
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

Energy-eficient Reprogramming of Heterogeneous Wireless Sensor Networks 501

Energy-eficient Reprogramming of Heterogeneous Wireless Sensor
Networks

Seán Harte, Emanuel M. Popovici, Stefano Rollo and Brendan O’Flynn

X

Energy-efficient Reprogramming of
Heterogeneous Wireless Sensor Networks

Seán Harte1,2, Emanuel M. Popovici1,2, Stefano Rollo1 and Brendan O'Flynn1

1 Tyndall National Institute, Cork, Ireland
2 University College Cork, Cork, Ireland

1. Introduction

In order to build wireless sensor network (WSN) applications, there are many challenges.
WSNs are distributed networks with a potentially high number of nodes and unreliable
inter node communications, and energy constraints due to the limited power. Much
research is ongoing into efficient communication protocols, device level software for energy-
efficient control of hardware, and higher level software for network control. The challenge
that this chapter is concerned with is efficiently reprogramming WSNs after they have been
deployed. This can be due to bugs in the original software, or if parameters in the current
application need to be changed, or the nodes are being re-tasked.

Microcontrollers are typically programmed by a wired connection to a PC. This can be done
by the software developer or can be done as part of the node manufacture process if the
application is already developed. However, after deployment it is not practical to physically
connect to each node to upload new code to its microcontroller. There are a number of
reasons for this: in a large network it can be too costly to go to each node; some nodes may
not be accessible if they are in remote areas, or inside industrial machinery; or it may be
required to update many nodes. If the node supports a method to receive data and
reprogram itself with this data, then it can be reprogrammed wirelessly.

However programs can be quite large. This requires a lot of energy to send, and may cause
communication problems due to flooding the network. If we consider a node which is
sending 8 bytes of sensor data every 15 minutes, and has a battery long enough to last one
year, then sending a 15 kByte program would shorten the lifespan by 20 days (if the energy
cost for receiving and transmitting are similar). If the entire network is being
reprogrammed, then the effect would be far more dramatic on nodes that have to forward
code to other nodes. It is for this reason that two more energy-aware solutions are looked at
in this chapter. The first is delta encoding, which is used to analyse the binary program
images for two applications to find similarities between them. This information can be used
to send a set of update commands, instead of sending the full new application. The second
technique presented is data compression, based on the Lempel-Ziv-Welch (LZW) algorithm

22

www.intechopen.com

Sustainable Wireless Sensor Networks502

1.1 Heterogeneous WSNs
Before looking at the solutions, we first introduce the idea of heterogeneity in WSNs. Each
application presents different requirements and constraints and for some applications, it can
be advantageous to have many different types of nodes with different functions that
together create a heterogeneous network. This can be because nodes have different
components depending on what type of sensors are being used. Another reason is that, to
keep costs to a minimum, each node should only have the minimum hardware required to
perform its task. For example, if a node is required to only take a reading every 10 minutes
and then transmit it, a very low-powered processor is sufficient. Conversely, if a node is
required to do relatively complex tasks such as forward error correction, encryption, signal
processing, or routing in large networks, a more powerful processor is required, as these
tasks are not possible on a very low-powered microcontroller. In this chapter, we focus on a
network with two different types of node that construct a two-tiered heterogeneous network
as in Fig. 1. One node has a small form factor with less processing and memory capability
and can be used for sensor interfacing. The small size also opens up new application
possibilities where the node can be embedded easily in existing objects or clothing (Foster-
Miller, 2010), or for medical applications (Marinkovic et al., 2009). A cluster of these small
nodes can be supported by a larger node. These larger nodes provide the backbone of the
network, and are capable of more complicated tasks.

Gateway

Fig. 1. Two-tiered heterogeneous network

The two nodes were developed at the Tyndall National Institute, and are called the Tyndall
25mm node (Bellis et al., 2005), and the Tyndall 10mm node (Harte et al., 2007). Both nodes
are designed to be made from a number of different layers that are connected together. This
provides a very high level of modularity, and allows application specific nodes with the
desired sensing capabilities to be built quickly, by attaching layers together. The larger node
has an ATmega128L (Atmel, 2009) microcontroller with 128 kBytes of program memory,
and 4 kBytes of RAM. A number of different radios are available, but in this work a Nordic
nRF905 radio operating in the 433 MHz band with 50 kbps data rate is used. The smaller,
10mm node uses a Nordic nRF9E5 chip (Nordic Semiconductor, 2008). This chip has an 8051
derivative microcontroller with 4 kBytes of program memory and 256 bytes of RAM. The
chip also includes a radio which can communicate with the Nordic nRF905. Its processing
power is very limited compared to the 25mm node. However its smaller size and lower

energy requirements give it advantages. Fig. 2 shows the two nodes, and Table 1 shows the
energy usage of the nodes in different modes.

Mode 10mm Node 25mm Node

Sleeping, with wakeup timer 20.0 μW 52.9 μW
Processing 9.73 mW 29.3 mW

Accessing memory 13.3 mW 31.0 mW
Radio receiving/listening 55.1 mW 75.1 mW

Radio transmitting at –10 dBm 42.2 mW 62.5 mW
Radio transmitting at +10 dBm 109 mW 128 mW

Table 1. Power used by Tyndall nodes from a 3.7 V Li-ion battery

Fig. 2. Tyndall 10mm node and 25mm node

2. Related Work

One of the big problems with network reprogramming is how to efficiently propagate the
updates through the network. The simplest case for reprogramming is when each node in a
network has the same application and they need to be updated. The new program can be
sent across the entire network using a flooding protocol, where each node forwards the
updated program to every node within its RF range. This helps ensure that every node
receives the update, but it is also wasteful as some nodes receive the update more than once.
To help improve data dissemination, the Trickle (Levis et al., 2004) algorithm was
developed. Using Trickle, nodes regularly broadcast which version of data they currently
have. If a neighbouring node detects has a different version, then the transfer of the update
can begin. This algorithm requires far less power to propagate the update across the
network, and scales to larger networks.
TinyOS (Berkeley, 2010) which is one of the most popular operating systems used in WSNs
uses a Trickle based algorithm called Deluge (Hui and Culler, 2004) to support wireless
reprogramming. Deluge modifies Trickle to support sending very large amounts of data.

www.intechopen.com

Energy-eficient Reprogramming of Heterogeneous Wireless Sensor Networks 503

1.1 Heterogeneous WSNs
Before looking at the solutions, we first introduce the idea of heterogeneity in WSNs. Each
application presents different requirements and constraints and for some applications, it can
be advantageous to have many different types of nodes with different functions that
together create a heterogeneous network. This can be because nodes have different
components depending on what type of sensors are being used. Another reason is that, to
keep costs to a minimum, each node should only have the minimum hardware required to
perform its task. For example, if a node is required to only take a reading every 10 minutes
and then transmit it, a very low-powered processor is sufficient. Conversely, if a node is
required to do relatively complex tasks such as forward error correction, encryption, signal
processing, or routing in large networks, a more powerful processor is required, as these
tasks are not possible on a very low-powered microcontroller. In this chapter, we focus on a
network with two different types of node that construct a two-tiered heterogeneous network
as in Fig. 1. One node has a small form factor with less processing and memory capability
and can be used for sensor interfacing. The small size also opens up new application
possibilities where the node can be embedded easily in existing objects or clothing (Foster-
Miller, 2010), or for medical applications (Marinkovic et al., 2009). A cluster of these small
nodes can be supported by a larger node. These larger nodes provide the backbone of the
network, and are capable of more complicated tasks.

Gateway

Fig. 1. Two-tiered heterogeneous network

The two nodes were developed at the Tyndall National Institute, and are called the Tyndall
25mm node (Bellis et al., 2005), and the Tyndall 10mm node (Harte et al., 2007). Both nodes
are designed to be made from a number of different layers that are connected together. This
provides a very high level of modularity, and allows application specific nodes with the
desired sensing capabilities to be built quickly, by attaching layers together. The larger node
has an ATmega128L (Atmel, 2009) microcontroller with 128 kBytes of program memory,
and 4 kBytes of RAM. A number of different radios are available, but in this work a Nordic
nRF905 radio operating in the 433 MHz band with 50 kbps data rate is used. The smaller,
10mm node uses a Nordic nRF9E5 chip (Nordic Semiconductor, 2008). This chip has an 8051
derivative microcontroller with 4 kBytes of program memory and 256 bytes of RAM. The
chip also includes a radio which can communicate with the Nordic nRF905. Its processing
power is very limited compared to the 25mm node. However its smaller size and lower

energy requirements give it advantages. Fig. 2 shows the two nodes, and Table 1 shows the
energy usage of the nodes in different modes.

Mode 10mm Node 25mm Node

Sleeping, with wakeup timer 20.0 μW 52.9 μW
Processing 9.73 mW 29.3 mW

Accessing memory 13.3 mW 31.0 mW
Radio receiving/listening 55.1 mW 75.1 mW

Radio transmitting at –10 dBm 42.2 mW 62.5 mW
Radio transmitting at +10 dBm 109 mW 128 mW

Table 1. Power used by Tyndall nodes from a 3.7 V Li-ion battery

Fig. 2. Tyndall 10mm node and 25mm node

2. Related Work

One of the big problems with network reprogramming is how to efficiently propagate the
updates through the network. The simplest case for reprogramming is when each node in a
network has the same application and they need to be updated. The new program can be
sent across the entire network using a flooding protocol, where each node forwards the
updated program to every node within its RF range. This helps ensure that every node
receives the update, but it is also wasteful as some nodes receive the update more than once.
To help improve data dissemination, the Trickle (Levis et al., 2004) algorithm was
developed. Using Trickle, nodes regularly broadcast which version of data they currently
have. If a neighbouring node detects has a different version, then the transfer of the update
can begin. This algorithm requires far less power to propagate the update across the
network, and scales to larger networks.
TinyOS (Berkeley, 2010) which is one of the most popular operating systems used in WSNs
uses a Trickle based algorithm called Deluge (Hui and Culler, 2004) to support wireless
reprogramming. Deluge modifies Trickle to support sending very large amounts of data.

www.intechopen.com

Sustainable Wireless Sensor Networks504

The program update can be broken up into a number of pages. When a node has received a
page, it can then start sending that page to other nodes that request it. Therefore it does not
have to wait for the complete program update, before it can begin propagating the update.

A big limitation of Deluge is that it assumes that every node in the network is running the
same code. Aqueduct (Phillips, 2005) extends Deluge to support heterogeneous networks.
This is done by adding an identifier to each program update. A node only updates itself if
its current identifier matches the identifier of the incoming update. However nodes must
still cache updates and forward them to other nodes even if the identifiers do not match, to
ensure that every node can receive updated code. This greatly increases memory
requirements.

A big problem with the above solutions is that the entire updated program needs to be sent,
even if only a small fraction of the code has changed. One solution to this is to a have an
interpreter running on the nodes. An interpreter called Maté (Levis and Culler, 2002) has
been developed using TinyOS. It can receive a script which describes the functions for the
node to perform in a very condensed format. This means that far less data needs to be sent
to update the node. However, the application is limited by what functions are possible in the
scripting language and also requires the programmer to become familiar with the scripting
language.

The concept of mobile agents is another method for making easily reprogrammable wireless
sensor networks (Georgoulas and Blow, 2008). In this approach a virtual machine is running
on each node. This virtual machine supports “agents” which can move from node to node to
carry out their desired task. Each agent contains code that executes on the virtual machine
and data that can be modified by the code. For example a tracking agent can follow an event
of interest by sending itself to the node it believes to be closest to the event. New agents can
be inserted into the network, which is ideal when it is expected that the function of a
network will require many changes over its lifetime. However, the agent approach requires
sending the agent from node to node, which is wasteful of radio transmission energy when
a smaller packet could be sent, and more complicated logic on each node to interpret the
packet.

A different approach is taken in the Contiki operating system (Dunkels, 2010). This
operating system has core code that runs on the node constantly. This kernel supports
loading and unloading of modules which are developed in C. This means that modules can
be updated without having the reprogram the entire memory. The modules can either
linked with each other at compile time, if the addresses of functions are known, or can be
linked dynamically at run-time. However there is still a problem if the kernel needs to be
changed due to newer versions becoming available or bugs. A similar approach supporting
dynamic linking of modules at run-time in TinyOS is implemented by FlexCup (Marrón et
al., 2006). In FlexCup an extra step is done after compiling to generate meta-data describing
how to integrate individual components.

The above systems were based on operating systems with very low footprints. However,
these operating systems may still not be suitable for very resource constrained systems. The

overheads required for scheduling, and the demands placed on the stack by context
switching etc., limit the complexity of possible applications. Applications can be developed
that manage their own scheduling, and carefully limit the amount of context switching
caused by interrupts. Such an optimized program rules out the use of an interpreter, or
loadable modules. So another way to limit the amount of data that has to be sent is to only
send the parts of the application that have changed. This is called delta encoding. A bug that
is found might require just changing a single value in the source code of an application.
However this single change can cause many changes in the binary code. The addresses of
instructions could change and therefore all JMP instructions will need different operands
etc. In this case, the minimum data that could be sent is a description of what changed in the
source code. However this would require the application to be able to decompile its code,
make the change and recompile. This is too complex for the typical hardware of wireless
sensor nodes.

The UNIX tool Rsync (Tridgell, 1999) was developed for synchronizing data efficiently over
a network connection. Assuming the receiver has first detected that the sender has a newer
version of code, the receiver splits its data up into chunks of n bytes, and calculates a hash
value for each chunk. The sender calculates a hash value for every chunk of n bytes. The
hash values can then be compared to find out which sections of the data need to be updated.
A compact list of commands can then be sent to the receiver telling it how to construct the
new file, from a combination of its existing data, and new data. (Jeong and Culler, 2009)
analyses a wireless network reprogramming technique based on the Rsync algorithm.
The Rsync algorithm can work for any type of data; however there are more efficient
algorithms for executable code. (Reijers and Langendoen, 2003) presents a method for
efficient code updating. It is based on analyzing the op-codes to find the minimum amount
if data that needs to be sent in order to update the current code. To do this, it relies on
knowing the structure of the op-codes, and is thus tied to be used for nodes using a Texas
Instruments MSP430 type microcontroller. (Panta, 2009) modifies the compiler to introduce
a function indirection table. Function calls are replaced to a jump to a specific location
within a function table. This location then contains the call to the real function. This allows
functions to be moved easily without requiring all addresses to be changed. However it
requires an extra compiler step which will be difficult in a heterogeneous network where
multiple processor architectures are being used.

A more general algorithm, called Bsdiff, for finding the difference between executable files
is presented in (Percival, 2006). This algorithm begins by calculating which sections are the
same with similar methods as Rsync. The difference is that sections which almost match are
also noted. This can be done extending the matching areas until a limit of mismatched bytes
is reached. This decreases the size of the list of commands that needs to be sent, as in binary
program files, there are often sections that almost match, but just have different addresses in
the instructions. This means it performs much better than Rsync for executable code and
small changes in source code do not introduce large changes in the compiled program file,
as they can with Rsync. This is shown by the comparison in (Motta et al., 2007). As this tool
is not dependent on a specific instruction set, it is advantageous in a heterogeneous network
such as the one presented in this work.

www.intechopen.com

Energy-eficient Reprogramming of Heterogeneous Wireless Sensor Networks 505

The program update can be broken up into a number of pages. When a node has received a
page, it can then start sending that page to other nodes that request it. Therefore it does not
have to wait for the complete program update, before it can begin propagating the update.

A big limitation of Deluge is that it assumes that every node in the network is running the
same code. Aqueduct (Phillips, 2005) extends Deluge to support heterogeneous networks.
This is done by adding an identifier to each program update. A node only updates itself if
its current identifier matches the identifier of the incoming update. However nodes must
still cache updates and forward them to other nodes even if the identifiers do not match, to
ensure that every node can receive updated code. This greatly increases memory
requirements.

A big problem with the above solutions is that the entire updated program needs to be sent,
even if only a small fraction of the code has changed. One solution to this is to a have an
interpreter running on the nodes. An interpreter called Maté (Levis and Culler, 2002) has
been developed using TinyOS. It can receive a script which describes the functions for the
node to perform in a very condensed format. This means that far less data needs to be sent
to update the node. However, the application is limited by what functions are possible in the
scripting language and also requires the programmer to become familiar with the scripting
language.

The concept of mobile agents is another method for making easily reprogrammable wireless
sensor networks (Georgoulas and Blow, 2008). In this approach a virtual machine is running
on each node. This virtual machine supports “agents” which can move from node to node to
carry out their desired task. Each agent contains code that executes on the virtual machine
and data that can be modified by the code. For example a tracking agent can follow an event
of interest by sending itself to the node it believes to be closest to the event. New agents can
be inserted into the network, which is ideal when it is expected that the function of a
network will require many changes over its lifetime. However, the agent approach requires
sending the agent from node to node, which is wasteful of radio transmission energy when
a smaller packet could be sent, and more complicated logic on each node to interpret the
packet.

A different approach is taken in the Contiki operating system (Dunkels, 2010). This
operating system has core code that runs on the node constantly. This kernel supports
loading and unloading of modules which are developed in C. This means that modules can
be updated without having the reprogram the entire memory. The modules can either
linked with each other at compile time, if the addresses of functions are known, or can be
linked dynamically at run-time. However there is still a problem if the kernel needs to be
changed due to newer versions becoming available or bugs. A similar approach supporting
dynamic linking of modules at run-time in TinyOS is implemented by FlexCup (Marrón et
al., 2006). In FlexCup an extra step is done after compiling to generate meta-data describing
how to integrate individual components.

The above systems were based on operating systems with very low footprints. However,
these operating systems may still not be suitable for very resource constrained systems. The

overheads required for scheduling, and the demands placed on the stack by context
switching etc., limit the complexity of possible applications. Applications can be developed
that manage their own scheduling, and carefully limit the amount of context switching
caused by interrupts. Such an optimized program rules out the use of an interpreter, or
loadable modules. So another way to limit the amount of data that has to be sent is to only
send the parts of the application that have changed. This is called delta encoding. A bug that
is found might require just changing a single value in the source code of an application.
However this single change can cause many changes in the binary code. The addresses of
instructions could change and therefore all JMP instructions will need different operands
etc. In this case, the minimum data that could be sent is a description of what changed in the
source code. However this would require the application to be able to decompile its code,
make the change and recompile. This is too complex for the typical hardware of wireless
sensor nodes.

The UNIX tool Rsync (Tridgell, 1999) was developed for synchronizing data efficiently over
a network connection. Assuming the receiver has first detected that the sender has a newer
version of code, the receiver splits its data up into chunks of n bytes, and calculates a hash
value for each chunk. The sender calculates a hash value for every chunk of n bytes. The
hash values can then be compared to find out which sections of the data need to be updated.
A compact list of commands can then be sent to the receiver telling it how to construct the
new file, from a combination of its existing data, and new data. (Jeong and Culler, 2009)
analyses a wireless network reprogramming technique based on the Rsync algorithm.
The Rsync algorithm can work for any type of data; however there are more efficient
algorithms for executable code. (Reijers and Langendoen, 2003) presents a method for
efficient code updating. It is based on analyzing the op-codes to find the minimum amount
if data that needs to be sent in order to update the current code. To do this, it relies on
knowing the structure of the op-codes, and is thus tied to be used for nodes using a Texas
Instruments MSP430 type microcontroller. (Panta, 2009) modifies the compiler to introduce
a function indirection table. Function calls are replaced to a jump to a specific location
within a function table. This location then contains the call to the real function. This allows
functions to be moved easily without requiring all addresses to be changed. However it
requires an extra compiler step which will be difficult in a heterogeneous network where
multiple processor architectures are being used.

A more general algorithm, called Bsdiff, for finding the difference between executable files
is presented in (Percival, 2006). This algorithm begins by calculating which sections are the
same with similar methods as Rsync. The difference is that sections which almost match are
also noted. This can be done extending the matching areas until a limit of mismatched bytes
is reached. This decreases the size of the list of commands that needs to be sent, as in binary
program files, there are often sections that almost match, but just have different addresses in
the instructions. This means it performs much better than Rsync for executable code and
small changes in source code do not introduce large changes in the compiled program file,
as they can with Rsync. This is shown by the comparison in (Motta et al., 2007). As this tool
is not dependent on a specific instruction set, it is advantageous in a heterogeneous network
such as the one presented in this work.

www.intechopen.com

Sustainable Wireless Sensor Networks506

3. Self Programming Methods

Before examining further how to minimise to data that needs to be sent, we will now look at
the methods used to allow the nodes to update their own code. The two nodes that we use,
the 25mm node, and the 10mm node, have different microcontrollers and memory
structures so two different update mechanisms have been developed. First, we will look at
the 10mm node with its 8051-based microcontroller, and then consider the case of the 25mm
node with its Atmel AVR based microcontroller.

3.1 Tyndall 10mm node
The 8051-derivative microcontroller in the nRF9E5 chip has a Harvard architecture with
different memory address spaces for instructions and data. For node programming, only the
memory containing instructions (program memory) is relevant. Fig. 3 shows how this
program memory is arranged in the 10mm node. There is a RAM and a ROM within the
nRF9E5, and an external EEPROM, which is communicated with using the SPI protocol. The
EEPROM provides persistent storage of the code, but the actual code is run from the internal
RAM.

Program
memory

(4kBytes)

Boot-Loader

(512 bytes)

RAM ROM
0x0FFF

0x0000 0x8000

0x81FF

nRF9E5

8kBytes

EEPROM

SPI

Fig. 3. nRF9E5 program memory structure

When the node is first powered up, it starts executing at address 0x8000, which is located in
the internal ROM. This ROM contains boot-loader code that copies the lower 4 kBytes of
data from the external EEPROM to internal RAM. Then the node program counter jumps to
address 0x0000, and starts executing the application. In order to reprogram the node it is
necessary to change the lower 4 kBytes of the EEPROM. When the update is complete the
node can then restart itself and start executing the new application. However, there is still a
potential problem with this method. It is likely that reprogramming would take a relatively
long time, due to receiving commands over the radio, and allowing the current application
to send other application data still. If the node should inadvertently restart itself (due to
power problems, or a watchdog timer timeout) it is likely that a partially updated program
would not function correctly. It is for this reason that an 8 kByte external EEPROM is used.
This allows the updated program to be first written to the upper half of the EEPROM. When
the entire program is fully written the top half of memory is copied to the bottom half, and

the node is restarted. This greatly reduces the potential for a corrupted application due to
unexpected restarts.

Fig. 4 shows how the program code is stored in the EEPROM. The first 3 bytes are used by
the boot-loader to know where the actual code starts, and how much of the memory is used
by the program code. This means it is possible to insert some extra data into the EEPROM.
Four bytes are added: two bytes are a count of bytes in the actual program code; and two
bytes contain a CRC checksum of the program code. The upper 4 kBytes of memory has the
same contents as the lower 4 kBytes.

CRC

Program Length (N)

Num. of 256 byte blocks

Program start (0x0007)

Configuration byte

0x0FFF

0x0003

0x0002

0x0001

0x0000

0x0007

Unused

(N + 0x0007)
(N + 0x0007) – 1

0x0005

Program Code

Fig. 4. nRF9E5 EEPROM memory format (lower 4 kBytes)

When all updates have been received, the current application uses the program length to
calculate a CRC of the program code. This is then compared with the CRC stored in the
EEPROM, and only if they match is the code copied to the lower half of memory, and the
node reset (by forcing a watchdog timer timeout). If the CRC values do not match, then the
node has to request the program to be fully retransmitted.

3.2 Tyndall 25mm node
The ATmega128L microcontroller used on the 25mm node also has a Harvard architecture.
Its program memory is in an internal 128 kByte flash. This provides persistent storage, and
the microcontroller can execute instructions directly from the flash memory. The
ATmega128L provides support for reprogramming using the SPM instruction. However,
this instruction only works when executed from the bootloader section of flash, which is the
top 8 kBytes. This means that two approaches for reprogramming are possible. The first is
that the bootloader section can be entirely self-contained. When the application detects an
update is available, it can jump to the bootloader section. The bootloader can then handle
receiving the data over RF, and creating the new application. When the application is fully
updated, the bootloader can jump back to the application section. The second option is to
split the memory in half, and write the new application to the upper half, as with the 10mm
node. With this option the application handles receiving the data. It can call a function in the

www.intechopen.com

Energy-eficient Reprogramming of Heterogeneous Wireless Sensor Networks 507

3. Self Programming Methods

Before examining further how to minimise to data that needs to be sent, we will now look at
the methods used to allow the nodes to update their own code. The two nodes that we use,
the 25mm node, and the 10mm node, have different microcontrollers and memory
structures so two different update mechanisms have been developed. First, we will look at
the 10mm node with its 8051-based microcontroller, and then consider the case of the 25mm
node with its Atmel AVR based microcontroller.

3.1 Tyndall 10mm node
The 8051-derivative microcontroller in the nRF9E5 chip has a Harvard architecture with
different memory address spaces for instructions and data. For node programming, only the
memory containing instructions (program memory) is relevant. Fig. 3 shows how this
program memory is arranged in the 10mm node. There is a RAM and a ROM within the
nRF9E5, and an external EEPROM, which is communicated with using the SPI protocol. The
EEPROM provides persistent storage of the code, but the actual code is run from the internal
RAM.

Program
memory

(4kBytes)

Boot-Loader

(512 bytes)

RAM ROM
0x0FFF

0x0000 0x8000

0x81FF

nRF9E5

8kBytes

EEPROM

SPI

Fig. 3. nRF9E5 program memory structure

When the node is first powered up, it starts executing at address 0x8000, which is located in
the internal ROM. This ROM contains boot-loader code that copies the lower 4 kBytes of
data from the external EEPROM to internal RAM. Then the node program counter jumps to
address 0x0000, and starts executing the application. In order to reprogram the node it is
necessary to change the lower 4 kBytes of the EEPROM. When the update is complete the
node can then restart itself and start executing the new application. However, there is still a
potential problem with this method. It is likely that reprogramming would take a relatively
long time, due to receiving commands over the radio, and allowing the current application
to send other application data still. If the node should inadvertently restart itself (due to
power problems, or a watchdog timer timeout) it is likely that a partially updated program
would not function correctly. It is for this reason that an 8 kByte external EEPROM is used.
This allows the updated program to be first written to the upper half of the EEPROM. When
the entire program is fully written the top half of memory is copied to the bottom half, and

the node is restarted. This greatly reduces the potential for a corrupted application due to
unexpected restarts.

Fig. 4 shows how the program code is stored in the EEPROM. The first 3 bytes are used by
the boot-loader to know where the actual code starts, and how much of the memory is used
by the program code. This means it is possible to insert some extra data into the EEPROM.
Four bytes are added: two bytes are a count of bytes in the actual program code; and two
bytes contain a CRC checksum of the program code. The upper 4 kBytes of memory has the
same contents as the lower 4 kBytes.

CRC

Program Length (N)

Num. of 256 byte blocks

Program start (0x0007)

Configuration byte

0x0FFF

0x0003

0x0002

0x0001

0x0000

0x0007

Unused

(N + 0x0007)
(N + 0x0007) – 1

0x0005

Program Code

Fig. 4. nRF9E5 EEPROM memory format (lower 4 kBytes)

When all updates have been received, the current application uses the program length to
calculate a CRC of the program code. This is then compared with the CRC stored in the
EEPROM, and only if they match is the code copied to the lower half of memory, and the
node reset (by forcing a watchdog timer timeout). If the CRC values do not match, then the
node has to request the program to be fully retransmitted.

3.2 Tyndall 25mm node
The ATmega128L microcontroller used on the 25mm node also has a Harvard architecture.
Its program memory is in an internal 128 kByte flash. This provides persistent storage, and
the microcontroller can execute instructions directly from the flash memory. The
ATmega128L provides support for reprogramming using the SPM instruction. However,
this instruction only works when executed from the bootloader section of flash, which is the
top 8 kBytes. This means that two approaches for reprogramming are possible. The first is
that the bootloader section can be entirely self-contained. When the application detects an
update is available, it can jump to the bootloader section. The bootloader can then handle
receiving the data over RF, and creating the new application. When the application is fully
updated, the bootloader can jump back to the application section. The second option is to
split the memory in half, and write the new application to the upper half, as with the 10mm
node. With this option the application handles receiving the data. It can call a function in the

www.intechopen.com

Sustainable Wireless Sensor Networks508

bootloader section of memory that modifies the version of the application in the upper half
of the memory. When the program has been completely updated, the application calls a
function that runs in the bootloader section, and copies the code from the upper half of
memory to the lower half. This is the only function that writes to the lower half of memory.

The first of these options has the advantage that a much larger area is available for the
application, which would allow applications that are more complicated. However, it means
that the application cannot run while the program is being updated. As our current
applications can comfortably fit within half of the available memory, we chose to implement
the second option.

Fig. 5 shows how the flash memory is split into different regions. Within the bootloader
section, there are the functions for implementing the program update mechanism. These
functions are fully self-contained, and do not call or jump to any code in the application
section, to avoid corruption. The bootloader is able to fit into 1 kByte, this leaves 63 kBytes
free for the application. It also means that the top 1 kByte in the lower half is available to
store information about the program length, and CRC. As with the 10mm node, these bytes
are used by the bootloader code to verify that updated application is complete.

Bootloader

Updated Program Code

0x00000 (0 kB)

Program meta-data

Current Program Code

0x0F800 (63 kB)

0x10000 (64 kB)

0x1F800 (127 kB)

0x20000 (128 kB)

Fig. 5. ATmega128 program memory structure (byte addresses)

4. Delta Encoding

After looking at the mechanism the nodes use to reprogram themselves, we now look at
how to reduce the amount of data that has to be sent in order to reprogram the nodes, thus
saving energy. As discussed in section 2 of this chapter, delta encoding algorithms exist that
can take two files and generate a set of commands to turn the first file into the second file. If
the files are similar, then the set of commands can be smaller than the second file.

In a WSN, the node has one version of a program, and it is desired to update this program
to a newer version. In our case, a PC has access to the network, and has both versions of the
program. It is the PC that does the delta encoding, so the computation costs of this are not
important. It can determine a set of commands that turn the old file into the new file. The
commands are able to copy current sections of the code to any location, and able to write

new data to any location. Although it requires some processing and extra memory reads to
implement the handling of these commands, it is advantageous over just sending the new
file, as less data is transmitted. In WSNs it has been shown that processing data uses much
less energy per bit than transmission and reception (Raghunathan et al., 2002). Therefore,
the savings from less radio usage will be greater than the extra processing required.

4.1 Bsdiff Algorithm
To generate the commands, our work uses the Bsdiff algorithm. This algorithm analyses two
files, and finds sections that partially match. It outputs data that are arranged in three
sections. The third section (extra section) contains new data that is written directly. The
second section (difference section) contains a list of values that are added byte-wise to the
current data. As there are many similarities, most values in this section have the value 0, and
it is therefore very compressible. The first section (control section) is an array of 3-tuples (X,
Y, Z). X is the number of bytes that are copied from the old data to the new data, adding
byte-wise X bytes from the difference section. Y is the number of bytes from the extra
section that are written. A pointer to the last offset read in the new file is moved Z bytes
before starting the next operation.

The three sections output by the Bsdiff algorithm are actual larger than the file itself. In the
freely available Bsdiff application (Percival, 2010) the bzip2 compression algorithm is used
to compress all the sections. The data in the difference section is very compressible, and if the
compared data is similar there will be far more data in this section than in the extra section.
This is how the overall data size is greatly reduced, achieving a average compression ratio of
8.33% for program updates in the tests carried out in (Motta et al., 2007). As the nodes do
not have processors powerful enough to decompress bzip2 data, it is not used here.
Alternatives to work around this limitation are presented in the next section.

4.2 Adapting Bsdiff for use in WSNs
Besides being unable to use bzip2, another potential problem is that we do not want to wait
for the node to receive all the Bsdiff output sections before starting to create the new
program code. This would require too much buffering of data. To solve this, the difference
and extra sections are broken up, and attached to the relevant 3-tuple from the control
section. We will refer to this new structure as a command. In each command, the first three
values (X, Y, Z), are the control 3-tuple. Then there is a value, P, which specifies how many
bytes within X bytes of the diff section are non-zero. After this, there is array of P pairs. The
first element of the pair says where to add this byte, and the second element is the byte to
add. At the end, there are Y bytes taken from the extra section. Each command is structured
as shown in Fig. 6.

In the case where commands are still too large, there might not be enough memory available
to buffer the commands. For this reason, commands sent to 10mm nodes are limited to 28
bytes, and for 25mm nodes, a size of 112 bytes is used. The value for the 10mm node was
picked as it is the size of the data payload that is sent in each radio packet and the 10mm
node has very limited memory for buffering. The 25mm node has more buffering space
available, so the effect of a command size limit against compression ratio was measured.

www.intechopen.com

Energy-eficient Reprogramming of Heterogeneous Wireless Sensor Networks 509

bootloader section of memory that modifies the version of the application in the upper half
of the memory. When the program has been completely updated, the application calls a
function that runs in the bootloader section, and copies the code from the upper half of
memory to the lower half. This is the only function that writes to the lower half of memory.

The first of these options has the advantage that a much larger area is available for the
application, which would allow applications that are more complicated. However, it means
that the application cannot run while the program is being updated. As our current
applications can comfortably fit within half of the available memory, we chose to implement
the second option.

Fig. 5 shows how the flash memory is split into different regions. Within the bootloader
section, there are the functions for implementing the program update mechanism. These
functions are fully self-contained, and do not call or jump to any code in the application
section, to avoid corruption. The bootloader is able to fit into 1 kByte, this leaves 63 kBytes
free for the application. It also means that the top 1 kByte in the lower half is available to
store information about the program length, and CRC. As with the 10mm node, these bytes
are used by the bootloader code to verify that updated application is complete.

Bootloader

Updated Program Code

0x00000 (0 kB)

Program meta-data

Current Program Code

0x0F800 (63 kB)

0x10000 (64 kB)

0x1F800 (127 kB)

0x20000 (128 kB)

Fig. 5. ATmega128 program memory structure (byte addresses)

4. Delta Encoding

After looking at the mechanism the nodes use to reprogram themselves, we now look at
how to reduce the amount of data that has to be sent in order to reprogram the nodes, thus
saving energy. As discussed in section 2 of this chapter, delta encoding algorithms exist that
can take two files and generate a set of commands to turn the first file into the second file. If
the files are similar, then the set of commands can be smaller than the second file.

In a WSN, the node has one version of a program, and it is desired to update this program
to a newer version. In our case, a PC has access to the network, and has both versions of the
program. It is the PC that does the delta encoding, so the computation costs of this are not
important. It can determine a set of commands that turn the old file into the new file. The
commands are able to copy current sections of the code to any location, and able to write

new data to any location. Although it requires some processing and extra memory reads to
implement the handling of these commands, it is advantageous over just sending the new
file, as less data is transmitted. In WSNs it has been shown that processing data uses much
less energy per bit than transmission and reception (Raghunathan et al., 2002). Therefore,
the savings from less radio usage will be greater than the extra processing required.

4.1 Bsdiff Algorithm
To generate the commands, our work uses the Bsdiff algorithm. This algorithm analyses two
files, and finds sections that partially match. It outputs data that are arranged in three
sections. The third section (extra section) contains new data that is written directly. The
second section (difference section) contains a list of values that are added byte-wise to the
current data. As there are many similarities, most values in this section have the value 0, and
it is therefore very compressible. The first section (control section) is an array of 3-tuples (X,
Y, Z). X is the number of bytes that are copied from the old data to the new data, adding
byte-wise X bytes from the difference section. Y is the number of bytes from the extra
section that are written. A pointer to the last offset read in the new file is moved Z bytes
before starting the next operation.

The three sections output by the Bsdiff algorithm are actual larger than the file itself. In the
freely available Bsdiff application (Percival, 2010) the bzip2 compression algorithm is used
to compress all the sections. The data in the difference section is very compressible, and if the
compared data is similar there will be far more data in this section than in the extra section.
This is how the overall data size is greatly reduced, achieving a average compression ratio of
8.33% for program updates in the tests carried out in (Motta et al., 2007). As the nodes do
not have processors powerful enough to decompress bzip2 data, it is not used here.
Alternatives to work around this limitation are presented in the next section.

4.2 Adapting Bsdiff for use in WSNs
Besides being unable to use bzip2, another potential problem is that we do not want to wait
for the node to receive all the Bsdiff output sections before starting to create the new
program code. This would require too much buffering of data. To solve this, the difference
and extra sections are broken up, and attached to the relevant 3-tuple from the control
section. We will refer to this new structure as a command. In each command, the first three
values (X, Y, Z), are the control 3-tuple. Then there is a value, P, which specifies how many
bytes within X bytes of the diff section are non-zero. After this, there is array of P pairs. The
first element of the pair says where to add this byte, and the second element is the byte to
add. At the end, there are Y bytes taken from the extra section. Each command is structured
as shown in Fig. 6.

In the case where commands are still too large, there might not be enough memory available
to buffer the commands. For this reason, commands sent to 10mm nodes are limited to 28
bytes, and for 25mm nodes, a size of 112 bytes is used. The value for the 10mm node was
picked as it is the size of the data payload that is sent in each radio packet and the 10mm
node has very limited memory for buffering. The 25mm node has more buffering space
available, so the effect of a command size limit against compression ratio was measured.

www.intechopen.com

Sustainable Wireless Sensor Networks510

The commands for converting between the two applications were generated with different
maximum command sizes, and the compression ratio recorded. The results are shown in
Fig. 7. 112 bytes was chosen because increasing the size further has very little effect on the
compression ratio, and it is a multiple of 28. As the node has to remember the location that it
last read from in the current code, and the location in the new code that it last wrote to, it is
also necessary to handle the commands in the correct sequence.

typedef struct {

uint8_t index; /* Where to add this byte */
uint8_t value; /* Byte to add to original data */

} pair_t

typedef struct {
uint16_t copy; /* How many bytes to copy (adding to diff section) */

uint8_t write; /* How many bytes to write from extra section */
int16_t seek; /* How many places to move pointer */

uint8_t numPairs; /* How many pairs in the diff section */
pair_t diff(); /* Array that is 'numPairs' long */

uint8_t extra(); /* Array that is 'write' bytes in size */
} command_t;

Fig. 6. Reprogramming command structure and examples

0

20

40

60

80

100

120

0 32 64 96 128 160 192 224 256

Maximum command size (bytes)

C
om

pr
es

si
on

 R
at

io
 (%

)

Fig. 7. Effect of command size on compression ratio

4.3 Analysis of delta encoding
To analyse the benefit of delta encoding, we compare the amount of data that would be sent
if the complete new program were transmitted, and the amount of data that is sent with
delta encoding. This is done using a real WSN application where nodes are arranged in a
tree. Each node takes a sensor reading regularly and transmits to its parent node, and it also
forwards sensor readings it receives from its children. The effects of changing the sampling
frequency; replacing an framelet based (Roedig et al., 2006) MAC algorithm with a very
simple form of CSMA (Carrier Sense Multiple Access); changing the sensor used from a
Sensirion SHT11 temperature/humidity sensor, to an Analog Devices AD7998 ADC; and

changing the application completely, to an application for implementing the Modbus
protocol over wireless links are measured. Table 2 and Table 3 show the compression ratio
achieved using delta encoding in each of these cases on the 10mm node, and 25mm node
code, respectively.

Change Full Size Delta-encoded
size Details of commands Compression Ratio

Changing
sampling
frequency

2896 bytes 14 bytes
2 command

0.48% 1 diff pair
0 extra bytes

Enabling
CSMA 2922 bytes 208 bytes

13 commands
7.12% 52 diff pairs

26 extra bytes

Changing
sensor 2744 bytes 919 bytes

36 commands
33.49% 164 diff pairs

375 extra bytes

Different
application 2548 bytes 2228 bytes

83 commands
87.48% 95 diff pairs

1540 extra bytes
Table 2. Effects of changing application on 10mm node

Change Full Size Delta-encoded size Details of commands Compression Ratio

Changing
sampling
frequency

3407 bytes 14 bytes
2 commands

0.41% 1 diff pairs
0 extra bytes

Enabling
CSMA 3419 bytes 78 bytes

6 commands
2.28% 15 diff pairs

12 extra bytes

Changing
sensor 3365 bytes 1054 bytes

22 commands
31.32% 194 diff pairs

534 extra bytes

Different
application 4238 bytes 3323 bytes

54 commands
78.41% 94 diff pairs

2811 extra bytes
Table 3. Effects of changing application on 25mm node

The tables show that our implementation of Bsdiff reduces greatly the data that needs to be
sent to update a node, especially when only small changes are made. In a homogeneous
network, the overall savings will be as above, as the same set of commands need to be sent
to each node. Limiting the size of reprogramming commands on the 10mm node increases
the compression ratio compared to the 25mm node, as more commands must be sent. The
tables also show how as the amount of change in the program files increases, more of the
sent data is in the extra section, and not the difference section.

In our current network, nodes are arranged in a fixed pre-defined tree. In the tree, nodes can
transmit to their parent node, to one of their child nodes, or to all of their child nodes with a
multicast transmission. To expand our Bsdiff technique to a heterogeneous network, with
multiple different types of nodes, and multiple different node functions, the simplest

www.intechopen.com

Energy-eficient Reprogramming of Heterogeneous Wireless Sensor Networks 511

The commands for converting between the two applications were generated with different
maximum command sizes, and the compression ratio recorded. The results are shown in
Fig. 7. 112 bytes was chosen because increasing the size further has very little effect on the
compression ratio, and it is a multiple of 28. As the node has to remember the location that it
last read from in the current code, and the location in the new code that it last wrote to, it is
also necessary to handle the commands in the correct sequence.

typedef struct {

uint8_t index; /* Where to add this byte */
uint8_t value; /* Byte to add to original data */

} pair_t

typedef struct {
uint16_t copy; /* How many bytes to copy (adding to diff section) */

uint8_t write; /* How many bytes to write from extra section */
int16_t seek; /* How many places to move pointer */

uint8_t numPairs; /* How many pairs in the diff section */
pair_t diff(); /* Array that is 'numPairs' long */

uint8_t extra(); /* Array that is 'write' bytes in size */
} command_t;

Fig. 6. Reprogramming command structure and examples

0

20

40

60

80

100

120

0 32 64 96 128 160 192 224 256

Maximum command size (bytes)

C
om

pr
es

si
on

 R
at

io
 (%

)

Fig. 7. Effect of command size on compression ratio

4.3 Analysis of delta encoding
To analyse the benefit of delta encoding, we compare the amount of data that would be sent
if the complete new program were transmitted, and the amount of data that is sent with
delta encoding. This is done using a real WSN application where nodes are arranged in a
tree. Each node takes a sensor reading regularly and transmits to its parent node, and it also
forwards sensor readings it receives from its children. The effects of changing the sampling
frequency; replacing an framelet based (Roedig et al., 2006) MAC algorithm with a very
simple form of CSMA (Carrier Sense Multiple Access); changing the sensor used from a
Sensirion SHT11 temperature/humidity sensor, to an Analog Devices AD7998 ADC; and

changing the application completely, to an application for implementing the Modbus
protocol over wireless links are measured. Table 2 and Table 3 show the compression ratio
achieved using delta encoding in each of these cases on the 10mm node, and 25mm node
code, respectively.

Change Full Size Delta-encoded
size Details of commands Compression Ratio

Changing
sampling
frequency

2896 bytes 14 bytes
2 command

0.48% 1 diff pair
0 extra bytes

Enabling
CSMA 2922 bytes 208 bytes

13 commands
7.12% 52 diff pairs

26 extra bytes

Changing
sensor 2744 bytes 919 bytes

36 commands
33.49% 164 diff pairs

375 extra bytes

Different
application 2548 bytes 2228 bytes

83 commands
87.48% 95 diff pairs

1540 extra bytes
Table 2. Effects of changing application on 10mm node

Change Full Size Delta-encoded size Details of commands Compression Ratio

Changing
sampling
frequency

3407 bytes 14 bytes
2 commands

0.41% 1 diff pairs
0 extra bytes

Enabling
CSMA 3419 bytes 78 bytes

6 commands
2.28% 15 diff pairs

12 extra bytes

Changing
sensor 3365 bytes 1054 bytes

22 commands
31.32% 194 diff pairs

534 extra bytes

Different
application 4238 bytes 3323 bytes

54 commands
78.41% 94 diff pairs

2811 extra bytes
Table 3. Effects of changing application on 25mm node

The tables show that our implementation of Bsdiff reduces greatly the data that needs to be
sent to update a node, especially when only small changes are made. In a homogeneous
network, the overall savings will be as above, as the same set of commands need to be sent
to each node. Limiting the size of reprogramming commands on the 10mm node increases
the compression ratio compared to the 25mm node, as more commands must be sent. The
tables also show how as the amount of change in the program files increases, more of the
sent data is in the extra section, and not the difference section.

In our current network, nodes are arranged in a fixed pre-defined tree. In the tree, nodes can
transmit to their parent node, to one of their child nodes, or to all of their child nodes with a
multicast transmission. To expand our Bsdiff technique to a heterogeneous network, with
multiple different types of nodes, and multiple different node functions, the simplest

www.intechopen.com

Sustainable Wireless Sensor Networks512

approach is to generate the commands needed to update each node individually. However,
if we consider a heterogeneous network where some nodes have almost the same program,
it may be better to first reprogram all nodes so that they have the same application. Then
perform the update using multicast transmissions, and then make the changes to each node
so that they are unique again. To illustrate the usefulness of this method, we can use data in
the above tables. If there are a number of nodes which differ only in sampling frequency and
it is desired to change the sensors on each node, then the size of the commands needed to
change the sensor compared to the size of commands needed to change the sampling
frequency means that the simple approach of sending a single set of commands to each node
may be far from optimal.

To decide which method is better we need to calculate the energy cost of each approach. In
the tables above, the compression ration is used as the metric to examine the effectiveness of
our Bsdiff implementation. This is valid, as when programming a single node, the number
of bytes transmitted will be directly related to the energy used. However, the use of
multicast transmissions in a heterogeneous network complicates this, as the energy per bit
will change depending on how many nodes receive the message. For this reason, a new
metric is required to analyse the use of Bsdiff in a heterogeneous network. The radio we use
is capable of sending a 32 byte payload, with a 6 byte header, and 10 bit preamble, added by
the radio. From this 32 byte payload, 4 bytes are used for routing control, packetisation, and
a message type identifier, leaving 28 bytes for use. This means that a full packets is 314 bits
long, of which 90 bits are overhead. The radio sends data at a rate of 50 kpbs, and has a 650
μs start-up time. Therefore, for a message with len bytes, the time to send it, T, can be
calculated:

  
 28/00065.0

50000
90)28mod(8128/314

)(len
lenlen

lenT 


 (1)

For a message to be sent to a particular node, or set of nodes, S, the message will have to be
sent STX times, received by 25mm nodes SRX25 times, and by 10mm nodes SRX10 times. In out
network the 10mm nodes only act as leaf nodes, so they are never required to transmit the
commands. Using values for transmission PTX and reception PRX25 and PRX10 from Table 1,
the energy required to send the message can be calculated:

)()()(),(10102525 lenTSPlenTSPlenTSPSlenE RXRXRXRXTXTX  (2)

This value is not fully accurate due to ACKs, and other network management costs,
however these costs will affect every message similarly, so it is still a valid metric for
comparing the cost of send a message.

This metric can be used to help reduce the energy cost of reprogramming a heterogeneous
network. In the network, there are nodes 0, 1, ... , n, and applications iα and iβ refer to
different versions of an application that run on node i. B(iα, iβ) is the sum of the number of
bytes in the commands that are needed to convert a node from running application iα to
running application iβ.





n

i
separate iiiBEc

0

}){),,((

(3)





n

i

n

i
combined iiBEnBEiiBEc

11

}){),,0((}),...,1,0{),0,0(()}{),0,((

(4)

If each node were updated separately, the cost of update in terms of bytes transmitted
would be cseparate. If we take the approach of converting every node to have the same
application then the cost will be ccombined. Depending on the current state of the nodes, and
the desired changes, either approach could require less data to be transmitted.

This idea can be expanded further. Instead of reprogramming the entire network to have the
same application, the technique is restricted to sub sections, which have very similar
applications. For example, a large network carrying out environmental monitoring could
have different types of sensors in different areas. In this case, if we want to update the
network with a new communication protocol, it might be best to convert all the nodes with
the same sensors to run the same application, and the reprogram them all using multicast
transmissions.

Define Function should_be_grouped(set1, set2):
e1 = energy required to program set1
e2 = energy required to program set2

e3 = energy required to program set1 and set2 with same update commands
return e3 < (e1 + e2)

For each node i that is not in a set

create a set s_i := {i}
joinSiblings := True

For each node j that is a sibling of i
if not should_be_grouped(s_i, {j}): joinSiblings := False

If joinSiblings is True
For each node j that is a sibling of i

Add j to s_i

For each set k
For each set l

If should_be_grouped(k, l): Join k and l
Fig. 8. Pseudo code for grouping nodes for efficient reprogramming

This leads to the problem of how to determine which sections of the network should be
grouped together. We want to create a number of sets, Sa, Sb, Sc, ..., where all the nodes in a
set are reprogrammed together. Initially there are n sets with one node in each set. The cost
of reprogramming will be the same as csep above. To try reducing the cost, the number of sets
is reduced. As multicast transmissions can be used to address a group of siblings, we first
try to group nodes based on this. Each group of siblings is analysed to see if it is more
efficient to update them together or separately. If it is more efficient to update then together
then the sets are joined. After doing this, a second iteration is performed over each set, to
check if it would reduce costs to join it with any other sets. Sets that have 10mm nodes are

www.intechopen.com

Energy-eficient Reprogramming of Heterogeneous Wireless Sensor Networks 513

approach is to generate the commands needed to update each node individually. However,
if we consider a heterogeneous network where some nodes have almost the same program,
it may be better to first reprogram all nodes so that they have the same application. Then
perform the update using multicast transmissions, and then make the changes to each node
so that they are unique again. To illustrate the usefulness of this method, we can use data in
the above tables. If there are a number of nodes which differ only in sampling frequency and
it is desired to change the sensors on each node, then the size of the commands needed to
change the sensor compared to the size of commands needed to change the sampling
frequency means that the simple approach of sending a single set of commands to each node
may be far from optimal.

To decide which method is better we need to calculate the energy cost of each approach. In
the tables above, the compression ration is used as the metric to examine the effectiveness of
our Bsdiff implementation. This is valid, as when programming a single node, the number
of bytes transmitted will be directly related to the energy used. However, the use of
multicast transmissions in a heterogeneous network complicates this, as the energy per bit
will change depending on how many nodes receive the message. For this reason, a new
metric is required to analyse the use of Bsdiff in a heterogeneous network. The radio we use
is capable of sending a 32 byte payload, with a 6 byte header, and 10 bit preamble, added by
the radio. From this 32 byte payload, 4 bytes are used for routing control, packetisation, and
a message type identifier, leaving 28 bytes for use. This means that a full packets is 314 bits
long, of which 90 bits are overhead. The radio sends data at a rate of 50 kpbs, and has a 650
μs start-up time. Therefore, for a message with len bytes, the time to send it, T, can be
calculated:

  
 28/00065.0

50000
90)28mod(8128/314

)(len
lenlen

lenT 


 (1)

For a message to be sent to a particular node, or set of nodes, S, the message will have to be
sent STX times, received by 25mm nodes SRX25 times, and by 10mm nodes SRX10 times. In out
network the 10mm nodes only act as leaf nodes, so they are never required to transmit the
commands. Using values for transmission PTX and reception PRX25 and PRX10 from Table 1,
the energy required to send the message can be calculated:

)()()(),(10102525 lenTSPlenTSPlenTSPSlenE RXRXRXRXTXTX  (2)

This value is not fully accurate due to ACKs, and other network management costs,
however these costs will affect every message similarly, so it is still a valid metric for
comparing the cost of send a message.

This metric can be used to help reduce the energy cost of reprogramming a heterogeneous
network. In the network, there are nodes 0, 1, ... , n, and applications iα and iβ refer to
different versions of an application that run on node i. B(iα, iβ) is the sum of the number of
bytes in the commands that are needed to convert a node from running application iα to
running application iβ.





n

i
separate iiiBEc

0

}){),,((

(3)





n

i

n

i
combined iiBEnBEiiBEc

11

}){),,0((}),...,1,0{),0,0(()}{),0,((

(4)

If each node were updated separately, the cost of update in terms of bytes transmitted
would be cseparate. If we take the approach of converting every node to have the same
application then the cost will be ccombined. Depending on the current state of the nodes, and
the desired changes, either approach could require less data to be transmitted.

This idea can be expanded further. Instead of reprogramming the entire network to have the
same application, the technique is restricted to sub sections, which have very similar
applications. For example, a large network carrying out environmental monitoring could
have different types of sensors in different areas. In this case, if we want to update the
network with a new communication protocol, it might be best to convert all the nodes with
the same sensors to run the same application, and the reprogram them all using multicast
transmissions.

Define Function should_be_grouped(set1, set2):
e1 = energy required to program set1
e2 = energy required to program set2

e3 = energy required to program set1 and set2 with same update commands
return e3 < (e1 + e2)

For each node i that is not in a set

create a set s_i := {i}
joinSiblings := True

For each node j that is a sibling of i
if not should_be_grouped(s_i, {j}): joinSiblings := False

If joinSiblings is True
For each node j that is a sibling of i

Add j to s_i

For each set k
For each set l

If should_be_grouped(k, l): Join k and l
Fig. 8. Pseudo code for grouping nodes for efficient reprogramming

This leads to the problem of how to determine which sections of the network should be
grouped together. We want to create a number of sets, Sa, Sb, Sc, ..., where all the nodes in a
set are reprogrammed together. Initially there are n sets with one node in each set. The cost
of reprogramming will be the same as csep above. To try reducing the cost, the number of sets
is reduced. As multicast transmissions can be used to address a group of siblings, we first
try to group nodes based on this. Each group of siblings is analysed to see if it is more
efficient to update them together or separately. If it is more efficient to update then together
then the sets are joined. After doing this, a second iteration is performed over each set, to
check if it would reduce costs to join it with any other sets. Sets that have 10mm nodes are

www.intechopen.com

Sustainable Wireless Sensor Networks514

not compared with sets that have 25mm nodes, as they cannot execute each other’s code.
This algorithm is defined in the pseudo-code in Fig. 8.

The amount of data saved is heavily dependent on the current application and on the
desired changes in the network, but below we present savings from a simple yet realistic
scenario. In Fig. 9 there is a network with five 10mm nodes, and five 25mm nodes. Three of
the nodes (1, 5, and 6) have a SHT71 temperature/humidity sensor and the rest are using an
AD7998 ADC. They have different sampling frequencies. Table 4 shows the size of the new
application, the number of bytes to convert from the old application to the new, the parent
of each node, and the number of hops to the gateway node. The table embedded in Fig. 9
shows the number of bytes needed to convert an application to another application that is
currently running.

Node 0 1 2 3 4 5 6 7 8 9
Size 9061 8787 8737 8737 8737 3465 3465 3300 3300 3300

Update 273 248 203 203 203 755 755 814 814 814
Parent - 0 0 2 2 1 1 3 3 4
Hops 0 1 1 2 2 2 2 3 3 3
Type 25mm 25mm 25mm 25mm 25mm 10mm 10mm 10mm 10mm 10mm

Table 4. Update sizes for each node (bytes)

6

7

4

2

8
9

1

3

5

0 0 1 2 3 4 5 6 7 8 9

0 1158 588 591 591

1 1156 1126 1127 1127

2 613 1147 9 9 Original

3 616 1148 9 0

4 616 1148 9 0

5 0 1276 1276 1276

6 0 1276 1276 1276

7 New 1273 1273 0 9

8 1273 1273 0 9

9 1273 1273 9 9
Fig. 9. Heterogeneous WSN topology and node application conversion costs

After using the algorithm in Fig. 8, we are left with five sets of nodes. These sets are shown
in Table 5.

Set Energy Cost
Sa = {0} 0 J
Sb = {1} 0.0436 J

Sc = {2, 3, 4} 0.1179 J
Sd = {5, 6} 0.2844 J

Se = {7, 8, 9} 0.6412 J
Table 5. Heterogeneous network update costs for each set of nodes

In Table 6, the energy cost for reprogramming the entire network is given. For this particular
scenario the energy cost has been reduced to 6.57% of the energy cost of sending the full
application program data. Taking advantage of the similarities between nodes in a
heterogeneous network reduces the energy cost to 55.15% the cost of sending program
update commands to each node separately.

Method Energy Cost Energy cost compared to uncompressed

Uncompressed 16.54 J 100%
All nodes separate 1.971 J 11.91%

Grouping nodes into sets 1.087 J 6.57%
Table 6. Comparison of reprogramming methods

5. LZW Compression

As mentioned in Section 4.1, the Bsdiff algorithm usually uses the bzip2 algorithm. As bzip2
decompression could not be performed on our nodes, we were not able to use it. In this
section of the chapter, we examine the potential usefulness of a compression algorithm that
can be implemented on our nodes. We use sensor-LZW (S-LZW), a variant of the Lempel-
Ziv-Welch algorithm. S-LZW was developed specifically for low powered wireless sensor
nodes and was shown to use far less memory and instruction cycles for performing
compression when compared to other commonly used algorithms such as LZO and bzip2
(Sadler and Martonosi, 2006). However, due to the severely limited memory on the 10mm
nodes, it has not been possible to implement it on the 10mm nodes. LZW is a dictionary
based compression algorithm, where strings are replaced by a fixed-length code that
references an entry in a dictionary. When a new string is found in the data stream, it can be
encoded based on previous strings. Such compression works well for repetitive data. S-LZW
adds a mini-cache to improve performance for recently accessed strings in the dictionary.
Our data is not as repetitive as the sensor data examined in (Sadler and Martonosi, 2006).
This is due to the very primitive form of compression performed when converting the
output of the Bsdiff algorithm into reprogramming commands with a set maximum size. To
examine this we compared two large applications implementing the ZigBee protocol on a
version of the Tyndall 25mm node with a ZigBee compatible Ember EM2420 transceiver.
The effects of compressing the Bsdiff output, and the output after it has been converted into
reprogramming commands is shown in Table 7.

 Algorithm Compressed size Output file
compression ratio

Overall
compression ratio

Bsdiff output
(25968 bytes)

PPM 7859 bytes 30.26% 31.65%
LZMA 8086 bytes 31.14% 32.56%
Deflate 8748 bytes 33.69% 35.23%
Bzip2 9048 bytes 34.84% 36.43%

S-LZW 1,0476 bytes 40.34% 42.18%

Reprogramming
Command size
(12801 bytes)

PPM 9548 bytes 74.59% 38.45%
LZMA 9616 bytes 75.12% 38.72%
Deflate 9868 bytes 77.09% 39.74%
Bzip2 1,0298 bytes 80.45% 41.47%

S-LZW 1,1379 bytes 88.89% 45.82%
Table 7. Compressing Bsdiff output and reprogramming commands

www.intechopen.com

Energy-eficient Reprogramming of Heterogeneous Wireless Sensor Networks 515

not compared with sets that have 25mm nodes, as they cannot execute each other’s code.
This algorithm is defined in the pseudo-code in Fig. 8.

The amount of data saved is heavily dependent on the current application and on the
desired changes in the network, but below we present savings from a simple yet realistic
scenario. In Fig. 9 there is a network with five 10mm nodes, and five 25mm nodes. Three of
the nodes (1, 5, and 6) have a SHT71 temperature/humidity sensor and the rest are using an
AD7998 ADC. They have different sampling frequencies. Table 4 shows the size of the new
application, the number of bytes to convert from the old application to the new, the parent
of each node, and the number of hops to the gateway node. The table embedded in Fig. 9
shows the number of bytes needed to convert an application to another application that is
currently running.

Node 0 1 2 3 4 5 6 7 8 9
Size 9061 8787 8737 8737 8737 3465 3465 3300 3300 3300

Update 273 248 203 203 203 755 755 814 814 814
Parent - 0 0 2 2 1 1 3 3 4
Hops 0 1 1 2 2 2 2 3 3 3
Type 25mm 25mm 25mm 25mm 25mm 10mm 10mm 10mm 10mm 10mm

Table 4. Update sizes for each node (bytes)

6

7

4

2

8
9

1

3

5

0 0 1 2 3 4 5 6 7 8 9

0 1158 588 591 591

1 1156 1126 1127 1127

2 613 1147 9 9 Original

3 616 1148 9 0

4 616 1148 9 0

5 0 1276 1276 1276

6 0 1276 1276 1276

7 New 1273 1273 0 9

8 1273 1273 0 9

9 1273 1273 9 9
Fig. 9. Heterogeneous WSN topology and node application conversion costs

After using the algorithm in Fig. 8, we are left with five sets of nodes. These sets are shown
in Table 5.

Set Energy Cost
Sa = {0} 0 J
Sb = {1} 0.0436 J

Sc = {2, 3, 4} 0.1179 J
Sd = {5, 6} 0.2844 J

Se = {7, 8, 9} 0.6412 J
Table 5. Heterogeneous network update costs for each set of nodes

In Table 6, the energy cost for reprogramming the entire network is given. For this particular
scenario the energy cost has been reduced to 6.57% of the energy cost of sending the full
application program data. Taking advantage of the similarities between nodes in a
heterogeneous network reduces the energy cost to 55.15% the cost of sending program
update commands to each node separately.

Method Energy Cost Energy cost compared to uncompressed

Uncompressed 16.54 J 100%
All nodes separate 1.971 J 11.91%

Grouping nodes into sets 1.087 J 6.57%
Table 6. Comparison of reprogramming methods

5. LZW Compression

As mentioned in Section 4.1, the Bsdiff algorithm usually uses the bzip2 algorithm. As bzip2
decompression could not be performed on our nodes, we were not able to use it. In this
section of the chapter, we examine the potential usefulness of a compression algorithm that
can be implemented on our nodes. We use sensor-LZW (S-LZW), a variant of the Lempel-
Ziv-Welch algorithm. S-LZW was developed specifically for low powered wireless sensor
nodes and was shown to use far less memory and instruction cycles for performing
compression when compared to other commonly used algorithms such as LZO and bzip2
(Sadler and Martonosi, 2006). However, due to the severely limited memory on the 10mm
nodes, it has not been possible to implement it on the 10mm nodes. LZW is a dictionary
based compression algorithm, where strings are replaced by a fixed-length code that
references an entry in a dictionary. When a new string is found in the data stream, it can be
encoded based on previous strings. Such compression works well for repetitive data. S-LZW
adds a mini-cache to improve performance for recently accessed strings in the dictionary.
Our data is not as repetitive as the sensor data examined in (Sadler and Martonosi, 2006).
This is due to the very primitive form of compression performed when converting the
output of the Bsdiff algorithm into reprogramming commands with a set maximum size. To
examine this we compared two large applications implementing the ZigBee protocol on a
version of the Tyndall 25mm node with a ZigBee compatible Ember EM2420 transceiver.
The effects of compressing the Bsdiff output, and the output after it has been converted into
reprogramming commands is shown in Table 7.

 Algorithm Compressed size Output file
compression ratio

Overall
compression ratio

Bsdiff output
(25968 bytes)

PPM 7859 bytes 30.26% 31.65%
LZMA 8086 bytes 31.14% 32.56%
Deflate 8748 bytes 33.69% 35.23%
Bzip2 9048 bytes 34.84% 36.43%

S-LZW 1,0476 bytes 40.34% 42.18%

Reprogramming
Command size
(12801 bytes)

PPM 9548 bytes 74.59% 38.45%
LZMA 9616 bytes 75.12% 38.72%
Deflate 9868 bytes 77.09% 39.74%
Bzip2 1,0298 bytes 80.45% 41.47%

S-LZW 1,1379 bytes 88.89% 45.82%
Table 7. Compressing Bsdiff output and reprogramming commands

www.intechopen.com

Sustainable Wireless Sensor Networks516

The other algorithms are PPM (Prediction by Partial Matching), LZMA (Lempel Ziv
Markov-chain Algorithm), Deflate (as used in Zip files), and BZip2 (Huffman based
encoding). These algorithms were performed by the 7-Zip application with default
parameters (Pavlov, 2010). The table shows that converting the Bsdiff output into standalone
commands, as we did in Section 4.2, leads to a larger end file size in each case. However,
this is necessary due to the limited memory available for buffering. Table 7 also shows that
S-LZW is not as effective as other compression algorithms, which was expected due to its
speed and low memory usage.
S-LZW has a number of parameters that affect the compression ratio: the dictionary size; the
mini-cache size; and the block size. LZW can compress streams of data of any length, so here
block size refers to the size of chunks that the data stream is split into. This is necessary
because of limited memory on the sensor nodes. These parameters can have positive effects
by increasing the compression ratio, and negative effects by increasing the time taken to
decode, or the memory required. Another method to increase the compression ratio is to use
the Burrows Wheeler Transform (BWT) (Burrows and Wheeler, 1994). This algorithm can
sort the data into an order that should compress better. It is a reversible transform so the
original data can be regenerated.

80

85

90

95

100

105

0 256 512 768 1024 1280 1536 1792 2048

Block size (bytes)

C
om

pr
es

si
on

 ra
tio

 (%
)

S-LZW-MC4
S-LZW-MC4-BWT
S-LZW-MC8
S-LZW-MC8-BWT
S-LZW-MC16
S-LZW-MC16-BWT
S-LZW-MC32
S-LZW-MC32-BWT

Fig. 10. Effects of mini-cache, block size, and BWT on compression ratio

The effect of the changing the dictionary size was found to be very small, and so was set at
512 entries. Fig. 10 shows the effects of the mini-cache size, how big a block is compressed,
and BWT on compressing a set of commands 2,082 bytes in size (this is actually all the
commands that are sent to node 0, in the network in Fig. 9). It can be seen that BWT has a
positive effect on the compression ratio, and that an increased mini-cache size leads to
increased compression too. Fig. 10 shows only the effect on compression ratio. However, the
effect on energy consumption is more important. For this, it is necessary to analyse the
processing costs of decompressing the data. The data compression is done on a PC, so it is
not considered here, as the data sets used here are very small compared to the available
processing power of a PC.

To analyse the cost of decompressing the code we measure the time taken to decompress a
single block of data. The results of this are shown in Table 8 along with memory
requirements in Flash (program memory) and RAM (data memory) for implementing S-
LZW on the 25mm node. The memory used by BWT is minimised by sharing buffers with S-
LZW. The results show that the mini-cache size has a negligible effect on processing time,
and only a small effect on RAM size. For this reason, a 32 byte mini-cache is optimal, as it
has a better compression ratio. The results also show that the time to decompress a single
byte is not dependent on the block size that was compressed. The block-size should
therefore be chosen based on the size that gives the best compression ratio, and still fits
within the memory requirements (less than 4096 bytes). From Fig. 10 it can be seen that a
block size that is a power of 2 is not always optimal. The PC that is compressing the
commands can use a range of block sizes and chose the option that gives the best
compression ratio.

Block
size Algorithm Compressed

Size (bytes)
Flash

(bytes)
RAM

(bytes)
Time
(ms)

Time/byte
(μs)

512
bytes

S-LZW-MC4 438 1768 3348 12.27 28.01
S-LZW-MC8 426 1744 3356 13.02 30.57
S-LZW-MC16 415 1744 3372 12.21 29.42
S-LZW-MC32 417 1744 3404 11.87 28.46

S-LZW-MC4-BWT 420 2116 3604 21.28 50.66
S-LZW-MC8-BWT 415 2092 3612 20.77 50.05
S-LZW-MC16-BWT 417 2092 3628 20.97 50.28
S-LZW-MC32-BWT 416 2092 3660 20.71 49.79

256
bytes

S-LZW-MC32 213 1482 2892 6.39 29.98
S-LZW-MC32-BWT 215 1826 3148 11.59 53.90

128
bytes

S-LZW-MC32 98 1354 2636 3.2 32.78
S-LZW-MC32-BWT 88 1698 2892 6.5 74.14

Table 8. Memory usage and time for decompression

Our implementation of BWT requires memory that is twice the block size, however we have
minimised the impact of this by using the same buffer that S-LZW uses for storing its
dictionary. BWT however has a large impact on processing time, and still has some impact
on memory usage. Whether or not it should be used depends on the increased compression
ratio it offers. From Fig. 10, we see that BWT has very little advantage at the range of block
sizes that can be decompressed (less than 512 bytes). If more memory were available, it
would be more useful. To consider the energy savings by compression, the energy to send
and receive the data and the energy required for decompression must be determined. The
2,082 byte file above can be compressed to 1,826 bytes using S-LZW-MC32 with a block size
of 416 bytes. Using the power consumption values from Table 1, we can calculate the energy
required with and without compression. The time to decompress a byte is from the table
above, for S-LZW-MC32.

www.intechopen.com

Energy-eficient Reprogramming of Heterogeneous Wireless Sensor Networks 517

The other algorithms are PPM (Prediction by Partial Matching), LZMA (Lempel Ziv
Markov-chain Algorithm), Deflate (as used in Zip files), and BZip2 (Huffman based
encoding). These algorithms were performed by the 7-Zip application with default
parameters (Pavlov, 2010). The table shows that converting the Bsdiff output into standalone
commands, as we did in Section 4.2, leads to a larger end file size in each case. However,
this is necessary due to the limited memory available for buffering. Table 7 also shows that
S-LZW is not as effective as other compression algorithms, which was expected due to its
speed and low memory usage.
S-LZW has a number of parameters that affect the compression ratio: the dictionary size; the
mini-cache size; and the block size. LZW can compress streams of data of any length, so here
block size refers to the size of chunks that the data stream is split into. This is necessary
because of limited memory on the sensor nodes. These parameters can have positive effects
by increasing the compression ratio, and negative effects by increasing the time taken to
decode, or the memory required. Another method to increase the compression ratio is to use
the Burrows Wheeler Transform (BWT) (Burrows and Wheeler, 1994). This algorithm can
sort the data into an order that should compress better. It is a reversible transform so the
original data can be regenerated.

80

85

90

95

100

105

0 256 512 768 1024 1280 1536 1792 2048

Block size (bytes)

C
om

pr
es

si
on

 ra
tio

 (%
)

S-LZW-MC4
S-LZW-MC4-BWT
S-LZW-MC8
S-LZW-MC8-BWT
S-LZW-MC16
S-LZW-MC16-BWT
S-LZW-MC32
S-LZW-MC32-BWT

Fig. 10. Effects of mini-cache, block size, and BWT on compression ratio

The effect of the changing the dictionary size was found to be very small, and so was set at
512 entries. Fig. 10 shows the effects of the mini-cache size, how big a block is compressed,
and BWT on compressing a set of commands 2,082 bytes in size (this is actually all the
commands that are sent to node 0, in the network in Fig. 9). It can be seen that BWT has a
positive effect on the compression ratio, and that an increased mini-cache size leads to
increased compression too. Fig. 10 shows only the effect on compression ratio. However, the
effect on energy consumption is more important. For this, it is necessary to analyse the
processing costs of decompressing the data. The data compression is done on a PC, so it is
not considered here, as the data sets used here are very small compared to the available
processing power of a PC.

To analyse the cost of decompressing the code we measure the time taken to decompress a
single block of data. The results of this are shown in Table 8 along with memory
requirements in Flash (program memory) and RAM (data memory) for implementing S-
LZW on the 25mm node. The memory used by BWT is minimised by sharing buffers with S-
LZW. The results show that the mini-cache size has a negligible effect on processing time,
and only a small effect on RAM size. For this reason, a 32 byte mini-cache is optimal, as it
has a better compression ratio. The results also show that the time to decompress a single
byte is not dependent on the block size that was compressed. The block-size should
therefore be chosen based on the size that gives the best compression ratio, and still fits
within the memory requirements (less than 4096 bytes). From Fig. 10 it can be seen that a
block size that is a power of 2 is not always optimal. The PC that is compressing the
commands can use a range of block sizes and chose the option that gives the best
compression ratio.

Block
size Algorithm Compressed

Size (bytes)
Flash

(bytes)
RAM

(bytes)
Time
(ms)

Time/byte
(μs)

512
bytes

S-LZW-MC4 438 1768 3348 12.27 28.01
S-LZW-MC8 426 1744 3356 13.02 30.57
S-LZW-MC16 415 1744 3372 12.21 29.42
S-LZW-MC32 417 1744 3404 11.87 28.46

S-LZW-MC4-BWT 420 2116 3604 21.28 50.66
S-LZW-MC8-BWT 415 2092 3612 20.77 50.05
S-LZW-MC16-BWT 417 2092 3628 20.97 50.28
S-LZW-MC32-BWT 416 2092 3660 20.71 49.79

256
bytes

S-LZW-MC32 213 1482 2892 6.39 29.98
S-LZW-MC32-BWT 215 1826 3148 11.59 53.90

128
bytes

S-LZW-MC32 98 1354 2636 3.2 32.78
S-LZW-MC32-BWT 88 1698 2892 6.5 74.14

Table 8. Memory usage and time for decompression

Our implementation of BWT requires memory that is twice the block size, however we have
minimised the impact of this by using the same buffer that S-LZW uses for storing its
dictionary. BWT however has a large impact on processing time, and still has some impact
on memory usage. Whether or not it should be used depends on the increased compression
ratio it offers. From Fig. 10, we see that BWT has very little advantage at the range of block
sizes that can be decompressed (less than 512 bytes). If more memory were available, it
would be more useful. To consider the energy savings by compression, the energy to send
and receive the data and the energy required for decompression must be determined. The
2,082 byte file above can be compressed to 1,826 bytes using S-LZW-MC32 with a block size
of 416 bytes. Using the power consumption values from Table 1, we can calculate the energy
required with and without compression. The time to decompress a byte is from the table
above, for S-LZW-MC32.

www.intechopen.com

Sustainable Wireless Sensor Networks518

J 0.36
7977.1075.07977.1128.0

)2082()2082(




 TPTPE RXTXeduncompress

(5)

J 0.32
052.00293.0577.1075.0577.1128.0

)1046.281826()1826()1826(6




 
CPURXTXcompressed PTPTPE

(6)

The transceivers throughput rate of 50 kbps is very slow compared to the Atmega128L
processor running at 8 MHz, so the time taken for decompressing the data is minimal
compared to the time taken for transmitting the data. Therefore even for very modest
compression ratios, it is worthwhile to use S-LZW.

6. Conclusions

We presented efficient methods for reducing the energy cost of reprogramming wireless
sensor networks, by using delta encoding and LZW based compression. We have modified
the Bsdiff delta encoding algorithm to make suitable it for use in WSNs, and also tuned the
S-LZW algorithm for energy efficiency. In our example heterogeneous network with two
different hardware nodes, and two different sensor types we reduced the cost of updating
the communication protocol to 6.57 % of an approach that requires sending the full
application program. The use of S-LZW gives a further reduction to about 90% of this value.

The solutions we provided can be applied to any type of reprogramming. The Bsdiff
algorithm is not dependent on knowledge of instruction sets, and does not require any
special compilation methods to keep functions at the same addresses. Very limited support
is needed in the existing program. Support could be added on top of existing operating
systems such as TinyOS or Contiki. This work has been implemented on a two-tiered
heterogeneous network, but can be extended for multi-tier networks. The techniques
presented are useful for simpler homogeneous networks.

The work presented in this chapter is already of great use in reducing the energy costs to
reprogram a wireless node or network. However, in ad-hoc networks where the topology is
not centrally managed, algorithms such as MSP (Kulkarni and Wang, 2009) or Freshet
(Krasniewski et al., 2008) are suitable for managing the propagation of commands, and
would complement the techniques presented in this chapter.

7. Acknowledgments

This work was supported by Science Foundation Ireland under grant 07/CE/I1147.

8. References

Atmel (2009). Atmega128L datasheet, rev. S. http://www.atmel.com
Bellis, S. J.; Delaney, K.; O'Flynn, B.; Barton, J.; Razeeb, K. M. & Ó Mathúna, S. C. (2005).

Development of field programmable modular wireless sensor network nodes for
ambient systems. Computer Communications, 28, 13, Aug. 2005, pp. 1531-1544,
ISSN:01403664

Berkeley (2010), University of California. Tinyos Community Forum, http://www.tinyos.net
Burrows, M. & Wheeler, D. J. (1994). A block-sorting lossless data compression algorithm.

Digitial SRC Research Report 124
Dunkels, A. (2010) The Contiki Operating System, http://www.sics.se/contiki/
Foster-Miller (2010). Electrotextiles, http://www.foster-miller.com/m_m_electrotextiles.htm
Georgoulas, D. & Blow, K. (2008). Intelligent Mobile Agent Middleware for Wireless Sensor

Networks: A Real Time Application Case Study. Proceedings of 4th Advanced Int.
Conf. Telecommunications, pp. 95-100, ISBN:9780769531625, Athens, Greece, Jun.
2008, IEEE Computer Society, Washington DC

Harte, S.; O'Flynn, B.; Martínez-Catalá, R. V. & Popovici, E. M. (2007). Design and
implementation of a miniaturised, low power wireless sensor node. Proceedings 18th
Euro. Conf. Circuit Theory and Design, pp. 894-897, ISBN:9781424413416, Seville,
Spain, Aug. 2007, IEEE Press, New Jersey

Hui, J. W. & Culler, D. (2004). The dynamic behavior of a data dissemination protocol for
network programming at scale. Proceedings of 2nd Int. Conf. Embedded Networked
Sensor Systems, pp. 81-94. ISBN:1581138792, Baltimore, USA, Nov. 2004, ACM, New
York

Jeong, J. & Culler, D. (2009). Incremental network programming for wireless sensors.
International Journal of Communications, Network and System Sciences. 2, 5, Aug. 2009,
pp. 433-452, ISSN:17543924

Krasniewski, M. D.; Panta, R. K.; Bagchi, S.; Yang, C. & Chappell, W. J. (2008). Energy-
efficient on-demand reprogramming of large-scale sensor networks. ACM Trans.
Sensor Networks, 4, 1, Jan. 2008, pp 1-38, ISSN:15504859

Kulkarni, S. & Wang, L. (2009). Energy-efficient multihop reprogramming for sensor
networks. ACM Trans. Sensor Networks, 5, 2, Mar. 2009, pp. 1-40, ISSN:15504859

Levis, P. & Culler, D. (2002). Maté: a tiny virtual machine for sensor networks. Proceedings of
10th Int. Conf. Architectural Support for Programming Languages and Operating
Systems, pp. 85-95, ISBN:1581135742, San Jose, USA, Oct. 2002, ACM, New York

Levis, P.; Patel, N.; Culler, D. & Shenker, S. (2004). Trickle: a self-regulating algorithm for
code propagation and maintenance in wireless sensor networks. Proceedings of 1st
Conf. on Networked Systems Design and Implementation, pp. 15-18, San Francisco,
USA, Mar. 2004

Marinkovic, S.; Spagnol, C. & Popovici, E. M. (2009). Energy-efficient TDMA-based MAC
protocol for wireless body area networks. Proceedings of 3rd Int. Conf. Sensor
Technologies and Applications, pp. 604-609, ISBN:9780769536699, Athens, Greece,
June 2009, IEEE Computer Society, Washington DC

Marrón P. J.; Gauger, M.; Lachenmann, A.; Minder, D.; Saukh, O. & Rothermel, K. (2006).
FlexCup: A Flexible and Efficient Code Update Mechanism for Sensor Networks.
Proceedings of 3rd Euro. Workshop on Wireless Sensor Networks, pp. 212-227,
ISBN:3540321586, Zurich, Switzerland, Feb. 2006, Springer, Berlin

www.intechopen.com

Energy-eficient Reprogramming of Heterogeneous Wireless Sensor Networks 519

J 0.36
7977.1075.07977.1128.0

)2082()2082(




 TPTPE RXTXeduncompress

(5)

J 0.32
052.00293.0577.1075.0577.1128.0

)1046.281826()1826()1826(6




 
CPURXTXcompressed PTPTPE

(6)

The transceivers throughput rate of 50 kbps is very slow compared to the Atmega128L
processor running at 8 MHz, so the time taken for decompressing the data is minimal
compared to the time taken for transmitting the data. Therefore even for very modest
compression ratios, it is worthwhile to use S-LZW.

6. Conclusions

We presented efficient methods for reducing the energy cost of reprogramming wireless
sensor networks, by using delta encoding and LZW based compression. We have modified
the Bsdiff delta encoding algorithm to make suitable it for use in WSNs, and also tuned the
S-LZW algorithm for energy efficiency. In our example heterogeneous network with two
different hardware nodes, and two different sensor types we reduced the cost of updating
the communication protocol to 6.57 % of an approach that requires sending the full
application program. The use of S-LZW gives a further reduction to about 90% of this value.

The solutions we provided can be applied to any type of reprogramming. The Bsdiff
algorithm is not dependent on knowledge of instruction sets, and does not require any
special compilation methods to keep functions at the same addresses. Very limited support
is needed in the existing program. Support could be added on top of existing operating
systems such as TinyOS or Contiki. This work has been implemented on a two-tiered
heterogeneous network, but can be extended for multi-tier networks. The techniques
presented are useful for simpler homogeneous networks.

The work presented in this chapter is already of great use in reducing the energy costs to
reprogram a wireless node or network. However, in ad-hoc networks where the topology is
not centrally managed, algorithms such as MSP (Kulkarni and Wang, 2009) or Freshet
(Krasniewski et al., 2008) are suitable for managing the propagation of commands, and
would complement the techniques presented in this chapter.

7. Acknowledgments

This work was supported by Science Foundation Ireland under grant 07/CE/I1147.

8. References

Atmel (2009). Atmega128L datasheet, rev. S. http://www.atmel.com
Bellis, S. J.; Delaney, K.; O'Flynn, B.; Barton, J.; Razeeb, K. M. & Ó Mathúna, S. C. (2005).

Development of field programmable modular wireless sensor network nodes for
ambient systems. Computer Communications, 28, 13, Aug. 2005, pp. 1531-1544,
ISSN:01403664

Berkeley (2010), University of California. Tinyos Community Forum, http://www.tinyos.net
Burrows, M. & Wheeler, D. J. (1994). A block-sorting lossless data compression algorithm.

Digitial SRC Research Report 124
Dunkels, A. (2010) The Contiki Operating System, http://www.sics.se/contiki/
Foster-Miller (2010). Electrotextiles, http://www.foster-miller.com/m_m_electrotextiles.htm
Georgoulas, D. & Blow, K. (2008). Intelligent Mobile Agent Middleware for Wireless Sensor

Networks: A Real Time Application Case Study. Proceedings of 4th Advanced Int.
Conf. Telecommunications, pp. 95-100, ISBN:9780769531625, Athens, Greece, Jun.
2008, IEEE Computer Society, Washington DC

Harte, S.; O'Flynn, B.; Martínez-Catalá, R. V. & Popovici, E. M. (2007). Design and
implementation of a miniaturised, low power wireless sensor node. Proceedings 18th
Euro. Conf. Circuit Theory and Design, pp. 894-897, ISBN:9781424413416, Seville,
Spain, Aug. 2007, IEEE Press, New Jersey

Hui, J. W. & Culler, D. (2004). The dynamic behavior of a data dissemination protocol for
network programming at scale. Proceedings of 2nd Int. Conf. Embedded Networked
Sensor Systems, pp. 81-94. ISBN:1581138792, Baltimore, USA, Nov. 2004, ACM, New
York

Jeong, J. & Culler, D. (2009). Incremental network programming for wireless sensors.
International Journal of Communications, Network and System Sciences. 2, 5, Aug. 2009,
pp. 433-452, ISSN:17543924

Krasniewski, M. D.; Panta, R. K.; Bagchi, S.; Yang, C. & Chappell, W. J. (2008). Energy-
efficient on-demand reprogramming of large-scale sensor networks. ACM Trans.
Sensor Networks, 4, 1, Jan. 2008, pp 1-38, ISSN:15504859

Kulkarni, S. & Wang, L. (2009). Energy-efficient multihop reprogramming for sensor
networks. ACM Trans. Sensor Networks, 5, 2, Mar. 2009, pp. 1-40, ISSN:15504859

Levis, P. & Culler, D. (2002). Maté: a tiny virtual machine for sensor networks. Proceedings of
10th Int. Conf. Architectural Support for Programming Languages and Operating
Systems, pp. 85-95, ISBN:1581135742, San Jose, USA, Oct. 2002, ACM, New York

Levis, P.; Patel, N.; Culler, D. & Shenker, S. (2004). Trickle: a self-regulating algorithm for
code propagation and maintenance in wireless sensor networks. Proceedings of 1st
Conf. on Networked Systems Design and Implementation, pp. 15-18, San Francisco,
USA, Mar. 2004

Marinkovic, S.; Spagnol, C. & Popovici, E. M. (2009). Energy-efficient TDMA-based MAC
protocol for wireless body area networks. Proceedings of 3rd Int. Conf. Sensor
Technologies and Applications, pp. 604-609, ISBN:9780769536699, Athens, Greece,
June 2009, IEEE Computer Society, Washington DC

Marrón P. J.; Gauger, M.; Lachenmann, A.; Minder, D.; Saukh, O. & Rothermel, K. (2006).
FlexCup: A Flexible and Efficient Code Update Mechanism for Sensor Networks.
Proceedings of 3rd Euro. Workshop on Wireless Sensor Networks, pp. 212-227,
ISBN:3540321586, Zurich, Switzerland, Feb. 2006, Springer, Berlin

www.intechopen.com

Sustainable Wireless Sensor Networks520

Motta, G.; Gustafson, J. & Chen, S. (2007). Differential compression of executable code.
Proceedings of Data Compression Conf., pp. 103-112, ISBN:0769527914, Snowbird,
USA, Mar 2007, IEEE Computer Society, Washington DC

Nordic Semiconductor (2008). nRF9E5 datasheet, rev. 1.5. http://www.nordicsemi.com
Pavlov, I. (2010). 7-zip file archiver. http://www.7-zip.org
Percival, C. (2006). Matching with Mismatches and Assorted Applications, Ph.D. Dissertation.

University of Oxford
Percival, C. (2010). Binary diff/patch utility. http://www.daemonology.net/bsdiff
Phillips, L. A. (2005). Aqueduct: robust and efficient code propagation in heterogeneous wireless

sensor networks. Master’s thesis, University of Nebraska
Raghunathan, V.; Schurgers, C.; Park, S. & Srivastava, M. B., 2002. Energy-aware wireless

microsensor networks. IEEE Signal Processing Magazine, 19, 2, Aug. 2002, pp. 40-50,
ISSN:10535888

Roedig, U.; Barroso, A. & Sreenan, C. J. (2006). f-MAC: a deterministic media access control
protocol without time synchronization. Proceedings of 3rd Euro. Workshop on Wireless
Sensor Networks, pp. 276-291, ISBN:3540321586, Zurich, Switzerland, Feb. 2006,
Springer, Berlin

Reijers, N. & Langendoen, K. (2003). Efficient code distribution in wireless sensor networks.
Proceedings of 2nd ACM Int. Conf. Wireless sensor networks and applications, pp. 60-67,
ISBN:1581137648, San Diego, USA, Sept. 2003, ACM, New York

Sadler, C. M. & Martonosi, M. (2006). Data compression algorithms for energy-constrained
devices in delay tolerant networks. Proceedings of 4th Int. Conf. Embedded Networked
Sensor Systems, pp. 265-278, ISBN:1595933433, Boulder USA, Nov. 2006, ACM, New
York

Tridgell, A. (1999). Efficient algorithms for sorting and synchronization. Ph.D. Dissertation,
Australian National University

www.intechopen.com

Sustainable Wireless Sensor Networks

Edited by Yen Kheng Tan

ISBN 978-953-307-297-5

Hard cover, 574 pages

Publisher InTech

Published online 14, December, 2010

Published in print edition December, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Wireless Sensor Networks came into prominence around the start of this millennium motivated by the

omnipresent scenario of small-sized sensors with limited power deployed in large numbers over an area to

monitor different phenomenon. The sole motivation of a large portion of research efforts has been to maximize

the lifetime of the network, where network lifetime is typically measured from the instant of deployment to the

point when one of the nodes has expended its limited power source and becomes in-operational â€“

commonly referred as first node failure. Over the years, research has increasingly adopted ideas from wireless

communications as well as embedded systems development in order to move this technology closer to realistic

deployment scenarios. In such a rich research area as wireless sensor networks, it is difficult if not impossible

to provide a comprehensive coverage of all relevant aspects. In this book, we hope to give the reader with a

snapshot of some aspects of wireless sensor networks research that provides both a high level overview as

well as detailed discussion on specific areas.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Sean Harte, Stefano Rollo, Emanuel Popovici and Brendan O'flynn (2010). Energy-efficient Reprogramming of

Heterogeneous Wireless Sensor Networks, Sustainable Wireless Sensor Networks, Yen Kheng Tan (Ed.),

ISBN: 978-953-307-297-5, InTech, Available from: http://www.intechopen.com/books/sustainable-wireless-

sensor-networks/energy-efficient-reprogramming-of-heterogeneous-wireless-sensor-networks

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

