
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

Monitoring Wireless Sensor Network Performance by Tracking Node operational Deviation 1

X

Monitoring Wireless Sensor

Network Performance by Tracking
Node operational Deviation

Yaqoob J. Y. Al-raisi1 and Nazar E. M. Adam2
1HIS Department, Sultan Qaboos University Hospital,

Oman
2Computer Engineering Department, Fahad Bin Sultan University

Saudi Arabia

1. Introduction

Wireless Sensor Network (WSN) is a very powerful tool that enables its users to closely
monitor, understand and control application processes. It is different from traditional wired
sensor networks in that its characteristics make it cheap to manufacture, implement and
deploy. However, this tool is still at an early stage and many aspects need to be addressed in
order to increase its reliability. One of these aspects is the degradation of network
performance as a result of network nodes deviation. This may directly reduces the quality
and the quantity of data collected by the network and may cause, in turn, the monitoring
application to fail or the network lifetime to be reduced.
Deviations in sensor node operations arise as a result of systematic or/and transient errors
(Elnahrawy, 2004). Systematic error is mainly caused by hardware faults, such as calibration
error after prolonged use, a reduction in operating power levels, or a change in operating
conditions; this type of error affects node operations continuously until the problem is
rectified. Transient errors, on the other hand, occur as a result of temporary external or
internal circumstances, such as various random environmental effects, unstable hardware,
software bugs, channel interface, and multi-path effects. This type of error deviates node
operations until the effect disappears.
These two types of error may directly and indirectly affect the quality and the quantity of
data collected by the WSN. They directly affect sensor measurements and cause drift by a
constant value (i.e. bias); they change the difference between a sensor measurement and the
actual value, (i.e. drift); and can cause sensor measurements to remain constant, regardless
of changes in the actual value, (i.e. complete failure). In addition, they affect the
communication and exchange of packets by dropping them. On the other hand, the above-
mentioned errors can have an indirect effect on the network’s collaboration function, the
construction of routing tables, the selection of the node reporting rate, and the selection of
data gathering points. Analysis of the data collected by the network (in some practical
deployments, such as (Ramanathan, 2004), (Tolle, 2005)), shows that these error reduces the

1

www.intechopen.com

quality of network collected data by 49%; and in some cases, the network had to be
redeployed in order to collect the data because of the failure of the monitored application.
Analysis also indicate that a 51% overall improvement of WSN functionality can be
expected, as well as an improvement in the quality of the collected data, if real-time
monitoring tools are used.

2. Motivations

To detect and isolate operational deviations in WSNs researchers proposed several data
clearance, fault-tolerance, diagnosis, and performance measurement techniques.
Data cleaning techniques work at a high network level and consider reading impacts from a
deviated sensor on multi-sensor aggregation/fusion such as in (Yao-jung, 2004). Such
research proposes several methods that isolate deviated readings by tracking or predicting
correlation between neighbour node measurements. Most of this research uses complex
methods or models that need a high resource usage to detect and predict sensor
measurements. Moreover, these techniques rectify deviated data after detecting them
without checking their cause and their impact on network functionality.
Fault-tolerance techniques are important in embedded networks which are difficult to access
physically. The advantage of these techniques is their ability to address all network levels;
such as circuit level, logical level, memory level, program level and system level; but due to
WSNs scare recourses these techniques have a limited usage. In general WSNs fault-tolerant
techniques detect faults in fusion and aggregation operation, network deployment and
collaboration, coverage and connectivity, energy consumption, energy event fault tolerance,
reporting rate, network detection, and many others (Song, 2004, Linnyer, 2004, Bhaskar,
2004, Koushanfar, 2003, Luo, 2006). Faults are detected using logical decision predicates
computed in individual sensors (Bhaskar, 2004), faulty node detection (Koushanfar, 2003),
or event region and event boundary detection (Luo, 2006). These methods detect metrics
either at high or low network level without relating them to each other and without
checking their impact on network functionality. The main problem with these techniques is
the impact of deviation on network functionality and collected data accuracy before it is
detected.
Diagnosis techniques use passive or active monitoring to trace, visualize, simulate and
debug historical network log files in real and non real time as discussed in (Jaikaeo, 2001).
These techniques are used to detect faults at high or low network levels after testing their
cause. For example, Nithya at (Ramanathan, 2005) proposed a debugging system that
debugs low network level statistical changes by drawing correlations between seemingly
unrelated, distributed events and producing graphs that highlight those correlations. Most
of these diagnosis techniques are complex and use iteration tests for their detection. These
techniques assume a minimal cost associated with continuously transmitting of debug
information to centralized or distributed monitor nodes and send/receive test packets to
conform the detection of a faultier.
Finally, performance techniques are similar to diagnosis techniques but without iteration
tests and screw pack techniques. Unfortunately there is little literature and research on
systematic measurement and monitoring in wireless sensor networks. Yonggang in
(Yonggang, 2004) studied the effect of packet loss and their impact on network stability and
network processing. He studied the effect of the environmental conditions, traffic load,

www.intechopen.com

Monitoring Wireless Sensor Network Performance by Tracking Node operational Deviation 3

network dynamics, collaboration behavior, and constraint recourse on packet delivery
performance using empirical experiments and simulations. Although packet delivery is
important in wireless communication and can predict network performance, it can give
wrong indications of network performance level due to collaboration behavior, and
measurement redundancy which makes a network able to tolerate a certain degree of
changes. Also, Yonggang proposed an energy map aggregation based approach that sends
messages recording significant energy level drops to the sink.
The work in this paper has been motivated by the need to find a tool that uses a very low
level of network resources and detects deviations in the network’s operations that affect the
quality and quantity of the data that are collected before they seriously degrade the
network’s overall functionality and reduce its lifetime.

3. Project Methodology

3.1 Layout of manuscript

The layout of this paper is organised as follows: Section 2 includes a discussion of related
work on functionality degradation detection in WSNs, followed by an explanation of the
algorithm’s approach. The fourth section explains the practical implementation of the
algorithm in a TinyOS ‘Surge’ multi-hop application; results of experiments at the network
level are then discussed. Finally, the paper ends with a conclusion and suggestions for
future work.

3.2 Algorithm Approach

In order to overcome the above-mentioned drawbacks, the Voting Median Base Algorithm
for Approximate Performance Measurements of Wireless Sensor Networks (VMBA)
algorithm is proposed. This algorithm is a passive voting algorithm that collects its metrics
directly from the application by utilizing the overhearing which exists in the
neighbourhood. The algorithm requires only readings of neighbours’ measurements and
does not rely on any information regarding global topology. This makes it scalable to any
network deployment size. The proposed algorithm uses parameters found in nodes for
other networking and application protocols which makes it much cheaper in terms of
resource usage. It uses only the transceiver to send warning messages if there is a network
performance degradation or when the node disagrees with the warning messages of
neighbours.
The algorithm is divided into four different modules; i.e. listening and filtering, data
analysis and threshold test, decision and confidence control and warning packet exchange.
In this section we give some definitions and then the VMBA functional algorithm is
presented.

A. Listening and Filtering Module

The listening and filtering module is responsible for examining the validity of the received
neighbour nodes measurements by filtering those readings beyond the range of the sensor’s
physical characteristics; as shown in the pseudo-code in Fig.1 . The module then constructs
neighbour readings tables and builds statistics in the loss table for neighbour readings.

www.intechopen.com

1: Each iS
 senses the phenomenon and wait for

 time T to receive N(iS
) readings

2: IF t > T THEN

3: For each unreceived
i

jx
 increment

i

jL
;

4: IF LC >
i

jx
> MC

5: Remove
i

jx
 from data set and increment

i

jD

6: Calculate imed of the available iS
 data set

Fig. 1. VMBA Algorithm Module 1

B. Data analysis and Threshold Test Module

The second module; i.e. data analysis and threshold test module; tests the content of these
tables. This is done by evaluating the data with regard to assigned dynamic or static limits
calculated from a reference value or median.
The proposed algorithm has followed a straightforward approach in calculating faulty
deviations in sensor functionality. Its analysis assumes that true measurements of a
phenomenon’s characteristics, following a Gaussian pdf, centred on the calculated median
of neighbourhood readings. Any deviation is controlled by the correlation expected at the
end of the sensing range of a node, and the sensor nodes’ measuring accuracy (where most
of the physical processes monitored by WSNs are typically modeled as diffusion models
with varying dispersion functions). This assumption is based on the fact that random errors
are normally distributed with a zero mean and standard deviation is equal to the
specification of the goals designed for the nodes and the network. Any sensor measurement
that is not in this region is considered deviated to a degree equal to the ratio of the distance
from the neighbourhood median value to the median value.

1: IF |
imed -

1imed 
| > med

 Increment
iM and let

imed =
1imed 

2: jd = |
imed -

i

jx |

3: IF
jd >

1
 and | i

ix - i

jx | <
1



4: Increment i

jCOV

5: ELSE increment
iR

6: IF iR

k

 > 40%

7: Increment
iN

8: IF iR

k

*
jd >

1


9: Increment i

jD

Fig. 2. VMBA Algorithm Module 2









www.intechopen.com

Monitoring Wireless Sensor Network Performance by Tracking Node operational Deviation 5

 



 



In addition, the second module tests the effect of losses on the reliability of the collected data
by calculating the degree of distortion in the neighbourhood data that has occurred because
of its affect on the collected data accuracy and network functionality. This is done by
calculating the ratio of the number of healthy readings to the total number readings as
shown in Fig 2 step 8.

C. Decision Confidence Control Module

The third module; i.e. Decision confidence control module; is concerned with tracking
changes in the health of neighbour nodes in an assigned time window. This is set depending
on the characteristics of the network application and the required response detection time. If
exceeded, a request is sent to module four in order to send a detection message to the sink
identifying suspected node number, the type of fault, the number of times it has been
detected and the effect of the detection on the neighbourhood data and communication. The
function of this module is shown in Fig 3.

1: Calculate
iML

2: IF
iML > 60%

3: Send to module 4 a request to send an inefficient
 power consumption warning message
4: IF

iM >
M

5: Send to module 4 a request to send a
 neighbourhood malfunction due to losses
 warning message
6: IF i

jCOV >
C

7: Send to module 4 a request to send to
 detecting node j a coverage
 problem message

8: IF distortion >
d & median of i

jL > 60%

9: Send to module 4 a request to send a
 degrade detection in network
 functionality message
10: IF i

jD >
w

11: Send to module 4 a request
 to send a detection of node
 j malfunction message

Fig. 3. VMBA Algorithm Module 3

D. Warning Packet Exchange Module

When module four receives a send request, it checks its neighbours warning exchange
memory to ensure that none of the neighbour nodes have reported the same fault in that
monitoring window period. If none of the neighbours have so reported, it sends a message
or it cancels the request. In addition, this module tests warning messages received from its
neighbours with statistics from module three. If the suspected node flags up a counter
indication smaller than a threshold, a message will be released indicating

www.intechopen.com

‘NO_FAULT_EVIDENCE’ regarding the received warning message. On the other hand, if
the threshold is higher or equal to the threshold, then the node cancels any similar warning
message request from module three during that monitoring period. This is to ensure the
reliability of the warning message detection and to correct any incorrect detection that may
occur because of losses or other network circumstances. Moreover, module four reduces the
algorithm warning packets released by checking if any of its neighbours sent the same
message at that time interval. If it been sent the algorithm is going to discard module three
requests as shown in Fig. 4 part 3.

1: Receiving neighbour warning
a) Check received warning with the same module 3 counter of reported node.
b) IF module 3 counter < 30%
c) Release ‘NO-EVIDENCE-OF-FAULT’ message
d) ELSE flag the stop sending of the same message from the node at this monitoring

time.
 2: Receiving module 3 request
a) Test stop flag of received request warning
b) IF flag = 1 discard message
c) IF send message repeated 3 times send stop reporting the fault message and flag stop

fault counter.
d) ELSE send the requested message by module 3.
 3: Testing warning packet release
a) IF detected fault returns to normal reset the same fault counters, send

‘FAULT_CLEAR’ message and recalculate protocol tables.
b) IF step 2 and 3-a alternate for the same fault three times in a predefined monitoring

window, the module send s an ‘UNSTABLE_DETECTION’ warning message to
report the detection and flags a permanent fault counter to stop reporting the
same fault.

c) By the end of the predefined period reset all counters.

Fig. 4. VMBA Algorithm Module 4

4. Performance Evaluation

VMBA algorithm performance can be evaluate on eight different aspects: deviation
detection in single and multi-hop levels, algorithm detection threshold, algorithm detection
confidence, algorithm spatial and temporary change tracking for sensor nodes, the impact of
packet losses on algorithm analysis, resource usage at node and network levels, the impact
of algorithm programming location in the protocol stack, and algorithm released warning
messages. In this paper, we considered the empirical performance evaluation of the
algorithm at the network level.

4.1 Algorithm Programming in Protocol Stacks

The algorithm was implemented on a Berkeley (Crossbow) Mica2 sensor motes testbed that
was programmed in nesC on TinyOS operation system. This is done by building the
proposed algorithm on the TinyOS multi-hop routing protocol.

www.intechopen.com

Monitoring Wireless Sensor Network Performance by Tracking Node operational Deviation 7

The TinyOS multi-hop protocol consists of MultiHopEngineM; which provides the over all
packet movement logic for multi-hop functionality; and MultiHopLEPSM; which is used to
provide the link estimation and parent selection mechanisms. These two TinyOS
components were modified by added different functions from the proposed algorithm
modules as shown at Figure 5.

Fig. 5. Functions added to multi-hop components and links between the components

In order to send detected warning packets, a new packet type was constructed. This new
packet carries the algorithm detection parameters; as shown at Figure 6. It has a total length
of 20 bytes, the last 8 are used for algorithm detection, while the first 12 follow the multi-hop
protocol configuration. This is to route the released warning packet in the network.

Fig. 6. Algorithm warning message packet

www.intechopen.com

At the algorithm detection part, the first byte carries the total number of readings, that is the
number of neighbour nodes in addition to the monitoring node. The next two bytes carry
the number of neighbors detected by the node as dead and deviated respectively. This is
followed by a byte that carries the identification number of the detected faulty neighbour
node. The byte after this carries the type of fault codes; as shown in Table 1; and the final
two bytes carry the number of times that the monitoring node detect the reported fault.

5. Experimental Setting and Evaluation Metrics

Several experiments were conducted indoors at the High Speed Network Research Group
Lab in Loughborough University to test the proposed algorithm’s functionality in real
sensor network scenarios. These experiments were conducted in the presence of other
devices that are able to interfere with the sensor transmission and reduce the antennae
performance; these offer experiments in a dynamic topology and in circumstances of high
packet losses. Some of these experiments were conducted to test the algorithm’s
functionality under multi-hop and highly dynamic topology configurations. These
experiments used 13 Mica2 sensors, measuring temperature, distributed in an area of about
4mX5m. The nodes were programmed with the output power of -20 dBm and had top bent
antennae to limit their communication range. In this configuration, the nodes were divided
into two groups which overlapped in an area between them; thus, some of the nodes around
the edge could not hear or communicate with each other (as shown in Figure 7). Moreover,
this configuration forced the topology to be highly dynamic. This leads nodes to miss
hearing each other and frequently change their multi-hop routing parents in the sink. These
experiments used Mica2 nodes attached to a MIB510 programming board as a base station
connected to a computer serial port. A snooping node was also added to the network setting
with its power programmed to the maximum (i.e. 5dBm) in order to listen to
communications among all the nodes within the network and to track packet exchanges in
the multi-hop without increasing the usage of resources of the network’s sensor nodes.

Fault Type Code

TOPOLOGY_UNSTABLE 0

FAULT_TYPE_DEVIATION 1

FAULT_TYPE_COMMUNICATION 2

FAULT_TYPE_COVERAGE 3

FAULT_TYPE_ENERGY_CONSUMPTION 4

NO_EVEDENCE_OF_FAULT 5

FAULT_MESSAGE_STOP 6

FAULT_TYPE_DEID 7

FAULT_CLEAR 8

NEIGHBORHOOD_MULFUNCTION 9

PROTOCOL_EFFECT 10

Table 1. Codes of detected faults in algorithm warning messages

www.intechopen.com

Monitoring Wireless Sensor Network Performance by Tracking Node operational Deviation 9

The metrics used to evaluate the results were, firstly, the percentage of incorrectly released
dead node warnings. This is the ratio of the number of false dead node detections released
by the algorithm as opposed to the total number of packets released by the application. This
indicates the impact of high network dynamics on the algorithm’s incorrect detection. The
second metric was the percentage of ‘NO-FAULT-EVIDENCE’ messages released by the
algorithm, which is the ratio of the number of ‘NO-FAULT-EVIDENCE‘ messages to the
total number of packets released by the application. This also indicates the impact of high
network dynamics but on neighbours’ passive tests of incorrect detections.

Fig. 7. Logical topology of the experiment at a time interval

These experiments tested the impact of the dead node window threshold, and monitoring
window size on the algorithm’s detection of dead nodes and the number of warning messages
released by it in a highly dynamic network. The algorithm parameters that were tested, as
shown in Table 2,and 3 were changed in different experiments to check their impact on the
deductibility performance of the network and the exchange of warning packets.

Window
Type

Small Monitoring window Big Monitoring
Window

Stop Reporting
Window

Diversion 120 seconds
(70% threshold)

480 seconds(8
minutes)

1920 seconds
(32 minutes)

Distortion 60 seconds (84% loss threshold and larger
than 25% accuracy of the two nodes)

240 seconds(4
minutes)

960 seconds
(16 minutes)

Dead 60 seconds 240 seconds(4
minutes)

960 seconds
 (16 minutes)

Table 2. Sizes of monitoring windows in the experiments

www.intechopen.com

Window Small
windows

Small
window size

Size of Big
window

Number of
small window
at the group

Total
monitoring
window size

1 Linear
increased

240 seconds
(4 minutes)

3 groups 4-8-12 48 minutes

2 Exponential
increased

8-12-16 64 minutes

3 10-14-18 72 minutes

4 14-16-20 80 minutes

Table 3. Size of monitoring windows

5.1 Effect of Network Topology and Packet Losses on the Algorithm’s Functionality

Figure 8 plots the relationship between the percentage of detected and ‘No_Fault_Evidence’
messages released from the algorithm for different application reporting rates. (Please note
that reporting rates logs were used in the figure to plot these). The results of the experiments
showed that at a 1 second reporting rate (a multi-hop protocol leads to congestion and an
overflow of communication), a large amount of wrong suspected dead warnings occurred
(around 3.2% of the total network packet exchange in the application). Furthermore, a large
number of ‘No_Fault_Evidence’ replies were released from neighbour messages (i.e. around
0.5% of the total packets in the network application). Reducing the application’s reporting
rate to 2 seconds reduced the number of suspected dead messages; these decreased sharply
to 0.5% of the total number of packets released by the network application. This happened
alongside a reduction in ‘No_Fault_Evidence’ messages which reached around 0.01% of the
total number of packets released. Thus, the number of suspected dead messages was
reduced to almost 0% when the application’s reporting rate was adjusted to 1 minute, along
with a decrease in ‘No_Fault_Evidence’ messages released from neighbours. When the
application’s reporting rate was increased to 30 minutes, a sharp increase occurred in the
number of suspected dead and ‘No_Fault_Evidence’ messages, as shown in the figure. Also,
Figure 8 shows that, by increasing the application’s reporting rate above 1 minute, the
number of ‘No_Fault_Evidence’ messages increases so that it becomes higher than the
number of suspected dead messages. This is as a result of the size of the monitoring
windows and the highly dynamic network topology.
From these experiments, it can be concluded that dead node warnings will not disappear
spatially in a monitored network when the network connections are highly dynamic. To
reduce the number of wrong suspected dead messages, different window sizes and
combinations were tested, as shown in Table 3. Figure 9 shows the relation between the
percentage of correct, positive detected (wrong detection) by the algorithm, together with
the negative false dead nodes for different sizes of large monitoring windows. The figure
illustrates that, as the big monitoring window size increased, the confidence of the
algorithm’s detection of dead neighbour nodes increased, along with a decrease in the
number of packets released by the algorithm. Although increasing window size will reduce
the number of wrong messages, it also increases the response detection time and the
probability of node failure occurring before releasing the warning message.

www.intechopen.com

Monitoring Wireless Sensor Network Performance by Tracking Node operational Deviation 11

10
0

10
1

10
2

10
3

0

0.5

1

1.5

2

2.5

3

3.5

Reporting Rate (Seconds)

P
e
rc

e
n
ta

g
e
 o

f
A

lg
o
ri
th

m
 W

a
rn

in
g
 P

a
c
k
e
ts

Dead Warning

No-Fault-Evedence

Fig. 8. Changing reporting rates with the percentage of warning messages released with the
same window size

0

1

2

1 2 3 4

Big Window

P
e
rc

e
n

ta
g

e
 o

f

W
a
rn

in
g

M
e
s
s

a
g

e
s

Dead No_Fault_ Evidence

Message Stopped

Fig. 9. Percentage of warning messages released for different window configurations

To solve this problem, the algorithm was programmed such that it would select the
neighbours it would monitor; this selection depends on the amount of received packets. This
configuration reduced the number of wrong packets reported by 80% and reduced
‘No_Evidence_Fault’ by 70%, as Figure 10 shows, but it also added additional complexity to
algorithm’s source code and its functionality. Moreover, there will be uncovered neighbour
nodes in low density networks. In addition, the proposed algorithm was modified to send
warning messages concerning the detection of connectivity problems between neighbour
nodes. This makes the algorithm stop reporting a suspected node if the node is detected as

www.intechopen.com

dead and if 3 clear dead messages are detected at the stop reporting monitoring window.
Figure 10 plots comparisons between the percentages of the algorithm’s released dead and
no evidence messages in a neighbourhood with and without the modification covering
connectivity problems. The figure shows that there is a reduction of 20% in the number of
‘No_Fault_Evidence’ messages as a result of a 34% reduction in the detection of dead
packets.

0

0.1

0.2

0.3

0.4

0.5

0.6

With Neighbor Selection Without Neighbor Selection

P
a

c
k

e
t

P
e

rc
e

n
ta

g
e

Dead No_Fault_Evidence

Fig. 10. Number of exchanged warning packets between selected and not selected neighbour
nodes.

6. Conclusion and Future Work

We proposed a distributed performance algorithm that enables each sensor node at sensor
network to detect the health of nodes at neighbourhood and their collaborative
functionality. This algorithm sends a warning packet to the sink reporting any degradation
detection.
The proposed algorithm tested using TinyOS ‘Surge’ multi-hop application on Berkely
Mica2 sensor nodes testbed. These empirical experiments showed that the high loss in WSN
causes proposed algorithm wrong detection of neighbour nodes aliveness and released
more ‘NO_EVIDENCE_FAULT’ messages. This controlled by adjusting the monitoring
window size and reduces the proposed algorithm wrong detection by 80% and the
‘NO_EVIDENCE_FAULT’ messages by 70%.
There are numerous aspects that can be considered in the future in order to extend this work
and improve the algorithm’s functionality, such as checking the impact of the mobility of
sensor nodes on the algorithm’s functionality. Also, it would be useful to study the impact
of faulty data on individual WSN protocols and compare these results with the proposed
approximate calculation that depends on the number of deviated nodes.

7. References

Elnahrawy Eiman and N. Badri, (2004). Cleaning and Querying Noisy Sensors, The First ACM
Conference on Embedded Networked Sensor Systems (SenSys'03), pp. 78-87.

N. Ramanathan, T. Schoellhammer, D. Estrin, M. Hansen, T. Harmon, E. Kohler, and M.
Srivastava,(2006). The Final Frontier: Embedding Networked Sensors in the Soil, CENS
Technical Report #68, Center for Embedded Networked Sensing, UCLA, USA.

www.intechopen.com

Monitoring Wireless Sensor Network Performance by Tracking Node operational Deviation 13

G. Tolle, J. Polastre, R. Szewczyk, D. Culler, N. Turner, K. Tu, S. Burgess, T. Dawson, P.
Buonadonna, D. Gay, and W. Hong, (2005). A Macroscope in the Redwoods, ACM
Conference on Embedded Networked Sensor Systems (SenSys'05), pp. 51-63.

W. Yao-jung , M. Alice Agogine and G. Kai. (2004). Fuzzy Validation and Fusion for Wireless
Sensor Networks, in ASMEinternational Mechanical Engineering Congress and
RD&D Expo (IMECE2004),Anaheim, California, USA..

H. Song and C. Edward. (2004). Continuous Residual Energy Monitoring in Wireless Sensor
Networks, in International Symposium on Parallel and Distributed Processing and
Applications (ISPA 2004), pp. 169-177.

Linnyer Beatrys Ruiz, Isabela G. Siqueria and Leonardo B. Oliveira. (2004). Fault
Management in Event-driven Wireless Sensor Networks, in MSWiM’04, October 4-6,
Venezia, Italy.

K. Bhaskar and S. S. Iyengar. (2004). Distributes Bayesian Algorithms for Fult-tolerant Event
Region Detection in Wireless Sensor Networks,IEEE Transaction on Computers, vol. 53,
pp. 421-250.

F. Koushanfar, M. Potkonjak and A. Sangiovanni-Vincentelli. (2003). On-line Fault Detection
of Sensor Measurements, in Sensors. Proceedings of IEEE, 2003, pp. 974-979.

X. Luo, M. Dong and Y. Huang(2006). "On Distributed Fault-tolerant Detection in Wireless
Sensor Networks," IEEE Transactions on Computers, vol. 55, pp. 58-70.

C. Jaikaeo, C. Srisathapornphat and C. Shen, (2001). Diagnosis of Sensor Networks, in
Communications, 2001. ICC 2001. IEEE International Conference, pp. 1627-1632.

N. Ramanathan, K. Chang, R. Kapur, L. Girod, E. Kohler and D. Estrin, (2005). Sympathy for
the Sensor Network Debugger, in The 3rd ACM Conf. Embedded Networked Sensor
Systems (SenSys 2005), pp. 255-267.

Z. Yonggang, (2004). Measurement and Monitoring in Wireless Sensor Networks, PhD Thesis,
Computer Science Department, University of Southern California, USA, June. 2004.

www.intechopen.com

www.intechopen.com

Wireless Sensor Networks: Application-Centric Design

Edited by Yen Kheng Tan

ISBN 978-953-307-321-7

Hard cover, 492 pages

Publisher InTech

Published online 14, December, 2010

Published in print edition December, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Over the past decade, there has been a prolific increase in the research, development and commercialisation

of Wireless Sensor Networks (WSNs) and their associated technologies. WSNs have found application in a

vast range of different domains, scenarios and disciplines. These have included healthcare, defence and

security, environmental monitoring and building/structural health monitoring. However, as a result of the broad

array of pertinent applications, WSN researchers have also realised the application specificity of the domain; it

is incredibly difficult, if not impossible, to find an application-independent solution to most WSN problems.

Hence, research into WSNs dictates the adoption of an application-centric design process. This book is not

intended to be a comprehensive review of all WSN applications and deployments to date. Instead, it is a

collection of state-of-the-art research papers discussing current applications and deployment experiences, but

also the communication and data processing technologies that are fundamental in further developing solutions

to applications. Whilst a common foundation is retained through all chapters, this book contains a broad array

of often differing interpretations, configurations and limitations of WSNs, and this highlights the diversity of this

ever-changing research area. The chapters have been categorised into three distinct sections: applications

and case studies, communication and networking, and information and data processing. The readership of this

book is intended to be postgraduate/postdoctoral researchers and professional engineers, though some of the

chapters may be of relevance to interested masterâ€™s level students.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Yaqoob J. Y. Al-Raisi and Nazar E. M. Adam (2010). Monitoring Wireless Sensor Network Performance by

Tracking Node Operational Deviation, Wireless Sensor Networks: Application-Centric Design, Yen Kheng Tan

(Ed.), ISBN: 978-953-307-321-7, InTech, Available from: http://www.intechopen.com/books/wireless-sensor-

networks-application-centric-design/monitoring-wireless-sensor-network-performance-by-tracking-node-

operational-deviation

www.intechopen.com

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

Phone: +86-21-62489820

Fax: +86-21-62489821

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

