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1. Introduction

The endangered species always drew the attention of the scientific community since their dis-
appearance would cause irreplaceable loss. To help these species to survive, their habitat is
protected by the laws of environmental protection. Sometimes this protection is not enough,
because their natural evolution is the main cause of their disappearance. However, to save
them, it is sometimes possible to transfer them elsewhere that should be similar to their previ-
ous habitat to avoid disturbing the balance of wildlife. To model a habitat, several parameters
must be of interest and are generally defined by experts. This is the case for the number of
singing birds which will be studied in this paper.
Today, advances in sensor technology enable the monitoring of species and their habitat at
a very low cost. Indeed, the increasing sophistication of wireless sensors bids opportunities
that enable new challenges in a lot of areas, including the surveillance one. Progress in their
miniaturization leads to micro-sensors of size of cubic millimeters which, used in large quan-
tity, produce huge amounts of data. This paper promotes the use of sensors for monitoring
bird endangered in their habitat. Actual methods for counting endangered birds use mainly
human labor and because they are not really comprehensive leads to poor estimation. The
use of sensors deployed in critical environments can help the census of these species and even
generate new data on their customs.
Among the challenges that the use of the sensor technology enable, energy efficiency is the
most critical for these wireless networks since battery depletion totally disables a sensor. In
addition, designing algorithms for wireless networks stems from the distributed computer
science domain with limited devices. Memory space and computational power are often of a
magnitude less than miles than their desktop counterparts. This paper investigate the problem
and proposes to approximate the number of birds by geometric means derived in a graph
problem.
Our paper is organized as follows. First, Section 2 provides an overview of techniques gen-
erally used to estimate the locations of multiple sources with a unknown sensor network.
Section 4 details our heuristics used to count birds. Section 5 introduces a distributed algo-
rithm for counting birds. Experimentation confirms the effectiveness of our counting systems
in Section 6. Then we conclude in Section 7 and gives an overview of our future work.
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2. Previous Work

Source localization is an area of interest that has been widely studied in these recent years.
A comprehensive review of incentives techniques and source localization has been written by
Krim and Viberg in (Krim & Viberg, 1996) and it is not difficult to understand that problem has
been of particular focus for military needs. Indeed, radar and sonars are a direct application
of source localization.
Several acoustic parameters such as bandwidth, distance sensors, reverberation and thus
change the way the location of the sources are handled. In addition, the algorithms of source
localization depends strongly on physics and rely on the sound characteristics of waveform to
calculate location sources. Waveform audio is known to be broadband (30Hz-15kHz) and sen-
sors usually record the sound from near-field sources. The following presents some algorithms
of interest which satisfy these two properties. Near-fields algorithms like close-formed ones
(Smith. & Abel, 1987) use time delays between sensors location to estimate the source po-
sition. However, though they are computationally less expensive than maximum-likelihood
parametric algorithms (Chen et al., 2001a), they cannot handle efficiently multiple sources
(Chen et al., 2001b). Maximum-likelihood (ML) algorithms are inspired by the fact that source
location information is contained in the linear phase shift of the sensor data spectrum ob-
tained through a discrete Fourier Transform applied to the wideband data. However, ML
techniques are dominated by low-cost suboptimal techniques like the well-known MUSIC al-
gorithm (Schmidt, 1986) which leverages spectral calculus on signal and noise subspaces to
find sources locations.
Unlike these approaches, we do not use the acoustic properties of the song of the bird to find
its location. Indeed, we assume that our sensors are simple and only detect songs relevant to
the monitored specie. Further, our sensors are wireless and rely on battery power to function.
It is important to notice that our algorithms do not try to pinpoint birds, but rather estimate
the number of songbirds that inhabit a region. In our case, only approximate geometric infor-
mation is sufficient to establish this estimate.

3. Recognizing the birdsong

The recognition process of birdsong is the first part of our counting systems. Today, it is true
that the performance levels made in the treatment of audio signals are high, but this requires
large memory and processing power of large size which could exclude limited capacity of
devices such as wireless sensors.
Recognition of species based on acoustic analysis has been widely studied in recent years
and usually falls within the scope of the classification field. This is particularly the case for
recognition of bird songs. Indeed, for a particular song, it is necessary to determine if it belongs
to a specie. For example, the work of Seppo Fagerlund (Fagerlund, 2007) uses support vector
machines to classify the different species of birds based on their songs. Similarly, Jim Cai
et al. (Cai et al., 2007) propose a method recognition based on neural networks to find the
membership of a song to a bird class. Our recognition process, inspired by the work of Rabiner
(Rabiner & Wilpon, 1979), leverages the same mechanics by means of a clustering algorithm
to classify the song.
Figure 1 gives an overview of our wireless counting system.
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Fig. 1. The Counting System

Bird Species Recognition Using Clustering

Our classification method is twofold : a parameterization transformation process of the song
in a certain fingerprint, and clustering process to determine its membership.
The parametrization process uses the songs of the birds to create a series of coefficients that
describe the signal. Although various parameterization methods LPC, LPCC, PLP, dots
exist, we use the MFCC Mel Frequency Cepstral Coefficient because our analysis is limited to
a very limited vocabulary on limited devices. Indeed, Christopher Levy compared in (Lévy
et al., 2006) different parameterization methods on small systems such as mobile phones for
reduced vocabulary and have showed that the parameterization based on MFCC is much
more effective for such systems.
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Once the fingerprint is obtained from the parameterization process, it is added in a set with
other fingerprints, themselves derived from a database containing a large number of songs of
individuals known as the specie. Subsequently, a clustering algorithm (K-Means or EM) is
used on all the fingerprints to determine their similarity and to create one or more clusters in
which will be the bird cluster. For a given footprint, the problem is then to determine its mem-
bership to the bird cluster. If that’s the case, data location + Mote timestamp is stored in the
database for further processing counting algorithms. Our recognition results are compelling
because almost all birds are classified correctly in our case.

4. The Counting Algorithm

This section is devoted to our counting heuristics inspired by the triangulation detection used
by R. E. Bell to count owls in the forest (Bell, 1964). Our method differs essentially from the fact
that we do not use semi-directional devices but omni-directional wireless sensors to loosely
locate a birdsong. In our theoretical framework, all motes share the same characteristics build-
ing, which means they have the same (processing power, memory, battery, radius of detection,
etc). Optimizing routes in wireless sensors networks here are out of concern. We only focus
on the manner to detect birds in their habitat viewed as a 2D area. Further, we do not have
any assumptions on the number of birds, on their movements or even their customs.
More formally, let denote M = {m1, . . . , mn} the set of all the motes which covers the habitat.
Each mote has the same detection radius r. All motes can report information to the base
station B which holds our counting algorithm, assuming that B is always reachable by every
mote. Let Ft : M → {0, 1}, the detection function which returns 1 if a mote mi detects a bird,
0 otherwise at time t. The base station stores the detection array Dt = [Ft(m1), . . . , Ft(mn)]
which reveals the detection state of each mote at time t. Note that the base stores detection
arrays at a sampling rate determined empirically, that is, detection arrays Di are stored in a
data set D at the base B. Fig. 2 shows an example of motes placed on a 2D area.

Bird
Mote

Detection radius

Fig. 2. Motes, birds and the hard underlying unity Chart

We propose to count one bird for all the motes which trigger at time t and for which radius
of detection intersect mutually. We call such a set a Maximal Detection Set denoted MDS(N)
with N ⊂ M where N is the set of the motes which trigger at time t. The grayed area in
figure 2 is a MDS. Let’s denote such a subset W = {m ∈ M | ∀mi, mj ∈ M, r(mi) ∧ r(mj)}.

www.intechopen.com



Wildlife Assessment using Wireless Sensor Networks 5

Bird
Mote

Detection radius

Finding the Maximum Detection Set is similar to find a maximum clique (Bomze et al., 1999).
Let’s see why.
A unit disk graph G(V, E) is an intersection graph of disks of unit radius, that is, ∀ij ∈ E, the
unit circle of center i intersects the unit circle of center j. The set of each center of these circles
is called the model of the unit disk graph. This class of graph is well studied and is extensively
used in the field of ad hoc networks (Kuhn et al., 2008). Indeed, UDGs (Unit Disk Graphs) can
represent an ideal view of an ad hoc networks and provides strong theoretical result due to the
geometric properties of the model. For example, Clark and al. (Clark et al., 1990) show that
finding a maximal clique for an UDG is polynomial given its model. More recently, Raghavan
and Spinrad (Raghavan & Spinrad, 2003) have shown that it is even possible to compute the
maximum clique without the model in polynomial time.
Without loss of generality, let G(V, E) a graph where V is the set of the motes and E, the set
of edges where the edge ij exists if and only if the detection radius of mote i intersects the
detection radius of mote j. Clearly, G is a unit disk graph. Unfortunately, a clique in G only
gives motes which are pairwise adjacent and we are interested in motes which are mutually
adjacent, that is motes which intersect mutually. We propose to alter all triangles (clique of size
3) which do not have a mutual intersection in the graph i.e we remove one edge in the triangle.
As a consequence, all cliques of more than three vertices will have a mutual intersection.

Theorem 4.1. If a graph G(V, E) only has triangles formed from motes whose detection radius inter-
sect mutually, then all motes forming a clique in G have detection radii intersecting mutually.

Proof. By definition, all clique of size three have detection radii which intersect mutually.
Now, assume that all motes clique of size n intersect mutually. Let choose such a clique that
we call S = {m1, . . . , mn} and let’s add a new mote mn+1 to S. Assume that S+ {mn+1} form a
clique for which some motes do not intersect mutually. Clearly, mn+1 form at least two proper
intersections with S, and the detection radius of the mote mn+1 cannot intersect mutually at
least with two other radii detection. But, by definition, all triangles intersect mutually which
is a contradiction.

Reichling (Reichling, 1988) uses convex programming to find the common intersection of a set
of disks in O(k) steps where k is the number of constraints of the convex program. Moreover,
all the triangles in a graph can be computed in O(mn) steps where m is the number of edges
and n, the number of vertices. Thus, we can alter all triangles which do not have a common
intersection in O(kmn) steps. Several strategies could be used to alter a triangle. However,
removing the longest edge in a triangle seems to be the most relevant one since the number
of altered triangles would be reduced. Intuitively, a longest edge in a “bad” triangle is more
likely to be common to another “bad” triangle. Unfortunately, the underlying unit disk graph
can loose its nature since it might become a quasi-unit disk graph1 for which the maximum
clique problem is known to be NP-complete (Ceroi, 2002).
Algorithm 1 recursively constructs the maximum set of all motes which triggers at time t and
removes a MDS built from this set. For each MDS removed, the number of birds iterates.
This procedure is run for each detection array and the maximum number found over these
detection arrays is an estimation of the number of singing birds. This algorithm complexity is
bounded by the MDS search which consists in finding a clique in the unit disk graph underly-
ing our network. Breu (Breu, 1996) has given an algorithm which find a maximum clique in a
unit disk graph with complexity O(n3.5 log n). However, the alteration of the underlying unit
disk graph leads to a NP-complete algorithm.

1 Model which takes into account non-circular detection area
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begin
L ← ∅;
foreach d ∈ D do

NumberOfBirds ← 0;
Construct the underlying altered unit disk graph G(V, E) from d;
while V �= ∅ do

Search for a maximum clique in G;
Remove this clique from G;
NumberOfBirds ← NumberOfBirds + 1;

Add NumberOfBirds to L;

return maxl∈L l;
end

Algorithm 1: The Counting Heuristic

Refining the Counting Heuristic

In the following, we suggest a little enhancement of our scheme. Indeed, we partition suc-
cessive detection arrays pairwise in order to refine our estimation of the number of birds.
Intuitively, the habitat is divided in such a manner that birds in a part could not have moved
to another one between two instants (for each couple of detection arrays). A threshold is em-
pirically fixed for the flight speed of the birds such that no birds can fly over that value. This
leads to the decomposition of the environment in several sub-environments. Then, each sub-
environment is processed with algorithm 1. For example, assume that we have 10 birds in an
area. Halve this area and put 5 birds in one part, and 5 in the counterpart. Now, assume that
the 5 birds in the first part sing together at time t, the other ones sing together at time t + 1
and these parts are too distant such that birds in one part can go in the other part between
the two time steps. In that case, algorithm 1 outputs 5 birds as estimate. Our next algorithm
halves the environment in two parts such that birds in two. As a consequence, we can apply
algorithm 1 on each part independently and take the sum of the estimates found on each part,
which gives 10 birds.

Data: A list of detection arrays D = D1, . . . , Dm

Result: An estimation of the number of birds in the habitat
begin

L ← ∅;
while |D| > 0 do

Partition detection arrays Di and Di+1 respectively in X = {X1, . . . , Xk} and
Y = {Y1, . . . , Yk};
Z = ∅;
for i ← 1 to k do

Process Xi and Yi with algorithm 1 and put the maximum of the number of birds
counted in Z;

Add ∑z∈Z z to L;

return maxl∈L l;
end

Algorithm 2: The Enhanced Counting Algorithm
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For sake of clarity, in algorithm 2, the number of detection arrays is even and only two suc-
cessive detection arrays are partitioned. The next section presents another way to count the
singing birds in their habitat. This next version is designed to be partially distributed on the
motes.

5. The Swarm Counting Protocol

Our next counting method can be seen as two levels, a local and a global one. At the local
level, motes cooperates sending information to count the number of singing birds in their
neighborhood. At the global level, motes aggregates data to find a more accurate estimation
of the number of singing birds in the habitat.
Like the technique previously described, we assume that the motes layout forms a unit disk
graph. First, motes have to estimate locally how many birds had sang. Then, they send this
data to the base station which derives from all the information the estimate for the number
of singing birds. In our scheme, motes all have a set of rules which are the following. They
are all in a passive state until some songs trigger them. When triggered, they switch to an
active state and tell to their neighbors2 that they detect a bird. Then they listen for their
neighborhood during a specified time. Finally, they deduce the number of singing birds in the
vicinity from their active answering neighbors, and send this number to the base station.

Local Counting

Our local counting is somewhat similar to the one in section 4. It leverages the trilatera-
tion technique to estimate a number of birds in the vicinity. All motes know their neighbors’
topology and are in an initial passive state when they are waiting for signals (bird songs).
Whenever a mote is triggered , it sends a signal to its neighbors and listen for whose which
were triggered too. If two or more neighbors have an intersecting detection area, we assume
that only one bird is counted for these motes. In figure 3, the black mote hears a bird song,
asks its neighbors if they heard too and waits for their reply. Remark that the number of birds
counted is the number of neighbors which are independent mutually in each neighborhood,
i.e the cardinal of the maximum independent set3 in the graph induced by the neighbors.

Global Counting

Now, assume that all motes have counted the birds in their vicinity and have sent their local
count to the base station. Now, all these information have to be aggregated accordingly to
find an estimate of the number of singing birds at this instant. Because, the neighborhood was
used to derive the local counting, obviously, motes which are neighbors will influence each
other in the counting process. So, summing up their local count can lead to an over-estimate
of the number of singing birds. Note that is also the case for motes which are at distance 2,
that is neighbors of neighbors in the unit disk graph, since they can share common neighbors.
Therefore, only motes which are more than distant 2 each other will sum up their count. Our
estimation will be the maximum number of birds which could be counted over aggregated
nodes in the underlying graph.
In figure 4, the black nodes are at distant 3. So a global counting of singing birds could be
four. Remark that such a counting has to be done for all set of nodes which are at more than
distance 2 each other. If such a technique seems to lead to a combinatorial explosion of the

2 As previously, neighbors are adjacent nodes in the unit disk graph
3 The largest set of vertices which are not pairwise adjacent
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Fig. 3. Motes collaboration at the local level

set of motes which can be aggregated, the underlying graph has some nice properties which
allows to find the estimate in linear time.

More formally, let N(i) define the neighbors of a mote i, that is

∀i ∈ V, N(i) = {j ∈ V| ij ∈ E}

and
∀A ⊂ V, N(A) =

⋃

i∈A

N(i)

Let G2+(V, E2+) define the graph where

∀i, j ∈ V2, ij ∈ E2+ iff j ∈ N(N(i))\i

The graph G2+ is the graph of all motes which are at most 2-distant between them. Let S(.)
denote the mapping which maps a vertex v ∈ V to the number of birds counted locally. Let
C be the set of all independent set in graph G2+. Our estimation is the sum of birds counted
locally for each motes derived from the maximum weighted independent set of G2+, i.e

max
c∈C

∑
v∈c

S(v)

Lemma 5.1. G2+ is a chordal graph.

Proof. Proof Remark that in G2+, all vertices are simplicial4. Thus, there exists a perfect elimi-
nation ordering on its vertices and de facto G2+ is chordal.

4 Vertices for which neighbors induce a clique in the graph.

Mote

Detection radius

Neighbor
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Mote

Detection radius

Neighbor

Fig. 4. Example of underlying unit disk graph in local and global detection

Chordal graphs are graph for which vertices do not induce cycles without chord of size more
or equal to four. They are perfect graphs and well discussed in (Golumbic, 1980). It is also well
known that finding a maximum weighted independent set in chordal graph is linear (Leung,
1984). Thus, our later algorithm finds its estimation of the number of birds in linear time given
G2+.

Let’s see why and how our algorithm is not so sensible to noise and encompasses non circular
detection area. One of the most interesting features of swarm computing (Blum & Merkle,
2008) is that nodes (swarm entities) create mechanisms which tend to be resilient to disrup-
tion and failure. Similarly, our last counting technique leverages the swarm intelligence since
motes collaborates each other to derive their local count. The more the motes are, better the
estimate is. There are two cases where inconsistencies could appear :

1. Motes can have a different status from what it would be. For example, a mote could
stay in a passive state while it would have heard “a bird song”. However, neighbor
motes tend to negate this last effect. Conversely, motes could “wake up” while no birds
have sung. This latter case is somewhat less frequent and is easier to correct since this
mote could be a one-vertex connected component in the underlying graph, fact which
is prone to be an erratic behavior of the mote.

2. Objects can occlude bird songs, that is detection area is no more circular. In that case,
the occluded motes would stay in a passive state. Fortunately, the swarm could correct
this drawback by multiplicity : other closer motes could hear the birds too.
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Therefore, note that the layout of the motes is somewhat important and a simple way
to tackle the occlusion problem is to rise the density of the motes on the monitored
environment. It is even possible to only increase the number of motes where occlusion
problems could occur.

The next section is dedicated to experiments which prove our algorithm efficiency, even in the
presence of noise.

6. Experiments

6.1 Context

Endangered species receive attention from the scientific community since their disappearance
would lead to irreplaceable losses. To help these species to survive, their habitat is protected
by laws of environmental protection. Sometimes, this protection is not sufficient since their
habitat evolution is the main cause of their vanishing. In order to save them, they must be
transferred elsewhere. Obviously, the new habitat has to be similar to the previous one to
minimally disrupt the equilibrium of the wildlife. To model a habitat, several parameters
have to be fixed by an expert. This study precedes the MOM project for which wireless sensor
networks have to be used to monitor an endangered specie. So these simulations are the
first steps to the deployment of WSNs over the Caravelle location in Martinique (a French
Caribbean island). Indeed, birds called “White-breasted Thrasher” are a specie which is only
known to be in in the Caravelle. They are considered endangered since specialists think that
only fifty of them are still alive there.

6.2 Testbed

Environment

For the need of the simulations, we wrote a tool which aims at generating the data necessary
to run our counting heuristics described previously. Our test environment comprises :

• an Intel Core 2 Duo E6750 2.67 GHZ,

• 4 Go RAM,

• Windows Vista 64 bits for Operating System,

• and the JDK 1.6 Update 10 (x64) since our tool is written in java.

Parameters

Simulations parameters were calibrated to be the closest to our tested area. The dimension of
our habitat is about 1000m×1000m. Birds can fly at 2 meters per second, stay at place, take
random directions with uniform probability. They sing with some probability fixed empiri-
cally. This latter parameter is fixed at 0.2 for each sample record (detection array). Finally,
motes are placed randomly on our area.

6.3 Performance Evaluation

Figure 5 shows our three different algorithms estimation for counting fifty living birds in the
habitat. Algo1 stands for the algorithm which only rely on the underlying UDG. Longest is the
algorithm which alters the longest edges of “bad triangles”. Swarm is the algorithm presented
in section 5. True is the number of birds which really sang. Each test has been driven 50 times
and the mean of the estimations was taken as the final result. Error deviation is shown for
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Motes Algo1 Longest Swarm True

100.00 10.10 10.72 9.98 17.58
200.00 13.86 16.56 12.62 17.38
300.00 15.16 18.64 12.92 18.02
400.00 15.70 20.46 13.84 17.58
500.00 16.76 22.56 15.04 17.36
600.00 17.28 24.12 15.80 17.80
700.00 17.88 25.74 16.08 17.66
800.00 18.38 27.74 17.04 17.64
900.00 18.40 29.50 17.60 17.86

1000.00 18.30 31.22 17.98 17.80
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Fig. 5. Number of Birds found by the heuristics and error deviation for 50 Birds in the habitat

each algorithm on the graph near the tables and gives an idea of how the algorithms perform
along the parameters.
Experiments show that algorithm Algo1 performs nearly as well as algorithm Swarm whenever
the number of motes is high. However, Algo1 tends to over-count the birds. The outputted
number of birds depends on the manner the MDS are removed. Let’s sketch a brief example on
figure 6. There exists three MDS at first step in each configuration. Grayed areas represent the
MDS removed on each configuration at each step. Configuration 1 leads to two grayed area
whereas configuration 2 leads to three grayed area. That is how two birds can be counted as
three. To reduce this drawback, we could run several times the counting process which would
remove the MDS randomly and then take the minimum number of birds over these countings.
However, such a scheme does not guarantee that we will not over-count and further, will
highly rise the execution time of the whole process.
To validate our schemes, noise is added as a parameter in our simulator. We assume that
20% of the motes malfunction. Table 1 shows the percentage error for Algo1 and Swarm in the
presence of noise.
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Configuration 1

Configuration 2
Fig. 6. Example of bad counting

Table 1. Relative error for the counting algorithms for 50 birds

Motes Algo1 Swarm Algo1 with noise (%) Swarm with noise(%)

100 45,08 46,33 50,51 50,85
200 27,24 33,83 32,69 37,34
300 15,27 25,79 20,59 28,62
400 8,85 19,31 13,33 23,22
500 9,32 19,77 13,75 23,86
600 3,31 12,69 6,86 17,49
700 1,93 4,54 1,36 9,53
800 4,41 3,72 0,93 7,67
900 4,30 2,49 2,04 6,23

1000 7,11 1,49 4,47 1,03

Clearly, the algorithm based on the swarm counting protocol seems more sensitive to noise
than its counterpart. Note that without noise, algorithm Algo1 over-counts the number of
birds. Therefore, in presence of noise, the approximate of the number of birds tends to be more
precise. Conversely, algorithm Swarm already undercounts the number of birds originally. So,
noise degrades even more the approximate of the number of birds which generally leads to a
worse counting.

Finally, we decided to fix the number of motes which will be used on the Caravelle habitat
to 1000 and vary the number of birds in our simulator to confirm our estimation. Results are
shown on figure 7.
Algorithm Longest suffers the same drawback seen in figure 5 when the number of motes is
high, so much that estimation are too high. This results from the fact that altering triangles
tends to create much more cliques to remove.
Algorithm Swarm gives slightly better estimations in configuration using a high number of
motes. However, its efficiency lowers whenever less motes are used. Indeed, the lesser the
motes you have, the lesser you cover the habitat. Furthermore, our schemes rely on a high
number of motes to better estimate the singing birds except algorithm Longest which could be
used to estimate the songbirds whenever the number of motes are low.
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Configuration 1

Configuration 2

Birds Algo1 Longest Swarm True

10.00 5.94 10.20 5.44 5.34
20.00 9.08 16.08 8.76 8.90
30.00 12.76 20.58 12.20 12.28
40.00 15.90 25.48 15.06 14.76
50.00 18.30 31.22 17.98 17.80
60.00 21.64 34.76 20.62 20.28
70.00 23.92 37.74 22.56 23.08
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Fig. 7. Number of Birds found by the heuristics and error deviation for 1000 motes in the
habitat

These results suggest to design an hybrid algorithm which will switch along determined
thresholds. However, remind that the data was generated from simulations and these thresh-
olds could be different from what our experimentations outputted. In our case, using the
Swarm algorithm for counting the birds seems to be so far the best solution to apply in the
Caravelle since more motes give accurate estimations.

7. Conclusion

Endangered species are a known problem that drew attention from the community these last
years. Habitat monitoring with wireless sensors networks could lead to several improve-
ments in the way to tackle the problem of the survival of these species. We have proposed a
first technique to estimate the number of birds using wireless microphone motes scattered in
an habitat. Our method derives from the motes layout a unit disk graph and removes contin-
uously maximum cliques to count the number of birds. A limitation of this technique could be
the maximum clique problem but simulations have shown that estimations are still suitable
if unit disk graphs are used to represent the motes network. We have also proposed a linear
algorithm to estimate the singing birds in the habitat and have shown that it is as much as
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efficient (quality) as our first one. This scheme can be fully distributed on a suitable wireless
sensors network. Such a distributed scheme would deny the need of a powerful base station
since the counting process would totally shift from the base to the motes.
Counting singing birds is a first step in our habitat monitoring project and surely is not suf-
ficient to identify specificities of the monitored specie. One major goal of habitat monitoring
is the reintroduction of the specie in another environment which will share the same charac-
teristics. We intend to work in this way by monitoring several parameters of interests in an
environment to model it and compare it with another ones.
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