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1. Introduction     

Wireless Sensor Network (WSN) is a very powerful tool that enables its users to closely 
monitor, understand and control application processes. It is different from traditional wired 
sensor networks in that its characteristics make it cheap to manufacture, implement and 
deploy. However, this tool is still at an early stage and many aspects need to be addressed in 
order to increase its reliability. One of these aspects is the degradation of network 
performance as a result of network nodes deviation. This may directly reduces the quality 
and the quantity of data collected by the network and may cause, in turn, the monitoring 
application to fail or the network lifetime to be reduced. 
Deviations in sensor node operations arise as a result of systematic or/and transient errors 
(Elnahrawy, 2004). Systematic error is mainly caused by hardware faults, such as calibration 
error after prolonged use, a reduction in operating power levels, or a change in operating 
conditions; this type of error affects node operations continuously until the problem is 
rectified. Transient errors, on the other hand, occur as a result of temporary external or 
internal circumstances, such as various random environmental effects, unstable hardware, 
software bugs, channel interface, and multi-path effects. This type of error deviates node 
operations until the effect disappears.  
These two types of error may directly and indirectly affect the quality and the quantity of 
data collected by the WSN. They directly affect sensor measurements and cause drift by a 
constant value (i.e. bias); they change the difference between a sensor measurement and the 
actual value, (i.e. drift); and can cause sensor measurements to remain constant, regardless 
of changes in the actual value, (i.e. complete failure). In addition, they affect the 
communication and exchange of packets by dropping them. On the other hand, the above-
mentioned errors can have an indirect effect on the network’s collaboration function, the 
construction of routing tables, the selection of the node reporting rate, and the selection of 
data gathering points. Analysis of the data collected by the network (in some practical 
deployments, such as (Ramanathan, 2004), (Tolle, 2005)), shows that these error reduces the 
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quality of network collected data by 49%; and in some cases, the network had to be 
redeployed in order to collect the data because of  the failure of the monitored application. 
Analysis also indicate that a 51% overall improvement of WSN functionality can be 
expected, as well as an improvement in the quality of the collected data, if real-time 
monitoring tools are used. 

 
2. Motivations 

To detect and isolate operational deviations in WSNs researchers proposed several data 
clearance, fault-tolerance, diagnosis, and performance measurement techniques.       
Data cleaning techniques work at a high network level and consider reading impacts from a 
deviated sensor on multi-sensor aggregation/fusion such as in (Yao-jung, 2004). Such 
research proposes several methods that isolate deviated readings by tracking or predicting 
correlation between neighbour node measurements. Most of this research uses complex 
methods or models that need a high resource usage to detect and predict sensor 
measurements. Moreover, these techniques rectify deviated data after detecting them 
without checking their cause and their impact on network functionality.  
Fault-tolerance techniques are important in embedded networks which are difficult to access 
physically.  The advantage of these techniques is their ability to address all network levels; 
such as circuit level, logical level, memory level, program level and system level; but due to 
WSNs scare recourses these techniques have a limited usage. In general WSNs fault-tolerant 
techniques detect faults in fusion and aggregation operation, network deployment and 
collaboration, coverage and connectivity, energy consumption, energy event fault tolerance, 
reporting rate, network detection, and many others (Song, 2004, Linnyer, 2004, Bhaskar, 
2004, Koushanfar, 2003, Luo, 2006). Faults are detected using logical decision predicates 
computed in individual sensors (Bhaskar, 2004), faulty node detection (Koushanfar, 2003), 
or event region and event boundary detection (Luo, 2006). These methods detect metrics 
either at high or low network level without relating them to each other and without 
checking their impact on network functionality. The main problem with these techniques is 
the impact of deviation on network functionality and collected data accuracy before it is 
detected. 
Diagnosis techniques use passive or active monitoring to trace, visualize, simulate and 
debug historical network log files in real and non real time as discussed in (Jaikaeo, 2001). 
These techniques are used to detect faults at high or low network levels after testing their 
cause. For example, Nithya at (Ramanathan, 2005) proposed a debugging system that 
debugs low network level statistical changes by drawing correlations between seemingly 
unrelated, distributed events and producing graphs that highlight those correlations. Most 
of these diagnosis techniques are complex and use iteration tests for their detection. These 
techniques assume a minimal cost associated with continuously transmitting of debug 
information to centralized or distributed monitor nodes and send/receive test packets to 
conform the detection of a faultier.  
Finally, performance techniques are similar to diagnosis techniques but without iteration 
tests and screw pack techniques. Unfortunately there is little literature and research on 
systematic measurement and monitoring in wireless sensor networks. Yonggang in 
(Yonggang, 2004) studied the effect of packet loss and their impact on network stability and 
network processing. He studied the effect of the environmental conditions, traffic load, 
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network dynamics, collaboration behavior, and constraint recourse on packet delivery 
performance using empirical experiments and simulations.  Although packet delivery is 
important in wireless communication and can predict network performance, it can give 
wrong indications of network performance level due to collaboration behavior, and 
measurement redundancy which makes a network able to tolerate a certain degree of 
changes. Also, Yonggang proposed an energy map aggregation based approach that sends 
messages recording significant energy level drops to the sink. 
The work in this paper has been motivated by the need to find a tool that uses a very low 
level of network resources and detects deviations in the network’s operations that affect the 
quality and quantity of the data that are collected before they seriously degrade the 
network’s overall functionality and reduce its lifetime. 

 
3. Project Methodology  

3.1 Layout of manuscript  

The layout of  this paper is organised as follows: Section 2 includes a discussion of related 
work on functionality degradation detection in WSNs, followed by an explanation of the 
algorithm’s approach. The fourth section explains the practical implementation of the 
algorithm in a TinyOS ‘Surge’ multi-hop application; results of experiments at the network 
level are then discussed. Finally, the paper ends with a conclusion and suggestions for 
future work. 

 
3.2 Algorithm Approach 

In order to overcome the above-mentioned drawbacks, the Voting Median Base Algorithm 
for Approximate Performance Measurements of Wireless Sensor Networks (VMBA) 
algorithm is proposed.  This algorithm is a passive voting algorithm that collects its metrics 
directly from the application by utilizing the overhearing which exists in the 
neighbourhood. The algorithm requires only readings of neighbours’ measurements and 
does not rely on any information regarding global topology. This makes it scalable to any 
network deployment size. The proposed algorithm uses parameters found in nodes for 
other networking and application protocols which makes it much cheaper in terms of 
resource usage. It uses only the transceiver to send warning messages if there is a network 
performance degradation or when the node disagrees with the warning messages of 
neighbours.  
The algorithm is divided into four different modules; i.e. listening and filtering, data 
analysis and threshold test, decision and confidence control and warning packet exchange. 
In this section we give some definitions and then the VMBA functional algorithm is 
presented. 
  

A. Listening and Filtering Module 

The listening and filtering module is responsible for examining the validity of the received 
neighbour nodes measurements by filtering those readings beyond the range of the sensor’s 
physical characteristics; as shown in the pseudo-code in Fig.1 . The module then constructs 
neighbour readings tables and builds statistics in the loss table for neighbour readings.  
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1: Each iS
 senses the phenomenon and wait for    

     time T to receive N( iS
) readings 

2:    IF  t > T THEN 

3:      For each unreceived 
i

jx
 increment 

i

jL
; 

4:       IF     LC >
i

jx
> MC  

5:       Remove 
i

jx
 from data set and increment 

i

jD
   

6:      Calculate  imed  of  the available iS
 data set 

Fig. 1. VMBA Algorithm Module 1 
 
B. Data analysis and Threshold Test Module 

The second module; i.e. data analysis and threshold test module; tests the content of these 
tables. This is done by evaluating the data with regard to assigned dynamic or static limits 
calculated from a reference value or median.   
The proposed algorithm has followed a straightforward approach in calculating faulty 
deviations in sensor functionality. Its analysis assumes that true measurements of a 
phenomenon’s characteristics, following a Gaussian pdf, centred on the calculated median 
of neighbourhood readings. Any deviation is controlled by the correlation expected at the 
end of the sensing range of a node, and the sensor nodes’ measuring accuracy (where most 
of the physical processes monitored by WSNs are typically modeled as diffusion models 
with varying dispersion functions). This assumption is based on the fact that random errors 
are normally distributed with a zero mean and standard deviation is equal to the 
specification of the goals designed for the nodes and the network. Any sensor measurement 
that is not in this region is considered deviated to a degree equal to the ratio of the distance 
from the neighbourhood median value to the median value.  

 

1: IF  |
imed -

1imed 
| > med  

    Increment 
iM  and let 

imed =
1imed 
 

2:    jd = |
imed -

i

jx | 

3:         IF 
jd >

1
  and  | i

ix - i

jx | <
1

  

4:             Increment  i

jCOV  

5:          ELSE increment  
iR  

6:                  IF     iR

k

 > 40% 

7:                     Increment  
iN  

8:                          IF  iR

k

*
jd >

1
  

9:                            Increment i

jD  

Fig. 2. VMBA Algorithm Module 2 
 


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


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In addition, the second module tests the effect of losses on the reliability of the collected data 
by calculating the degree of distortion in the neighbourhood data that has occurred because 
of its affect on the collected data accuracy and network functionality. This is done by 
calculating the ratio of the number of healthy readings to the total number readings as 
shown in Fig 2  step 8. 
 
C. Decision Confidence Control Module 

The third module; i.e. Decision confidence control module; is concerned with tracking 
changes in the health of neighbour nodes in an assigned time window. This is set depending 
on the characteristics of the network application and the required response detection time. If 
exceeded, a request is sent to module four in order to send a detection message to the sink 
identifying suspected node number, the type of fault, the number of times it has been 
detected and the effect of the detection on the neighbourhood data and communication. The 
function of this module is shown in Fig 3. 
 

1:    Calculate 
iML  

2:    IF  
iML  > 60% 

3:      Send to module 4 a request to send an inefficient  
         power consumption warning message 
4:         IF 

iM > 
M  

5:            Send to module 4 a request to send a 
                neighbourhood malfunction  due to losses 
                warning message 
6:                 IF  i

jCOV  > 
C  

7:                Send to module 4 a request to send to 
                   detecting node j  a coverage    
                   problem message 

8:       IF  distortion > 
d  & median of i

jL  > 60% 

9:         Send to module 4 a request to send a 
            degrade detection in network  
            functionality message 
10:                                 IF i

jD  >    
w     

11:                                 Send to module 4 a request  
                                      to send a detection of node 
                                      j  malfunction message 

Fig. 3. VMBA Algorithm Module 3 
 
D. Warning Packet Exchange Module 

When module four receives a send request,  it checks its neighbours warning exchange 
memory to ensure that none of the neighbour nodes have reported the same fault in that 
monitoring window period. If none of the neighbours have so reported, it sends a message 
or it cancels the request. In addition, this module tests warning messages received from its 
neighbours with statistics from module three. If the suspected node flags up a counter 
indication smaller than a threshold, a message will be released indicating 
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‘NO_FAULT_EVIDENCE’ regarding the received warning message. On the other hand, if 
the threshold is higher or equal to the threshold, then the node cancels any similar warning 
message request from module three during that monitoring period. This is to ensure the 
reliability of the warning message detection and to correct any incorrect detection that may 
occur because of losses or other network circumstances. Moreover, module four reduces the 
algorithm warning packets released by checking if any of its neighbours sent the same 
message at that time interval. If it been sent the algorithm is going to discard module three 
requests as shown in Fig. 4 part 3. 
 

1: Receiving neighbour warning 
a) Check received warning with the same module 3    counter of reported node. 
b) IF module 3 counter < 30% 
c) Release ‘NO-EVIDENCE-OF-FAULT’ message 
d) ELSE flag the stop sending of the same message from the node at this monitoring 

time.   
 2: Receiving module 3 request 
a) Test stop flag of received request warning  
b) IF flag = 1 discard message 
c) IF send message repeated 3 times send stop reporting the fault message and flag stop 

fault counter. 
d) ELSE send the requested message by module 3. 
 3: Testing warning packet release 
a) IF detected fault returns to normal reset the same fault counters, send 

‘FAULT_CLEAR’ message and recalculate protocol tables. 
b)  IF step 2 and 3-a alternate for the same fault three times in a predefined monitoring 

window, the module send s an ‘UNSTABLE_DETECTION’ warning message to 
report  the  detection and flags  a permanent fault  counter  to stop reporting  the 
same fault. 

c) By the end of the predefined period reset all counters. 

Fig. 4. VMBA Algorithm Module 4 

 
4. Performance Evaluation  

VMBA algorithm performance can be evaluate on eight different aspects: deviation 
detection in single and multi-hop levels, algorithm detection threshold, algorithm detection 
confidence, algorithm spatial and temporary change tracking for sensor nodes, the impact of 
packet losses on algorithm analysis, resource usage at node and network levels, the impact 
of algorithm programming location in the protocol stack, and algorithm released warning 
messages. In this paper, we considered the empirical performance evaluation of the 
algorithm at the network level. 

 
4.1 Algorithm Programming in Protocol Stacks 

The algorithm was implemented on a Berkeley (Crossbow) Mica2 sensor motes testbed that 
was programmed in nesC on TinyOS operation system. This is done by building the 
proposed algorithm on the TinyOS multi-hop routing protocol.  
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The TinyOS multi-hop protocol consists of MultiHopEngineM; which provides the over all 
packet movement logic for multi-hop functionality; and MultiHopLEPSM; which is used to 
provide the link estimation and parent selection mechanisms. These two TinyOS 
components were modified by added different functions from the proposed algorithm 
modules as shown at Figure 5.  

 
 

 

Fig. 5. Functions added to multi-hop components and links between the components 
 
In order to send detected warning packets, a new packet type was constructed. This new 
packet carries the algorithm detection parameters; as shown at Figure 6. It has a total length 
of 20 bytes, the last 8 are used for algorithm detection, while the first 12 follow the multi-hop 
protocol configuration. This is to route the released warning packet in the network. 
 

 

 
 
 

Fig. 6. Algorithm warning message packet 
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At the algorithm detection part, the first byte carries the total number of readings, that is the 
number of neighbour nodes in addition to the monitoring node. The next two bytes carry 
the number of neighbors detected by the node as dead and deviated respectively. This is 
followed by a byte that carries the identification number of the detected faulty neighbour 
node. The byte after this carries the type of fault codes; as shown in Table 1; and the final 
two bytes carry the number of times that the monitoring node detect the reported fault. 

 
5. Experimental Setting and Evaluation Metrics  

Several experiments were conducted indoors at the High Speed Network Research Group 
Lab in Loughborough University to test the proposed algorithm’s functionality in real 
sensor network scenarios. These experiments were conducted in the presence of other 
devices that are able to interfere with the sensor transmission and reduce the antennae 
performance; these offer experiments in a dynamic topology and in circumstances of high 
packet losses.  Some of these experiments were conducted to test the algorithm’s 
functionality under multi-hop and highly dynamic topology configurations. These 
experiments used 13 Mica2 sensors, measuring temperature, distributed in an area of about 
4mX5m. The nodes were programmed with the output power of -20 dBm and had top bent 
antennae to limit their communication range. In this configuration, the nodes were divided 
into two groups which overlapped in an area between them; thus, some of the nodes around 
the edge could not hear or communicate with each other (as shown in Figure 7). Moreover, 
this configuration forced the topology to be highly dynamic. This leads nodes to miss 
hearing each other and frequently change their multi-hop routing parents in the sink. These 
experiments used Mica2 nodes attached to a MIB510 programming board as a base station 
connected to a computer serial port. A snooping node was also added to the network setting 
with its power programmed to the maximum (i.e. 5dBm) in order to listen to 
communications among all the nodes within the network and to track packet exchanges in 
the multi-hop without increasing the usage of resources of the network’s sensor nodes. 
 

Fault Type Code 

TOPOLOGY_UNSTABLE 0 

FAULT_TYPE_DEVIATION 1 

FAULT_TYPE_COMMUNICATION 2 

FAULT_TYPE_COVERAGE 3 

FAULT_TYPE_ENERGY_CONSUMPTION 4 

NO_EVEDENCE_OF_FAULT 5 

FAULT_MESSAGE_STOP 6 

FAULT_TYPE_DEID 7 

FAULT_CLEAR 8 

NEIGHBORHOOD_MULFUNCTION 9 

PROTOCOL_EFFECT 10 

Table 1. Codes of detected faults in algorithm warning messages 
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The metrics used to evaluate the results were, firstly, the percentage of incorrectly released 
dead node warnings. This is the ratio of the number of false dead node detections released 
by the algorithm as opposed to the total number of packets released by the application. This 
indicates the impact of high network dynamics on the algorithm’s incorrect detection. The 
second metric was the percentage of ‘NO-FAULT-EVIDENCE’ messages released by the 
algorithm, which is the ratio of the number of ‘NO-FAULT-EVIDENCE‘ messages to the 
total number of packets released by the application. This also indicates the impact of high 
network dynamics but on neighbours’ passive tests of incorrect detections. 

 

 
 

Fig. 7. Logical topology of the experiment at a time interval 
 
These experiments tested the impact of the dead node window threshold, and monitoring 
window size on the algorithm’s detection of dead nodes and the number of warning messages 
released by it in a highly dynamic network.  The algorithm parameters that were tested, as 
shown in Table 2,and 3 were changed in different experiments to check their impact on the 
deductibility performance of the network and the exchange of warning packets. 

 

Window 
Type 

Small Monitoring window Big Monitoring 
Window 

Stop Reporting 
Window 

Diversion 120 seconds 
(70% threshold) 

480 seconds(8 
minutes) 

1920 seconds 
(32 minutes) 

Distortion 60 seconds (84% loss threshold and larger 
than 25% accuracy of the two nodes) 

240 seconds(4 
minutes) 

960 seconds  
(16 minutes) 

Dead 60 seconds 240 seconds(4 
minutes) 

960 seconds 
 (16 minutes) 

Table 2. Sizes of monitoring windows in the experiments 
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Window  Small 
windows 

Small 
window size 

Size of Big 
window 

Number of 
small window 
at the group 

Total 
monitoring 
window size 

1 Linear 
increased 

240 seconds 
(4 minutes) 

3 groups 4-8-12 48 minutes 

2 Exponential 
increased 

8-12-16 64 minutes 

3 10-14-18 72 minutes 

4  14-16-20 80 minutes 

Table 3. Size of monitoring windows 

 
5.1 Effect of Network Topology and Packet Losses on the Algorithm’s Functionality 

Figure 8 plots the relationship between the percentage of detected and ‘No_Fault_Evidence’ 
messages released from the algorithm for different application reporting rates. (Please note 
that reporting rates logs were used in the figure to plot these). The results of the experiments 
showed that at a 1 second reporting rate (a multi-hop protocol leads to congestion and an 
overflow of communication), a large amount of wrong suspected dead warnings occurred 
(around 3.2% of the total network packet exchange in the application). Furthermore, a large 
number of ‘No_Fault_Evidence’ replies were released from neighbour messages (i.e. around 
0.5% of the total packets in the network application). Reducing the application’s reporting 
rate to 2 seconds reduced the number of suspected dead messages; these decreased sharply 
to 0.5% of the total number of packets released by the network application. This happened 
alongside a reduction in ‘No_Fault_Evidence’ messages which reached around 0.01% of the 
total number of packets released. Thus, the number of suspected dead messages was 
reduced to almost 0% when the application’s reporting rate was adjusted to 1 minute, along 
with a decrease in ‘No_Fault_Evidence’ messages released from neighbours. When the 
application’s reporting rate was increased to 30 minutes, a sharp increase occurred in the 
number of suspected dead and ‘No_Fault_Evidence’ messages, as shown in the figure. Also, 
Figure 8 shows that, by increasing the application’s reporting rate above 1 minute, the 
number of ‘No_Fault_Evidence’ messages increases so that it becomes higher than the 
number of suspected dead messages. This is as a result of the size of the monitoring 
windows and the highly dynamic network topology. 
From these experiments, it can be concluded that dead node warnings will not disappear 
spatially in a monitored network when the network connections are highly dynamic. To 
reduce the number of wrong suspected dead messages, different window sizes and 
combinations were tested, as shown in Table 3. Figure 9 shows the relation between the 
percentage of correct, positive detected (wrong detection) by the algorithm, together with 
the negative false dead nodes for different sizes of large monitoring windows. The figure 
illustrates that, as the big monitoring window size increased, the confidence of the 
algorithm’s detection of dead neighbour nodes increased, along with a decrease in the 
number of packets released by the algorithm. Although increasing window size will reduce 
the number of wrong messages, it also increases the response detection time and the 
probability of node failure occurring before releasing the warning message.  
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Fig. 8. Changing reporting rates with the percentage of warning messages released with the 
same window size 
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Fig. 9. Percentage of warning messages released for different window configurations 
 

To solve this problem, the algorithm was programmed such that it would select the 
neighbours it would monitor; this selection depends on the amount of received packets. This 
configuration reduced the number of wrong packets reported by 80% and reduced 
‘No_Evidence_Fault’ by 70%, as Figure 10 shows, but it also added additional complexity to 
algorithm’s source code and its functionality. Moreover, there will be uncovered neighbour 
nodes in low density networks. In addition, the proposed algorithm was modified to send 
warning messages concerning the detection of connectivity problems between neighbour 
nodes. This makes the algorithm stop reporting a suspected node if the node is detected as 
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dead and if 3 clear dead messages are detected at the stop reporting monitoring window.    
Figure 10 plots comparisons between the percentages of the algorithm’s released dead and 
no evidence messages in a neighbourhood with and without the modification covering 
connectivity problems. The figure shows that there is a reduction of 20% in the number of 
‘No_Fault_Evidence’ messages as a result of a 34% reduction in the detection of dead 
packets. 
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Fig. 10. Number of exchanged warning packets between selected and not selected neighbour 
nodes. 

 
6. Conclusion and Future Work  

We proposed a distributed performance algorithm that enables each sensor node at sensor 
network to detect the health of nodes at neighbourhood and their collaborative 
functionality.  This algorithm sends a warning packet to the sink reporting any degradation 
detection. 
The proposed algorithm tested using TinyOS ‘Surge’ multi-hop application on Berkely 
Mica2 sensor nodes testbed. These empirical experiments showed that the high loss in WSN 
causes proposed algorithm wrong detection of neighbour nodes aliveness and released 
more ‘NO_EVIDENCE_FAULT’ messages. This controlled by adjusting the monitoring 
window size and reduces the proposed algorithm wrong detection by 80% and the 
‘NO_EVIDENCE_FAULT’ messages by 70%. 
There are numerous aspects that can be considered in the future in order to extend this work 
and improve the algorithm’s functionality, such as checking the impact of the mobility of 
sensor nodes on the algorithm’s functionality. Also, it would be useful to study the impact 
of faulty data on individual WSN protocols and compare these results with the proposed 
approximate calculation that depends on the number of deviated nodes. 
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vast range of different domains, scenarios and disciplines. These have included healthcare, defence and

security, environmental monitoring and building/structural health monitoring. However, as a result of the broad

array of pertinent applications, WSN researchers have also realised the application specificity of the domain; it

is incredibly difficult, if not impossible, to find an application-independent solution to most WSN problems.

Hence, research into WSNs dictates the adoption of an application-centric design process. This book is not

intended to be a comprehensive review of all WSN applications and deployments to date. Instead, it is a

collection of state-of-the-art research papers discussing current applications and deployment experiences, but

also the communication and data processing technologies that are fundamental in further developing solutions

to applications. Whilst a common foundation is retained through all chapters, this book contains a broad array

of often differing interpretations, configurations and limitations of WSNs, and this highlights the diversity of this

ever-changing research area. The chapters have been categorised into three distinct sections: applications

and case studies, communication and networking, and information and data processing. The readership of this

book is intended to be postgraduate/postdoctoral researchers and professional engineers, though some of the

chapters may be of relevance to interested masterâ€™s level students.
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