually results in multistability as will be explained in the next section. It 

should be noted that a much higher values of the driving field 
0

e from the laser source is 

not advisable since it may result in a material breakdown. 

8. Effect of frequency 

In Figs. 5, the reflectance R and transmittance T versus electric field incident amplitude 

0 0
= ce E E are plotted for different operating frequencies

0
ω ω=f  at room temperature.  

Other parameters are fixed at 
0

3ω= =l L c , 0η =,s b  and 3 84ε∞ = . . Two important features 

occur as the result of changing the operating frequency 
0

ω ω=f . First is the change of the 

threshold value of the electric field incident amplitude required for optical bistability. 

Second is the change in the switching amplitude (the “on” and “off” state). Observation of 

Fig. 5(a) shows that, far above the resonance ( )3 1orf f= 4 , the threshold value of optical 

bistability is 4

0
5 87 10≈ ×.

th
e .  In this case, the reflectance (curve i) switches between 

0 55.on ≈R and 0 08.off ≈R while the transmittance (curve ii) switches between 0 8.on ≈T and 

0 15.off ≈T . Observation of Fig. 5(b) shows that, slightly above the resonance 

( )1 4 1. orf f= > , the threshold value of optical bistability is 4

0
1 85 10≈ ×.

th
e . In this case, 

the reflectance (curve i) switches between 0 61.on ≈R  and 0 05.off ≈R  while the 

transmittance (curve ii) switches between 0 9.on ≈T  and 0 1.off ≈T . Therefore, a comparison 

between Fig. 5(a) and Fig. 5(b) shows that at 1 4= .f , a better switching in T as well as a 

lower threshold value is obtained comparing to the case of 3=f .  

At resonance ( )1=f , observation of Fig. 5(c) shows that, the threshold value of the optical 

bistability is 3

0
5 6 10≈ ×.

th
e .  Two points are worth noted.  First, the bistabile response is 

possible even at resonance where absorption in the FE material is the highest.  Secondly, the 

threshold value of 
0

e  needed to induce bistability is much lower. However, even the 

optical  bistability in reflectance is still noticeable; the transmittance in this case is practically  
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Fig. 5.(a).  Reflectance R and transmittance T versus electric field incident amplitude 

0 0 ce E E=  at frequency f = 3. Other parameters are fixed at thickness
0

1l L cω= = , mirror 

parameter 0,s bη =  and 3 84.ε∞ = .   

 

 

Fig. 5.(b). Reflectance R and transmittance T versus electric field incident amplitude 

0 0 ce E E=  at frequency f = 1. Other parameters remain as in Fig. 5(a). 
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Fig. 5(c). Reflectance R and transmittance T versus electric field incident amplitude 

0 0 ce E E=  at frequency f = 0.8. Other parameters remain as in Fig. 5(a) 

 

Fig. 5(d). Reflectance R and transmittance T versus electric field incident amplitude 

0 0 ce E E=  at frequency f = 0.2. Other parameters remain as in Fig. 5(a) 
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zero. Observation of Fig. 5(d) shows that, slightly below the resonance ( )0 8 1. orf f= < , the 

threshold value of optical bistability is 3

0
6 10≈ ×

th
e . In this case, the reflectance (curve i) 

switches between 0 61.on ≈R and 0 02.off ≈R while the transmittance (curve ii) switches 

between 0 88.on ≈T   and 0 02.off ≈T . Fig. 5(e) shows that, far below the resonance 

( )0 2 1. orf f= 2 , the threshold value of optical bistability is the lowest ( )0
570≈

th
e . In this 

case, the reflectance (curve i) switches between 0 74.on ≈R and 0 36.off ≈R while the 

transmittance (curve ii) switches between 0 22.on ≈T  and 0off ≈T . This means, even the 

threshold value of bistability is dramatically decreased, yet there is a decrease on the 

switching contrast between the “on”  and  “off”  states of the switching.  

Therefore, in general, the main features of bistability curves above the resonance ( )1>f are 

found to be similar to those below the resonance ( )1<f  and a better bistability is obtained 

when the operating frequency approaches the resonance of the material from below or 

above. The enhancment of the optical bistability near resonance can be explained as a result 

of increasing the magnetude of certain tensor elements of the third-order dielectric 

susceptibility in this region. On the other hand, the reason for nearly zero transmittance at 

the exact resonance (curve i in Fig. 5(c)) may be viewed as a result of  rapid depletion of 

incident optical pump wave or the newly generated signal wave (He  2000). Therefore, the 

proper choice of the operating frequency is a compromise between the enhancement of the 

nonlinear susceptibility and the attenuation of the useful optical wave. For this reason, an 

operating frequency in a quasi-resonance is often employed by tuning the frequency of the 

incident laser beam to be close but not equal to the resonance of the medium. The threshold 

value of the optical bistability decreases in general with decreasing f.  However, from our 

calculated curves for a larger range of frequencies, some variation in the threshold values 

are found. For example, the threshold value of
0

e  at 0 8= .f is slightly higher than that of 

0
e at 1=f as seen from Fig. 5.7(c) and Fig. 5.7(d). This is may be due to the variation in 

detuning but the main effect remains.  

9. Conclusion 

The Maxwell-Duffing analysis has been employed to study the optical bistability of a 

ferroelectric slab as well as a Fabry-Perot resonator coated with two identical partially-

reflecting dielectric mirrors. The nonlinear response of the polarization P to an optical 

driving field E using the Landau-Khalatnikov dynamical equation has been modeled. The 

Landau-Devonshire free energy expression for bulk FE material assumed to exhibit a 

second-order phase transition has been utilized.  Using single frequency approximation and 

assuming normal incidence, the driving field in the LK equation is substituted into the 

electromagnetic wave equation to produce a nonlinear polarization equation.  For 

convenience in numerical simulation, all variables are converted into dimensionless form. 

The resulting nonlinear polarization equation is numerically integrated across the thickness 

of the FE medium. With the application of the exact nonlinear boundary conditions, 

expressions for both reflectance R and transmittance T are derived as a function of the total 

polarization p, electric field incident amplitude
0

e , and other material parameters such as 

temperature. The behaviors of the polarization at top and bottom interface, reflectance R, 

and transmittance T have been plotted versus electric field incident amplitude
0

e . The 
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effects of mirror parameterηs , and frequency f on the optical bistability have been 

investigated. The input parameters used in this simulation are based on available 

experimental data of BaTiO3.   

It is found that the system responds linearly to the driving field at relatively low electric 

field incident amplitude
0

e . After 
0

e  exceeds certain threshold value, the response 

becomes nonlinear.  The threshold value of the bistability phenomenon was found to have a 

function of mirror reflectivity MR , and operating frequency f . The bi-stability in both 

reflectance and transmittance has been demonstrated which is a manifestation of the 

bistability in the polarization itself. The bistability in the macroscopic polarization is 

proportional to the bistability in the microscopic domain. The current approach is more 

suitable for ferroelectrics particularly at frequency ranges where the nonlinear response of 

the material is strong and resonant. The intrinsic optical bistability obtained is in agreement 

with the experimental results of intrinsic optical bistability obtained recently for BaTiO3 

(Ciolek 2006). 
This method could be applied to oblique incidence and to multilayers. Apart from the 

considerable difference between this approach and the standard approach in nonlinear 

optics, the graphs shown are qualitatively similar to those found in the textbook analysis.    

It might also be possible to study the behavior of this system without the use of single 

frequency approximation to examine the characteristics of the full dynamic in time domain 

which may lead to chaos.  
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