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1. Introduction  

Wireless sensor networks (WSNs) may consist of tiny, energy efficient sensor nodes 
communicating via wireless channels, performing distributed sensing and collaborative 
tasks for a variety of monitoring applications. One of the critical problems in sensor 
applications is detecting boundary sensors in a complex sensor network environment where 
sensed data is often required to be associated with spatial coordinates. In (Zhong, et al, 2007) 
a COBOM protocol that monitors the boundary of a continuous object was proposed. Sensor 
nodes are assigned with a Boundary sensor Node (BN) array to store BN information. The 
boundary monitoring is based on the changes to the observations in the BN array. As a 
updated version, (Kim,J.H. et al,2008) presented the DEMOCO protocol that enhanced 
COBOM by considering sensor nodes on one side of the boundary line called the “IN” 
range, and ignoring those on the other side of the boundary line called the “OUT” range 
which theoretically reduces approximately by half of the number of the selected BNs. Others 
like (Basu, et al, 2006; Eren,T. et al, 2004; He,T. et al,2003; Nissanka,B. et al, 2003) also 
involve two-dimensional (2D) sensor localizations. To address the issues of adaptive sensor 
coverage and tracking for dynamic network topology, the authors of (Guo, et al, 2008) 
utilized a Gaussian mixture model to characterize the mixture distribution of object 
locations and proposed a novel methodology to adaptively update sensor node placement 
according to the ML estimates of mass object locations with a distributed implementation of 
an EM algorithm to reduce communication costs. Moreover, (Olfati-Saber, et al, 2007) 
discussed a flocking-base mobility model for Distributed Kalman Filtering (DKF) in mobile 
sensor networks and (Funke, et al, 2006; Funke, et al, 2007) demonstrated efficient boundary 
detection algorithms with only the connectivity information.  
In fact, the boundary detection problem has been mostly considered for 2D sensor networks 
and the case of 3D sensor networks has gone practically unnoticed. Despite the fact that 
difference between the normal 2D and the more realistic 3D scenario is only one extra 
dimension, network topology could be much more complex and the location scheme has to 
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be more robust towards network irregularities. Taking a step further to expand from 2D to 
3D sensor applications, several neighborhood-measurement (Peng, et al, 2006) based 3D 
range-free boundary detection models (Lance, et al, 2001; Hu, et al, 2004; Ji, et al, 2004; Yi, et 
al, 2003; Yi, et al, 2004, Andreas, et al, 2002) have been proposed. However, their tight 
dependence on sensor node densities and availability of sufficient neighbors are too 
optimistic for real 3D sensor applications due to their non-uniform sensor node densities 
and topology randomization. On the other hand, a range-based model such as in (Zhang, et 
al, 2006) does not make any assumption about sensor node densities and network topology. 
Instead it introduced a strong entity called mobile location assistants (LAs) that enables each 
location-unaware sensor node to easily estimate its own position using the measurable 
AOAs (Peng, et al, 2006) and RSS (Samitha, et al, 2010). Similar approaches like (He, et al, 
2003; Nissanka, et al, 2003; Bulusu, et al, 2001) assume that a small fraction of sensor nodes 
called anchors or beacons have a priori knowledge of their location and (Liu&Wang, et al, 
2009) proposed a range-based positioning method using beacon signals, that doesn’t require 
time synchronization since the beacon sensor nodes estimate the range based on frequency 
differences instead of time differences. To conclude, all the aforementioned approaches 
either introduced strong entities or made irrational assumptions. Furthermore, (Liu&Manli, 
et al, 2009) presented a new high precision WSN positioning method with reasonable 
implementation cost for a 3D case. Reference sensor nodes with known locations transmit 
linear frequency modulation continuous waves (FMCWs), while other sensor nodes 
estimate the range difference to them based on the received signals' frequency difference, 
called time frequency difference arrival (TFDA). 
Motivated by all above observations, instead of introducing miraculous assisting entities, 
our range-free Gaussian Mixture Model (GMM)-based approach performs a connectivity 
information-based segmentation algorithm (Zhu, et al, 2009) that partitions an irregular 
sensor field into nicely shaped pieces, associated with an enhanced BN Array and efficient 
distributed in-network information extraction virtual Thick Section Model (TSM); to the best 
of our knowledge, this is the first work that presents a principled algorithmic approach 
integrating computational geometry constructs adopted simultaneously for boundary 
detection in both 2D and 3D network areas. It is promising that our new statistical Gaussian 
mixture model (Mclachlan, et al, 2000)-based method in this paper is capable of fusing 
multivariate real-valued sensor inputs to detect boundaries of events in a mathematically 
principled manner. More precisely, the distribution of sensor readings within each sensor 
node’s spatial neighborhood is mathematically formulated using most popular finite 
GMMs. The model selection techniques (Figueiredo, et al, 2002;Akaike, et al, 1973; Schwarz, 
et al, 1978; Solla, et al, 2000) can then effectively identify the correct number of modes for 
finite mixture models. Therefore, Boundary and Non-Boundary sensor nodes can be 
consequently distinguished from their neighboring sensor node data distributions. 
The remainder of this paper is organized as follows: the next section details enhancement to 
the BN Array concept; Section 3 simply describes general problems in boundary detection; 
Section 4 presents the proposed robust Boundary Detection scheme for 3D (BD3D) sensor 
networks in detail; Section 5 proves BD3D by simulation results; Finally, Section 6 concludes 
the paper with future work. 
 

2. Enhancement to BN Array 

In (Chintalapudi, et al, 2003) three different schemes which can only take inputs of the 0/1 
decision predicates from neighboring sensor nodes are proposed. (Jin, et al,2006) presents a 
noise-tolerant algorithm named NED for event and event boundary detection. In NED, the 
moving mean of the readings of the neighboring sensor node set is used as the estimate for a 
certain sensor node. The authors of (Min, et al, 2005) propose Median-based approaches for 
outlying classification and event frontline detection, where the median is a useful and 
robust estimator which works directly with continuous numbers, rather than binary 0/1 
readings. An extra description of the BN-Array of COBOM (Zhong, et al, 2007) and 
DECOMO (Kim, et al, 2008) is given in this section. Suppose we have a sensor node v (N�) 
and its neighbors ξ(N�) =  ∑ N������ (k is the potential number of neighbors) (k = 6 in Figure 1). 
Let us consider the BN array in (Kim, et al, 2008; Zhong, et al, 2007): 
 

 
Table 1. BN Array of N� [Note: “0” and “1” are sensor readings (sample)]. 
 

 
Fig. 1. Readings of neighbors in BN Array of N�. 
 
In Figure 1, the sensor readings of ξ(N�) only indicate the relative locations of its neighbors 
only. Correspondingly, there is no own sensor reading, as a result, N�  judges itself by 
inquiring ξ(N�) in a time and energy consuming way. In our model, we applied a head with 
1 byte more space for the BN Array to store its own sensor reading as well (see Table 2) for 
self-judgment as a EBN or non-EBN. Here, we denote a BN inside object as Event BN (EBN), 
and a BN outside object as non-EBN. That is very important for monitoring applications in 
the sensor network because an Event sensor Node (EN) is usually highly responsible for 
sending and receiving the aggregated data should be constantly aware of own status.  
 

 
Table 2. BD3D BN Array of N�. 
 
Figure 2(a,b) show the expected boundary lines in COBOM and DEMOCO, respectively. 
Despite the fact that the shape of the expected boundary line in the 2D model of BD3D (see 

www.intechopen.com



A Gaussian Mixture Model-based Event-Driven  
Continuous Boundary Detection in 3D Wireless Sensor Networks 3

be more robust towards network irregularities. Taking a step further to expand from 2D to 
3D sensor applications, several neighborhood-measurement (Peng, et al, 2006) based 3D 
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Instead it introduced a strong entity called mobile location assistants (LAs) that enables each 
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2009) proposed a range-based positioning method using beacon signals, that doesn’t require 
time synchronization since the beacon sensor nodes estimate the range based on frequency 
differences instead of time differences. To conclude, all the aforementioned approaches 
either introduced strong entities or made irrational assumptions. Furthermore, (Liu&Manli, 
et al, 2009) presented a new high precision WSN positioning method with reasonable 
implementation cost for a 3D case. Reference sensor nodes with known locations transmit 
linear frequency modulation continuous waves (FMCWs), while other sensor nodes 
estimate the range difference to them based on the received signals' frequency difference, 
called time frequency difference arrival (TFDA). 
Motivated by all above observations, instead of introducing miraculous assisting entities, 
our range-free Gaussian Mixture Model (GMM)-based approach performs a connectivity 
information-based segmentation algorithm (Zhu, et al, 2009) that partitions an irregular 
sensor field into nicely shaped pieces, associated with an enhanced BN Array and efficient 
distributed in-network information extraction virtual Thick Section Model (TSM); to the best 
of our knowledge, this is the first work that presents a principled algorithmic approach 
integrating computational geometry constructs adopted simultaneously for boundary 
detection in both 2D and 3D network areas. It is promising that our new statistical Gaussian 
mixture model (Mclachlan, et al, 2000)-based method in this paper is capable of fusing 
multivariate real-valued sensor inputs to detect boundaries of events in a mathematically 
principled manner. More precisely, the distribution of sensor readings within each sensor 
node’s spatial neighborhood is mathematically formulated using most popular finite 
GMMs. The model selection techniques (Figueiredo, et al, 2002;Akaike, et al, 1973; Schwarz, 
et al, 1978; Solla, et al, 2000) can then effectively identify the correct number of modes for 
finite mixture models. Therefore, Boundary and Non-Boundary sensor nodes can be 
consequently distinguished from their neighboring sensor node data distributions. 
The remainder of this paper is organized as follows: the next section details enhancement to 
the BN Array concept; Section 3 simply describes general problems in boundary detection; 
Section 4 presents the proposed robust Boundary Detection scheme for 3D (BD3D) sensor 
networks in detail; Section 5 proves BD3D by simulation results; Finally, Section 6 concludes 
the paper with future work. 
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In (Chintalapudi, et al, 2003) three different schemes which can only take inputs of the 0/1 
decision predicates from neighboring sensor nodes are proposed. (Jin, et al,2006) presents a 
noise-tolerant algorithm named NED for event and event boundary detection. In NED, the 
moving mean of the readings of the neighboring sensor node set is used as the estimate for a 
certain sensor node. The authors of (Min, et al, 2005) propose Median-based approaches for 
outlying classification and event frontline detection, where the median is a useful and 
robust estimator which works directly with continuous numbers, rather than binary 0/1 
readings. An extra description of the BN-Array of COBOM (Zhong, et al, 2007) and 
DECOMO (Kim, et al, 2008) is given in this section. Suppose we have a sensor node v (N�) 
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self-judgment as a EBN or non-EBN. Here, we denote a BN inside object as Event BN (EBN), 
and a BN outside object as non-EBN. That is very important for monitoring applications in 
the sensor network because an Event sensor Node (EN) is usually highly responsible for 
sending and receiving the aggregated data should be constantly aware of own status.  
 

 
Table 2. BD3D BN Array of N�. 
 
Figure 2(a,b) show the expected boundary lines in COBOM and DEMOCO, respectively. 
Despite the fact that the shape of the expected boundary line in the 2D model of BD3D (see 
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Figure 3) is similar to that of DEMOCO, the knowledge about Boundary sensor Nodes (BNs) 
promises to be different because we can clearly distinguish EBN and non-EBN as well. 
 

 
Fig. 2. Expected boundary lines (Kim, et al, 2008). 

 
3. Problem 

We first present the problems before outlining how our proposal can benefit dynamic 
boundary detection for 2D and 3D sensor networks in the coming sections. To generally 
analyze the existing problems for superior boundary detection in a 3D impediment scenario, 
sensor nodes in the network usually have slight mobility which makes it difficult to 
establish their locations. Figure 3 illustrates the possible boundary line changes in a 2D 
scenario when the object is shrunk or expanded which becomes a big problem that involves 
frequent inquiries among BNs and massive modifications to BN arrays.  

 
Fig. 3. Possible boundary line changes when the object shrunk or expanded.  

4. Boundary Detection for a 3D Sensor Network (BD3D) 

This section involves the main objective of achieving a flexible and energy-efficient 3D 
continuous boundary detection with a clear knowledge of EBN and non-EBN. Assume that 
sensor nodes are randomly deployed over 3-dimensional terrain. Each sensor node has 
limited resources (CPU, battery, etc), and is equipped with an omni-directional antenna. For 
the radio model, E���� is for running the transmitter or receiver circuitry and ���� is for the 
transmit amplifier. To transmit a δ -bit message a distance l using this radio model, the radio 
expends (E���� �  δ + ���� �  δ �  l�), to receive the message, the radio expands (E���� �  δ) 
(Heinzelman, et al, 2000). This energy model assumes a continuous energy consumption 
function. Moreover, we currently assume that sensor node failures are primarily caused by 
energy depletion. Note that in our model, no assumptions are made about (1) homogeneity 
of sensor node distribution; (2) network and BN density; (3) proximity of querying 
observers and sensor node synchronization.  
Our major contribution could be creating a statistical property of the finite mixture model, 
especially the Gaussian mixture model (GMM) and adopting it to distributed sensing 
scenarios. Suppose that we have a set of data observations ψ� = {χ�, χ�,…, χ�}, n ≤ N (N is the 
total number of sensor nodes in the network) with each χ� representing a D-dimensional 
random vector. Assume that ψ�  follows a k-component finite mixture distribution 
(Mclachlan, et al,2000) as follows:  
 
 �(χ�|θ) = ∑ α������ (χ�|θ�), j = 1,2,…,k; I = 1,2,…,n.       (1) 
subject to ∑ α����� =1 
where α�  is the mixing weight or sometimes called the prior weight and θ� is the set of 
parameters of the jth mixture component �(χ�|θ). Denote θ = {α�,θ�, α�, θ�,…,α�, θ�}. The 
objective function of estimating θ from ψ�  is to maximize the log-likelihood criterion as 
follows: 
 Log ∏ ��ψ�|θ�N���  = ∑ log ∑ α���χ�|θ����������     (2) 
 
Therefore, the maximum likelihood estimator of θ is: 
 
  θ� ML=arg ma���  {log∏ ��ψ�|θ����� }                (3) 

 
Obviously, θ�ML cannot be computed analytically from the above equation. Instead, GMM is 
applied as its general solver to iteratively find the maximum likelihood solution of θ�ML. 
GMM is the most important class of finite mixture densities. GMM is formulated by using a 
Gaussian density �(χ�|μ�, ∑�) with its mean vector μ� and covariance matrix ∑� to replace the 
general probability density function � (χ�|θ�) in the finite mixture model: 
 
 �(χ�|θ) = ∑ α������ (χ�|μ�, ∑�)                        (4) 
 
where a multi-dimensional multivariate Gaussian distribution is defined as: 
 
 ��χ|μ, ∑� = �|∑|������D� e���� �� �χ � μ��∑���χ � μ��                (5) 
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The Bayesian Information Criterion (BIC) (Schwarz, et al,1978) is one of the most popular 
model selection criteria based on penalty terms of model complexity. In this paper, we use 
BIC for GMM model selection: 
 
 BIC (θ) = −2log (�(ψ�| θ)) + Klog (m)                          (6) 
 
where, m is the data sample number, and K is the total number of parameters to be 
estimated in GMM. 
In this paper, we provide an algorithm for classifying EBNs. Given a sensor network {S�}, we 
assume that sensor nodes are deployed with moderate density in the spatial terrain. From a 
mathematical perspective, sensor readings provide a dense, but discrete sampling of the 
underlying continuous distribution. To check whether or not N� is a sensor node lying on 
the boundary of an event, we put the data {χ�} from readings of the sensor nodes in ξ(N�) 
and then build our best GMM based on {χ�}. 
In more detail, we first set the upper bound of the mixture component number to be K. Then 
for each j = 1,2,…,K, the data set { χ� }is fed into (5) (6) for estimation of θ(J). Let BM denote 
the number of mixture components of the best model. We select BM where  
BIC (θ(BM)) = min���K BIC (θ(J)). Therefore our final is θ(BM) or �μ�, ∑� , α�����,�,�,BM. 
To classify if N� is a EBN, the conditional probability for χ� given model θ�(BM) is computed 
by 
 �(χ�| θ�(BM) ) = ∑ α��BM��� (χ�|μ�, ∑�)                                            (7) 
 
then �(χ�| θ�(BM) )< γ, N� is classified as a EBN. Where γ is used as a threshold to measure 
EBN which has significantly low probability density values given the final model θ�(BM). 
The threshold is set as γ = 0.25, the upper bound of the component number is set as K = 5. 
These parameters are used as the default in Sections 4 and 5, unless otherwise stated. 
To dynamically update the estimates of observations by conducting (Zivkovic, et al,2004), 
we have the following dynamic evolvement and observation equations: 
 
 χ�� = f (χ����) + w��                  (8) 
 
 χ�� = g(χ����) + v��                  (9) 
 
where f(.) is the linear or nonlinear state evolvement function and g(.) is highly nonlinear 
observation function. w��  and v��  are the standard deviation (noise sequences). For example 
in static sensor node location, where χ��  remain the same after deployment because of the 
governance of Equation (8). Therefore, we get the expression: 
 
 χ����=f (χ�� ) + w��           (10) 
 
where, w��  model the small position perturbation or other effects.  

 
4.1. BD3D scheme in 2D model [D = 2 in (5)] 
Suppose n total sensor nodes are randomly distributed in a 2D terrain, with network density μ  enough to perform a boundary detection application. BD3D provides simultaneous 

selection of EBN and non-EBN during BN selection process by tactfully using the proposed 
BD3D BN Array (see Table 3) and GMM-based mathematic model. 
 

Sensor reading of Nv(head) Sensor readings of ξ(Nv)(rear) 

Table 3. BD3D BN Array of N�. 
 
Note: ξ(N�) =  ∑ N������  (see Section 2) and both head and rear are initialized with “0”; Rule: a 
sensor node is EN if its own reading equals to “1” and vice versa. 
Although the determination of sensor node status e.g., EBN or non-EBN etc. is practically 
meaningful, in literature fewer works are focusing on this issue. In BD3D, we tactfully 
utilize a BD3D BN array to adequately energy-friendly determine sensor node status (see 
Table 4).  
 

BD3D 
BN 

Array 

    

 
EN 

 
Non-EN 

BN  
Non-BN EBN Non-EBN 

Head 1 0 1 1 0 1 

HR random random All 0 & 
random 

All 1 All 
0 

All 1 

Table 4. Head &HR based sensor node status determination. 
 
*EBN � EN, EBN � non-EBN = BN (see Figure 4) and random means it is either all 1 or all 0. 

 
Fig. 4. EBN and non-EBN on BL in BD3D 2D model when object expanded or shrunk. 
 

                                                            head=� 1       EN, EBN�BN�, non � BN 0         non � EN, non �  BN  

HR=�  all 1     non � EBN�BN�, non �  BN
all 0         EBN�BN�, non � BN     random     EN, non � EN or EBN�BN�        
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estimated in GMM. 
In this paper, we provide an algorithm for classifying EBNs. Given a sensor network {S�}, we 
assume that sensor nodes are deployed with moderate density in the spatial terrain. From a 
mathematical perspective, sensor readings provide a dense, but discrete sampling of the 
underlying continuous distribution. To check whether or not N� is a sensor node lying on 
the boundary of an event, we put the data {χ�} from readings of the sensor nodes in ξ(N�) 
and then build our best GMM based on {χ�}. 
In more detail, we first set the upper bound of the mixture component number to be K. Then 
for each j = 1,2,…,K, the data set { χ� }is fed into (5) (6) for estimation of θ(J). Let BM denote 
the number of mixture components of the best model. We select BM where  
BIC (θ(BM)) = min���K BIC (θ(J)). Therefore our final is θ(BM) or �μ�, ∑� , α�����,�,�,BM. 
To classify if N� is a EBN, the conditional probability for χ� given model θ�(BM) is computed 
by 
 �(χ�| θ�(BM) ) = ∑ α��BM��� (χ�|μ�, ∑�)                                            (7) 
 
then �(χ�| θ�(BM) )< γ, N� is classified as a EBN. Where γ is used as a threshold to measure 
EBN which has significantly low probability density values given the final model θ�(BM). 
The threshold is set as γ = 0.25, the upper bound of the component number is set as K = 5. 
These parameters are used as the default in Sections 4 and 5, unless otherwise stated. 
To dynamically update the estimates of observations by conducting (Zivkovic, et al,2004), 
we have the following dynamic evolvement and observation equations: 
 
 χ�� = f (χ����) + w��                  (8) 
 
 χ�� = g(χ����) + v��                  (9) 
 
where f(.) is the linear or nonlinear state evolvement function and g(.) is highly nonlinear 
observation function. w��  and v��  are the standard deviation (noise sequences). For example 
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BD3D BN Array (see Table 3) and GMM-based mathematic model. 
 

Sensor reading of Nv(head) Sensor readings of ξ(Nv)(rear) 

Table 3. BD3D BN Array of N�. 
 
Note: ξ(N�) =  ∑ N������  (see Section 2) and both head and rear are initialized with “0”; Rule: a 
sensor node is EN if its own reading equals to “1” and vice versa. 
Although the determination of sensor node status e.g., EBN or non-EBN etc. is practically 
meaningful, in literature fewer works are focusing on this issue. In BD3D, we tactfully 
utilize a BD3D BN array to adequately energy-friendly determine sensor node status (see 
Table 4).  
 

BD3D 
BN 

Array 

    

 
EN 

 
Non-EN 

BN  
Non-BN EBN Non-EBN 

Head 1 0 1 1 0 1 

HR random random All 0 & 
random 

All 1 All 
0 

All 1 

Table 4. Head &HR based sensor node status determination. 
 
*EBN � EN, EBN � non-EBN = BN (see Figure 4) and random means it is either all 1 or all 0. 

 
Fig. 4. EBN and non-EBN on BL in BD3D 2D model when object expanded or shrunk. 
 

                                                            head=� 1       EN, EBN�BN�, non � BN 0         non � EN, non �  BN  

HR=�  all 1     non � EBN�BN�, non �  BN
all 0         EBN�BN�, non � BN     random     EN, non � EN or EBN�BN�        
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1 0 1 1 1 1 1 0 1 
Table 5. Example of BD3D BN Array of N�� . 
 N��  is determined to be EN or EBN (BN) if head is 1 and HR is random based on the values in 
Table 5. 
Expanding from 2D to 3D, we find that not only the sensing area of sensor node but the 
network topology is getting more complex, therefore when talking about the relative 
position of sensor nodes, we need 3D sense of space to construct the model. 

 
4.2. BD3D 3D model [D = 3 in (5)] 
 

 
Fig. 5. Position of N� in 3D co-ordinate. 
 
Define the state variable as 3D position for a specific sensor node modeled in Figure 5.  
 

 
Possible data transmission in the 2D plane 

Fig. 6. Concept of 2D plane for 3D sensing space. 

 
Fig. 7. TSM concept with d = r for explanation simplicity. 
 
In a 3D sensing space, sensor nodes are randomly distributed to form a network. To simplify 
the complicated operations in dealing with sensor node localization in 3D model, we apply 
a new concept of 2D plane that each 3D space can be divided into n 2D planes, where � �∞ (see Figure 6). The methodology of selection and representation of the 2D plane is 
described as: 
 

 Randomly pick up to three sensor nodes { N�� ( ��� ,  ��� , ��� ), N��  ( ��� ,  ��� , ��� ), N��  
(��� , ��� ,��� )}(see Figure 7) from the 3D sensing space to form a 2D plane (either the 2D 
plane in blue or green in Figure 6).  

 Suppose N��  N��  and N��  are arbitrary points (sensor nodes) on the formed 2D plane 
called “ρ”, the plane representation is (see Figure 7). 

 

 ρ=� ��� � � ��� � � ��� Z               ��� � � ��� � � ��� Z               ��� � � ��� � � ��� Z                        (11) 

 
Strictly speaking, a 2D plane is definitely as a 2D section (see Figure 7). Therefore, one 3D 
sensor network needs n 2D sections (� � ∞) to reconstruct. Due to the impossibility of 
computing n in programming, we introduce a virtual Thick Section Model (TSM).  
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sensor network needs n 2D sections (� � ∞) to reconstruct. Due to the impossibility of 
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Figure 7 may help understand the concept of TSM. A 2D section is modeled as a thick plane 
(ρ) with section thickness (d) with a set of representative points { N�� (��� , ��� , ��� ), N��  (���  ��� , ��� ),N��  (���  ��� , ���  ) }describing the elements of the section. In our model the boundaries are 
actually modeled as parametric line segments and points taking into account not only the 
position of the plane but also the uncertainties of the plane contour. 
Suppose the 3D network area is ζ� cube (ζ is pre-determined in programming) and d ≠ r. 
Therefore the selected 2D section could be those in Figure 8: 
 

 
Fig. 8. Possible 2D sections in 3D network area and (c) is the model used in simulations. 
 
The 2D section in our simulation model actually is a (ζ�*d) area [see Figure 8 (c)]. (the 
section thickness (d) is determined a priori to programming).Thus, the simulator only need 
to perform TSM (ζ/d times that significantly improve the maneuverability. 

 
5. Simulation 

In this section, we evaluated the performance of BD3D 2D and 3D model implemented in 
Matlab respectively. The simulation parameters are given in the following table Sensor 
nodes make local observations every 2 time slots: 
 

Parameter Value 
Network Area (2D,3D) 

Number of sensor nodes(2D,3D) 
The sink (2D,3D) 

Transmission range(2D) 
Time slots 

Initial Energy 
Message size E���� E�� δ��� EDA 

(100 m)2(100 m)3 
2,500,10,000 

(50,175), (50,175,50) 
10 m 

100 seconds 
2J/battery 
100 Bytes 
50 nJ/bit 

10 pJ/bit/m2 
0.0013 pJ/bit/m4 
5 nJ/bit/signal 

 
5.1. Simulation model 
(2D model)  

 Design a regular variation object: a circle initially centered at (50, 50) and continually 
expand it by increasing its radius by 10 meters every 10 time slots. (see Figure 9.) 

2D section 

 Design an irregular variation object: the initial ENs that adequately covers a area 
{�� � ����+�� � ����=R�������} to initiate the event. At every time slot, EN propagates 
by picking up a random number of neighbors to join the event. In this way, the 
network is guaranteed to be fully connected. (see Figure 9.) 

(3D model)  
 Design a regular variation 3D object: the object center is (50, 50, 50) and continually 

expand its radius by 10 meters every 10 time slots. 
 Design an irregular variation 3D object: the initial ENs are within a spherical area  

{�� � ����+�� � ����+�� � ���� = R�������. EN propagates in a similar way as that 
used for the irregular variation object in 2D model.  

  

 
(a) Regular variation object    (b) Irregular variation object 

Fig. 9. Sample of BD3D 2D model with regular variation and irregular variation object. 
 

 
Fig. 10. Rebound and boundary distances for BD3D. 
 
The BD3D is flexible enough to be used in a clustered network or a non-clustered network 
since it does not put any constraints on cluster architecture. However, BNs are usually 
heavily utilized to send aggregated data associated with the object/network boundary 
information to cluster head (in clustered networks) or the sink (non-clustered networks), 
they would run out of energy more quickly. Therefore, achieving a reasonable amount of 
BNs (the less the better) benefits energy saving.  
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The BD3D is flexible enough to be used in a clustered network or a non-clustered network 
since it does not put any constraints on cluster architecture. However, BNs are usually 
heavily utilized to send aggregated data associated with the object/network boundary 
information to cluster head (in clustered networks) or the sink (non-clustered networks), 
they would run out of energy more quickly. Therefore, achieving a reasonable amount of 
BNs (the less the better) benefits energy saving.  
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5.2. BD3D 2D model 
This section discusses the performance evaluations based on BD3D 2D model. Figure 11 
demonstrates the performances of the BD3D 2D model and DEMOCO and COBOM in terms 
of the average residual energy per sensor node at 50 and 100 time slots of operation 
respectively. Obviously, the performance of BD3D 2D is apparently better than DEMOCO 
and COBOM. However at the meanwhile, it shows the good stability of energy load 
balancing among the sensor nodes over the individual residual energy differences. 
 

 
(a) 

 
(b) 

Fig. 11. Average energy level status of 2,500 sensor nodes after 50 and 100 time slots 
operation. 

Comparison of the number of BNs for a regular variation object with COBOM and 
DEMOCO is shown in Figure 12 (a). To increase the comparability, the network is only 
operated during 50 time slots. Figure 12 (a) shows that the BD3D 2D model consistently 
provides less than half of the BNs selected by COBOM and reduces approximately by 1/3 
those achieved by DEMOCO in the same environment. This could be due to the use of the 
BD3D BN array (see Section 2) and GMM that helps selecting potential BNs easier than the 
aforementioned COBOM and DEMOCO. Consequently, this avoids low data delivery rates and 
excessive energy consumption by frequent flooding of inquiring packets  

 
(a) 

 
(b) 

Fig. 12. Performance evaluation by using BD3D 2D when r = 10 m. (a) Comparison with 
DEMOCO and COBOM on the number of BNs based on the number of sensor nodes 
(regular variation object case for 50 time slots) (b) Number of BNs (EBNs and non-EBNs) 
based on time slots (both regular variation and irregular variation object case). 
 
However, due to the elusive ways proposed to expand the irregular variation object, we can 
hardly do comparison with COBOM and DEMOCO anymore. Figure 12 (b) shows only the 
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performance evaluation of the BD3D 2D model. As promised, EBNs and non-EBNs for 
regular variation and irregular variation object cases are clearly found. From our analysis, 
the value of BN (irregular variation) tends to be affected by irregular BL movements due to 
the elusive change of object compared to that of BN (regular variation) that looks more 
euphemistic. When the regular variation object expands over the rebound distance which 
indicates the end of saturated distribution around the BL, Figure 12 (b) shows a rapid 
increase of EBN (regular variation) and decrease of non-EBN (regular variation) until the 
object covers the whole network. On the other hand, due to the non-determinacy of 
irregular variation object shape changes, trajectories of both EBN (irregular variation) and 
non-EBN (irregular variation) are always difficult to size up. However, we find similarity or 
resemblance as to be essentially interchangeable for the first 50 time slots of operation 
between regular variation and irregular variation object cases. For the second 50 time slots, 
the performance of EBN (irregular variation) and non-EBN (irregular variation) are going to 
split up, but show no direct relationship with rebound distance and boundary distance.  

 
5.3. BD3D 3D model 
Figure 13 shows a vertical section view of 3D sensor network area using TSM—a 
combinational view of three conditions { d < r, d > r, d >> r }。 
 

 
Fig. 13. A combinational vertical section view of 3D sensor network with {d < r, d > r, d >> r} 
 
In this section, we modeled the BD3D 3D with different values of r and d by using TSM for 
regular variation and irregular variation objects, respectively. Figure 14(a) compares the 
number of BNs based on the value of d with r = 10m. As d 隼 r, the values we got are 
approximately the same. Moreover, we varied the value of d (d 伴 r) for simulating the cases 
with the significant existence of BA (see Figure 13), many BNs of highly possible BA got lost, 
resulting in decrease of the number of BNs. Figure 14(b) compares the number of BNs based 
on the value of r with d fixed at 8 m. As d 伴 r, the performance shows the comparatively 
worst. By increasing r to meet d 隼  r, it shows the significant improvement on the 

performances with very imperceptible distinctions. It is easy to guess that if communication 
range of a sensor node is large, there will be many neighbors that it can communicate with, 
which will result in more BNs.  
 

(a) 

(b) 
Fig. 14. Comparison for regular variation object case using BD3D 3D model. (a) Number of 
BNs based on time slots via varying d (r = 10 m), (b) Number of BNs based on time slots via 
varying r (d = 8 m). 
 
Meanwhile, we set the same parameter environment in the BD3D 3D model for evaluating 
the number of BNs in the network in Figure 15. The most interesting feature is that the 
network based on d 隼 r apparently performs better than that with d 伴 r. As a result, it can be 
alleged that there is no strong relationship between the number of BNs and the 
communication range (r) using TSM once d 隼 r. This occurrence can be clarified by the 
analysis illustrated in Figure 13. Another interesting feature we can observe from Figure 
15(b) is that when r = 5 and d = 8, it undergoes a very slow increase first and then 
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performance evaluation of the BD3D 2D model. As promised, EBNs and non-EBNs for 
regular variation and irregular variation object cases are clearly found. From our analysis, 
the value of BN (irregular variation) tends to be affected by irregular BL movements due to 
the elusive change of object compared to that of BN (regular variation) that looks more 
euphemistic. When the regular variation object expands over the rebound distance which 
indicates the end of saturated distribution around the BL, Figure 12 (b) shows a rapid 
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object covers the whole network. On the other hand, due to the non-determinacy of 
irregular variation object shape changes, trajectories of both EBN (irregular variation) and 
non-EBN (irregular variation) are always difficult to size up. However, we find similarity or 
resemblance as to be essentially interchangeable for the first 50 time slots of operation 
between regular variation and irregular variation object cases. For the second 50 time slots, 
the performance of EBN (irregular variation) and non-EBN (irregular variation) are going to 
split up, but show no direct relationship with rebound distance and boundary distance.  
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approximately the same. Moreover, we varied the value of d (d 伴 r) for simulating the cases 
with the significant existence of BA (see Figure 13), many BNs of highly possible BA got lost, 
resulting in decrease of the number of BNs. Figure 14(b) compares the number of BNs based 
on the value of r with d fixed at 8 m. As d 伴 r, the performance shows the comparatively 
worst. By increasing r to meet d 隼  r, it shows the significant improvement on the 

performances with very imperceptible distinctions. It is easy to guess that if communication 
range of a sensor node is large, there will be many neighbors that it can communicate with, 
which will result in more BNs.  
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Fig. 14. Comparison for regular variation object case using BD3D 3D model. (a) Number of 
BNs based on time slots via varying d (r = 10 m), (b) Number of BNs based on time slots via 
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the number of BNs in the network in Figure 15. The most interesting feature is that the 
network based on d 隼 r apparently performs better than that with d 伴 r. As a result, it can be 
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experiences a sharp increase in the number of BNs after 40 time slots. This was caused by a 
phenomenon that the objects expand highly depending on the number of existing BNs. 
However, at network initialization, we have relatively fewer existing BNs. As the cardinal 
number designating the existence of BNs is over a special value (available at around 40 time 
slots), the performance miraculously achieves a sudden improvement.  
 

(a) 

(b) 
Fig. 15. Performance comparison for irregular variation object case using BD3D 3D model. 
(a)Number of BNs based on time slots via varying d (r = 10m); (b)Number of BNs based on 
time slots via varying r (d = 8m). 
 
We hereby conclude that our BD3D for continuous boundary detection in 3D case works 
well especially when d 隼 r using TSM. An in depth study about the impact of localization 
impact on various routing protocols and its implications on design of location-dependent 
system are left as future work. 
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6. Conclusions 

This paper has proposed a novel Gaussian Mixture Model-based BD3D scheme for 
boundary detection of continuously moving object in a 3D sensor network. We adequately 
presented the proposed protocol, and the simulation results shown support our allegation 
that the BD3D 2D model surely outperforms COBOM and DEMOCO in terms of average 
residual energy per sensor node and the number of selected BNs, and the BD3D 3D model 
achieves accurate boundary detections by soundly selecting EBN and non-EBN for both 
regular variation and irregular variation object cases. Our future work will include 
additional optimization desired to improve the performance of our algorithm and 
verification of the precision of the expected boundaries and invention of a new protocol that 
considers data losses and route failures due to unpredictable errors such as sensor node 
failures, contention, interference and fading (Woo, et al, 2003; Seada, et al, 2004). Moreover, 
the more accurate energy and mobility model will be addressed in future work.  
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experiences a sharp increase in the number of BNs after 40 time slots. This was caused by a 
phenomenon that the objects expand highly depending on the number of existing BNs. 
However, at network initialization, we have relatively fewer existing BNs. As the cardinal 
number designating the existence of BNs is over a special value (available at around 40 time 
slots), the performance miraculously achieves a sudden improvement.  
 

(a) 

(b) 
Fig. 15. Performance comparison for irregular variation object case using BD3D 3D model. 
(a)Number of BNs based on time slots via varying d (r = 10m); (b)Number of BNs based on 
time slots via varying r (d = 8m). 
 
We hereby conclude that our BD3D for continuous boundary detection in 3D case works 
well especially when d 隼 r using TSM. An in depth study about the impact of localization 
impact on various routing protocols and its implications on design of location-dependent 
system are left as future work. 
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6. Conclusions 

This paper has proposed a novel Gaussian Mixture Model-based BD3D scheme for 
boundary detection of continuously moving object in a 3D sensor network. We adequately 
presented the proposed protocol, and the simulation results shown support our allegation 
that the BD3D 2D model surely outperforms COBOM and DEMOCO in terms of average 
residual energy per sensor node and the number of selected BNs, and the BD3D 3D model 
achieves accurate boundary detections by soundly selecting EBN and non-EBN for both 
regular variation and irregular variation object cases. Our future work will include 
additional optimization desired to improve the performance of our algorithm and 
verification of the precision of the expected boundaries and invention of a new protocol that 
considers data losses and route failures due to unpredictable errors such as sensor node 
failures, contention, interference and fading (Woo, et al, 2003; Seada, et al, 2004). Moreover, 
the more accurate energy and mobility model will be addressed in future work.  
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