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1. Introduction

Starting from a practical Health Economics problem (the optimal planning of visits for a given
medical registrar to its allocated cities, for selection and registration of eligible patients to
be included in the regional non-communicable diseases registries for a specified type of
chronic disease) we construct a mathematical model. We show that this model can be seen
as a new generalization of the following problems: Prize Collecting Traveling Salesman
Problem, Simple Cycle Problem, Capacitated Prize-Collecting Traveling Salesman Problem
or Orienteering Problem.
Our purpose is that of finding a cycle, belonging to a directed graph, with a given number of
vertices (nodes), among which one is fixed, so that the total bonus (which varies in time) is
maximized and the total costs (transport costs plus accommodation costs) are minimized. A
boundary condition must also be satisfied.
In contrast to the known generalizations of the Traveling Salesman Problem, the originality of
our approach relies on three ideas:
- the fact that the exact number of cycle vertices is fixed,
- the bonus depends not only on the visited vertex, but also on the visiting time, that is, on the
position of the vertex along the cycle, and
- the goal is expressed by a vector, with two components (bonus and cost).
The solving of the problem reduces to the determination of a lexicographic max-min
non-dominant cycle, the choice of the lexicographic order being determined by the initial
health economics problem.
It is important to mention that we do not just analyze the problem from a theoretical point of
view, but also from a practical one, therefore we propose two algorithms: a Greedy algorithm
and an exact one. They both generate good solutions. Unfortunately, the exact algorithm
becomes slower as the number of vertices increases. That is, as in (Trobec et al., 2009), we also
analyze the possibility of using parallel calculus for improving the execution time.
We are interested in continuing the research, focused on other health economics problems,
whose mathematical model can be seen as a generalization of the classical Traveling Salesmen
Problem.

17

www.intechopen.com



2 Traveling Salesman Problem, Theory and Applications

2. The medical motivational background

During the last years, many studies belonging to a field known as Health Economics Research,
have been developed. The term includes a multitude of issues related to the management of
pharmaceutical products and of medical activities, from an optimization perspective. In this
context, several major issues arise:

– finding new treatments with increased effectiveness and with little costs;

– making the treatment to be carried out to a patient as bearable as possible (little
inconvenience, fewer side effects);

– detecting, in early stages, the disease, since it is known that healing is safer, faster and less
expensive as the disease is diagnosed sooner;

– monitoring a chronic disease both for determining its objective causes, and for
understanding its evolution trend, in order to anticipate correctly the necessary treatment
costs;

– finding those treatments which may keep the patient’s life quality at a high level, but
with lower costs (usually constrained to fit into a given budget), in chronic diseases, when
returning to the normal health state is impossible;

– preventing infectious diseases, by controlling the possible contacts, isolating the sick
persons, and, in some cases vaccinating them.

The basic idea behind pharmacoeconomics studies is: to win as a good health as possible with
the smallest amount of money. Therefore, in these studies which consider a treatment by its
results reported to the cost, some ratios are generated, called indices. Among them, we recall
ICER, INB, and NHB. It is clear that, in order to draw a conclusion closer to reality on the
costs and effectiveness of a treatment, it is necessary to apply it to a sufficient number of
patients. As a result, costs and effects will be replaced by average costs, average effects,
respectively. The need of averages leads to the necessity of using results from mathematical
statistics. Hence, if in their early phases, the pharmacoeconomics studies highlighted the
treatment effects and identified the costs involved in applying it (the actual cost of the
drugs used, their application costs, costs of the medical advices), nowadays these studies
have been starting to use advanced mathematical tools like Probability Theory, Bayesian
Analysis, Markov Processes and Multi-Criteria Optimization. We recall (Briggs & Sculpher,
1998; Briggs et al., 2006; Fayers, 1997) and (Willan & Briggs, 2006) as main reference works
related to pharmacoeconomics studies, works that use the indices mentioned above.
Because health budgets are not unlimited, whatever the country, the health economics
problems are, in most cases, optimization problems which get a multi-criteria character (see,
for example, (Lupsa, 1999; 2000a;b; Tigan et al., 2001; Grosan et al., 2005; 2007)). Other works,
as (Canfelt et al., 2004; Kang & Lagakos, 2007; Chiorean et al, 2008; Lupsa et al, 2008; Neamtiu,
2008; 2009), contain mathematical models which were built by using Bayesian Analysis,
Markov Processes or Dynamic Optimization.
The aim of this chapter is to present an approach to a health-economics problem, using in
its solving variants of the Traveling Salesman Problem. The problem was raised during the
optimization process of the data collection for the cancer registry at the North-West Regional
Cancer Registry (Romania). The research is sustained by a multidisciplinary consortium in
the framework of CRONIS project (contract no. 11-003/2007, developed under PN II national
R&D programme, financed by the Romanian Government).
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Some Special Traveling Salesman Problems with Applications in Health Economics 3

3. The problem of medical registrars

To organize regional non-communicable diseases registries for a specified type of chronic
disease (cancer, diabetes, cardiovascular), registrars (persons with specialized training who
register data) must visit, at certain interval of times, the medical units subordinated (clinics,
hospitals, etc.) for selection and registration of eligible patients to be included in the
register. More precisely, registrars, based on medical documentation, have to decide
whether a case should be registered or not, and, in the first situation, to specify, beside
the patient’s personal data, some disease-related remarks, remarks that are coded. For
example, for cancer, the registration and coding rules are well established and standardized
(see (World Health Organization, 1991)).
Knowing those medical units which are subordinated to a registrar, the problem is to plan the
days in which he has to make the registrations at every medical unit. The maximum number
of registrations that he/she can make in one day is known, as well as the fact that, in one day,
he/she visits one medical unit, due to the fact that these units are in different locations (cities).
The number of patients whose medical records have to be investigated is variable, it increases
from one day to another. Specifically, every morning, in the stack of processed medical
records, new ones are added. One makes the assumption that, at the very beginning, the
number of existing medical records is known and also its growth rate, depending of time. In
this paper we assume that the rate is constant, and equal to the monthly average number of
new files. Planning should be such that the number of medical records left unchecked (from
all the files gathered until the end of the period) to be as low as possible, and also the total
costs (which include transportation costs plus subsistence and accommodation costs) to be
as low as possible. The registrar may remain for several days to record documents in one
medical unit. He/she can move from one unit to another or return to the base, case in which
he/she is obliged to remain a day there.
The following data are known:
- n, the number of hospitals, numbered from 1 to n; with 0 being numbered the hospital to
which the registrar belongs; it is the location where he starts the early registration period and
where he must return at the end of the recording process;
- p, the number of days corresponding to the time period when the registration is made;
- cij, transport costs from hospital i to hospital j, for any i, j ∈ {0,1, . . . ,n}, i �= j;
- q, maximum number of medical records that can be investigated by the registrar in a day;
- di, accommodation costs per night if remains to sleep overnight in the area corresponding to
hospital i (if it coincides with the place where hospital 0 is located, we have obviously di = 0);
- fi, estimated number of medical records that can exist in hospital i at the beginning of the
work;
- ri, the growth rate, from day to day, of the number of medical records;
- s, daily subsistence if, in that day, the registrar is located in another location than that where
the hospital to which he belongs is;
- δ, the working number of hours/days.
We use the notation T = {1, . . . , p}.
One of the difficulties in solving this problem is the fact that there are hospitals where the
number of medical records to be processed exceeds the processing capacity of the registrar in
a day. In that case, he has to work more than a day at that site and we must decide which is
better for him, to stay over night there or to go back home and return the next day. Another
difficulty arises from the fact that the total number of medical records to be processed at a site
increases from one day to the next. To treat these difficulties, we introduce dummy (fictive)
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4 Traveling Salesman Problem, Theory and Applications

hospitals, as it will be seen next.
Let us consider hospital i. The total number of unprocessed medical records that exist until
the morning of day k is fi + (k− 1)ri. To process the files collected until the morning of the
last day (the p-th day), it would be necessary mi working days, where

mi =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

fi + (p− 1)ri
q

, if
fi + (p− 1)ri

q
∈ N,

[

fi + (p− 1)ri
q

]

+ 1, if
fi + (p− 1)ri

q
�∈ N.

(1)

Therefore, for the sake of simplicity, we consider that, instead of hospital i, we have mi

hospitals, denoted by i1,. . . ,imi
. All the files of these hospitals come from the hospital i; the

number of files in these hospitals will vary in time, but none of themwill exceed the maximum
number of files that can be processed in one day. More precisely, the moment when, at the
hospital ih, q files have been gathered for processing, the subsequent files are considered to be
at hospital ih+1; when for hospital ih+1, q files are gathered, the next ones are sent to hospital
ih+2, etc.
We denote by gih,k the number of files to be processed, existing in hospital ih in the day k ∈ T.
This is equal to

gih,k =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

fi + (k− 1)ri, if h = 1, fi + (k− 1)ri ≦ q,
q, if h = 1, fi + (k− 1)ri > q,
0, if 1< h, fi + (k− 1)ri − (h− 1)q≦ 0,
fi + (k− 1)ri − (h− 1)q, if 1< h, 1≦ fi + (k− 1)ri − (h− 1)q≦ q,
q, if1< h, fi + (k− 1)ri − (h− 1)q > q.

(2)

The distance between any two dummy hospitals generated by hospital i is equal to di (instead
of transport, the accommodation has to be paid), and the distance between any dummy
hospital ih and hospital k, k �= i, is equal to the distance between hospital i and hospital k.
Then, the following relation holds:

cih,k =

{

cik, ∀ h ∈ {1, . . . ,mi}, k ∈ {0,1, . . . ,n} \ {i},
di, ∀ h ∈ {1, . . . ,mi}, k ∈ {i1, . . . , im}, ih �= k.

(3)

Following this transformation, the problem size increases by increasing the number of
hospitals, but the problem is simplified by the fact that every day, the registrar can examine
all existing files in any of the hospitals where he arrives. We denote by m the number of new
hospitals resulting by performing this transformation (i.e. m = m1 + · · ·+mn).
We continue to denote by cik the transport costs between any two hospitals i and k, i �= k.
Since there may be days when the registrar does not work in the subordinated hospitals, we
introduce more p dummy hospitals, numbered m+ 1,. . . ,m+ p.
The transport costs for the new hospitals are defined by

cik =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, if i,k ∈ {m+ 1, . . . ,m+ p}, i �= k,
c0k, if i ∈ {m+ 1, . . . ,m+ p}, k ∈ {1, . . . ,m},
0, if i = 0, k ∈ {m+ 1, . . . ,m+ p},
ci0, if i ∈ {1, . . . ,m}, k ∈ {m+ 1, . . . ,m+ p}.

(4)
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Some Special Traveling Salesman Problems with Applications in Health Economics 5

Every day, the number of existing medical records in the location m+ 1, . . . ,m+ p is equal to
0, hence we have

gij = 0, ∀ i ∈ {m+ 1, . . . ,m+ p}, j ∈ {1, . . . , p}.

The accommodation costs will be also equal to 0, so

di = 0, ∀ i ∈ {m+ 1, . . . ,m+ p}.

Because, under the new conditions, the registrar will not stay more than one day in a hospital,
we attach the subsistence costs to the hospital. More precisely, we define the numbers si,
i ∈ {1, . . . ,m+ p}, by si := s, if the hospitals i and 0 are not at the same location and si := 0
otherwise.
Hence, after making these changes, we consider that we have m+ p+ 1 hospitals, from 0 to
m+ p, with 0 being the “home” hospital (the registrar’s home). The following data are known:

– transport costs between any two locations i,k ∈ {0,1, . . . ,m+ p}, i �= k, denoted by cik,

– number ofmedical records that can be processed in the hospital i in every day j∈ T, denoted
by gij,

– the accommodation cost, di, and the subsistence cost, si, according to the area where the
hospital i is located.

Example. Let us take n = 3, p = 4, q = 10, e = 14, d1 = 3, d2 = 7, d3 = 2, s = 1,

C =

⎡

⎢

⎢

⎣

0 5 7 3
5 0 2 4
7 2 0 6
3 4 6 0

⎤

⎥

⎥

⎦

,

f1 = 20, f2 = 15, f3 = 1, r1 = 2, r2 = 1, r3 = 3.

According with the previous specification, we work with m = 3+ 2+ 1 and p = 4. In total,
10 hospitals, plus the “home” hospital, 0. The transport costs between any two hospitals are
given in the table 1.

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
S0 0 5 5 5 7 7 3 0 0 0 0
S1 5 0 0 0 2 2 4 5 5 5 5
S2 5 0 0 0 2 2 4 5 5 5 5
S3 5 0 0 0 2 2 4 5 5 5 5
S4 7 2 2 2 0 0 6 7 7 7 7
S5 7 2 2 2 0 0 6 7 7 7 7
S6 3 4 4 4 6 6 0 3 3 3 3
S7 0 5 5 5 7 7 3 0 0 0 0
S8 0 5 5 5 7 7 3 0 0 0 0
S9 0 5 5 5 7 7 3 0 0 0 0
S10 0 5 5 5 7 7 3 0 0 0 0

Table 1. Transportation costs table
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The medical records matrix will be

G =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

10 10 10 10
10 10 10 10
0 2 4 6
10 10 10 10
5 6 7 8
1 4 7 10
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

The new vectors d and s will be

d = (3,3,3,7,7,2,0,0,0,0),

s = (1,1,1,1,1,1,0,0,0,0).

Our purpose is to obtain a planning for the registrar (this means to specify, for every day j∈ T,
the hospital where the registrar should go) such as the number of medical records that are
processed to be as large as possible, and the costs involved in transportation, accommodation
and subsistence to be as low as possible. The following assumptions are made:

1) If in the day j, j ∈ T, the registrar works at the hospital i, i ∈ {1, . . . ,m + p}, then in the
following night he/she sleeps in the city where hospital i is located. Therefore, the total
costs for that day contain the transportation costs from the location where the registrar
worked in the previous day and the city i, the accommodation costs for one night in locality
i, (equal to di) and the subsistence costs for locality i (equal to si).

2) The departure of the registrar is soon enough, so that, after reaching the destination, he
may work δ hours.

3) The first day, the registrar leaves from hospital 0.

4) The registrar returns to hospital 0 only in the morning of day p+ 1.

5) One day, the registrar works exactly in one hospital.

6) In every hospital the registrar works at most one day.

7) The available amount of money which can be spent for the entire action is equal to e and it
includes also the costs of returning to hospital 0 in the day p+ 1.

4. A mathematical model for the problem of medical registrars

In order to generate the mathematical model, we introduce the binary variables xij,
i ∈ {1, . . . ,m+ p}, j ∈ {1, . . . , p}, where

{

xij = 1, if in day j the registrar is in hospital i,

xij = 0, if not.
(5)

Conditions 3)-5) imply that
m+p

∑
i=1

xij = 1, ∀ j ∈ {1, . . . , p}. (6)
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Some Special Traveling Salesman Problems with Applications in Health Economics 7

Condition 4) implies
p

∑
j=1

m+p

∑
i=1

xij = p. (7)

Condition 6) means that
p

∑
j=1

xij ≦ 1, ∀ i ∈ {1, . . . ,m+ p}. (8)

Considering the hypotheses 1) and 3), the first day costs will be

m+p

∑
k=1

(c0k + dk + sk)xk1.

According to hypothesis 4), the costs of returning to hospital 0 in day p+ 1 are

m+p

∑
k=1

ck0xkp.

According to 1), the costs for a day j ∈ {2, . . . , p} are

m+p

∑
i=1

m+p

∑
k=1,k �=i

cikxi,j−1xkj +
m+p

∑
k=1

(dk + sk)xk,j.

Then, the hypothesis 7) implies

m+p

∑
k=1

c0kxk1 +
p

∑
j=2

(

m+p

∑
i=1

m+p

∑
k=1,k �=i

cikxi,j−1xkj

)

+ (9)

+
p

∑
j=1

m+p

∑
k=1

(dk + sk)xkj +
m+p

∑
k=1

ck0xkp ≦ e.

The set of matrices X= [xij] ∈ {0,1}(m+p)×p which verify (6), (7) and (8) will be denoted by X .
The set of matrices X = [xij] ∈ X which verify in addition the condition (8), will be denoted

by X̃.
As the registrar may process in one day all existing files in a location, he will do so. Therefore,
considering that, in one day j ∈ T, he can be in one location, the number of medical records
processed that day will be equal to

m+p

∑
i=1

gijxij,

and the total number of processed medical records is equal to

p

∑
j=1

m+p

∑
i=1

gijxij.

The number of medical records that would be gathered at the end of the period is equal to

m+p

∑
i=1

max{gij | j ∈ {1, . . . , p}}.
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8 Traveling Salesman Problem, Theory and Applications

The two objective functions are:

- Ff , which denotes the total processed medical records, i.e. Ff : {0,1}
(m+p)×p → R,

Ff (X) =
m+p

∑
i=1

p

∑
j=1

gijxij, (10)

for all X = [xij] ∈ {0,1}(m+p)×p and

- Fc, which denotes the total cost, i.e. Fc : {0,1}(m+p)×p → R,

Fc(X) =
m+p

∑
k=1

c0kxk1 +
p

∑
j=2

m+p

∑
i=1

m+p

∑
k=1,k �=i

cikxi,j−1xkj +
p

∑
j=1

m+p

∑
k=1

(dk + sk)xkj +
m+p

∑
k=1

ck0xkp, (11)

for all X = [xij] ∈ {0,1}(m+p)×p.
The corresponding mathematical model for the Registrar Problem is the Max-min

Lexicographical Optimization Problemwith the objective function F = (Ff ,Fc) : {0,1}
(m+p)×p →

R
2, whose scalar components are given by (10), (11), and the feasible set is S̃ ,

S̃ = {X ∈ {0,1}(m+p)×p |satisfies the conditions (6), (7), (8), (9)}, (12)

Hence, our problem, denoted by (PB), is the following:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

Ff (X) =
m+p

∑
i=1

p

∑
j=1

gijxij

Fc(X) =
m+p

∑
k=1

(c0k + dk + sk)xk1

+
p

∑
j=2

m+p

∑
i=1

m+p

∑
k=1,k �=i

cikxi,j−1xkj

+
p

∑
j=2

m+p

∑
k=1

(dk + sk)xkj +
m+p

∑
k=1

ck0xkp

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

→ lex−max−min

m+p

∑
i=1

xij = 1, ∀ j ∈ {1, . . . , p},

∑
p
j=1 xij ≦ 1, ∀ i ∈ {1, . . . ,m+ p},

m+p

∑
k=1

(c0k + dk + sk)xk1 +
p

∑
j=2

m+p

∑
i=1

m+p

∑
k=1,k �=i

cikxi,j−1xkj+

+
p

∑
j=2

m+p

∑
k=1

(dk + sk)xkj +
m+p

∑
k=1

ck0xkp ≦ e,

xij ∈ {0, 1}, ∀ i{1, . . . ,m+ p}, j ∈ {1, . . . , p}.

Using an appropriate change of variables, the problem (PB) may be transformed in a linear
one. It is easy to notice that, if x,y,z ∈ {0, 1}, then we have z = x · y if and only if z is the
unique solution of the system

⎧

⎨

⎩

x+ y− z≦ 1
−x− y+ 2z≦ 0
z ∈ {0, 1}.

(13)
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Some Special Traveling Salesman Problems with Applications in Health Economics 9

So, for each j ∈ {2, . . . , p}, i ∈ {1, . . . ,m + p} and k ∈ {1, . . . ,m + p}, k �= i, we introduce the
binary variable

zijk := xi,j−1 · xkj (14)

and the corresponding conditions

xi,j−1 + xkj − zijk ≦ 1,

−xi,j−1 − xkj + 2zijk ≦ 0,

zijk ∈ {0, 1}.

Then the problem (PB) can be rewritten as
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

Ff (X) =
m+p

∑
i=1

p

∑
j=1

gijxij

Fc(X) =
m+p

∑
k=1

(c0k + dk + sk)xk1

+
p

∑
j=2

m+p

∑
i=1

m+p

∑
k=1,k �=i

cikzijk

+
p

∑
j=2

m+p

∑
k=1

(dk + sk)xkj +
m+p

∑
k=1

ck0xkp

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

→ lex−max−min

m+p

∑
i=1

xij = 1, ∀ j ∈ {1, . . . , p},

∑
p
j=1 xij ≦ 1, ∀ i ∈ {1, . . . ,m+ p},

m+p

∑
k=1

(c0k + dk + sk)xk1 +
p

∑
j=2

m+p

∑
i=1

m+p

∑
k=1,k �=i

cikzijk +
p

∑
j=2

m+p

∑
k=1

(dk + sk)xkj+

+
m+p

∑
k=1

ck0xkp ≦ e,

xi,j−1 + xkj − zijk ≦ 1, ∀ j ∈ {2, . . . , p}, i ∈ {1, . . . ,m+ p}, k ∈ {1, . . . ,m+ p}, k �= i,

−xi,j−1 − xkj + 2zijk ≦ 0, ∀ j ∈ {2, . . . , p}, i ∈ {1, . . . ,m+ p},k ∈ {1, . . . ,m+ p},k �= i,

xij ∈ {0, 1}, ∀ i{1, . . . ,m+ p}, j ∈ {1, . . . , p},
zijk ∈ {0, 1}, ∀ j ∈ {2, . . . , p}, i ∈ {1, . . . ,m+ p}, k ∈ {1, . . . ,m+ p}, k �= i.

This problem can be solved by using any of the algorithms for solving pseudo-boolean linear
optimization problems (see, for example (Hammer & Rudeanu, 1968; Crama, 1989)). But, it
can be seen as a special type of the Prize Collecting Traveling Salesman Problem or as a special
type of the Simple Cycle Problem, as it will be shown in the next section.

5. Max-min lexicographical traveling salesman problem with objective function

depending on a parameter

Let m and p be natural numbers, m �= 0, and let e, gij, akj, bik, ckj, dik, i ∈ {1, . . . ,m + p},
j ∈ {1, . . . , p}, k ∈ {1, . . . ,m+ p}, k �= i, be positive real numbers.
By X we denote the set of the matrices X = [xij] with m + p rows and p columns, whose
elements satisfy the following three conditions:

m+p

∑
i=1

xij = 1, ∀ j ∈ {1, . . . , p}, (15)

307Some Special Traveling Salesman Problems with Applications in Health Economics

www.intechopen.com



10 Traveling Salesman Problem, Theory and Applications

p

∑
j=1

xij ≦ 1, ∀ i ∈ {1, . . . ,m+ p}, (16)

xij ∈ {0, 1}, ∀ i ∈ {1, . . . ,m+ p}, j ∈ {1, . . . , p}, (17)

and by X̃ the set of matrices of X which satisfies, in addition, the bounded condition

p

∑
j=1

m+p

∑
k=1

ckjxkj +
p

∑
j=2

m+p

∑
i=1

m+p

∑
k=1,k �=i

dikxi,j−1xkj ≦ e. (18)

Let us remark that from (15) we obtain

m+p

∑
i=1

p

∑
j=1

xij = p. (19)

Then, from (16) it follows that there are p distinct indices i1, . . . , ip ∈ {1, . . . ,m+ p} such that

p

∑
j=1

xik ,j = 1, ∀ k ∈ {1, . . . , p},

and
p

∑
j=1

xij = 0, ∀ i ∈ {1, . . . ,m+ p} \ {i1, . . . , ip}.

Let us define the vector function F = (F1,F2) : X → R
2, where

F1(X) =
m+p

∑
i=1

p

∑
j=1

gijxij, ∀X ∈ X , (20)

F2(X) =
p

∑
j=1

m+p

∑
k=1

akjxkj +
p

∑
j=2

m+p

∑
i=1

m+p

∑
k=1,k �=i

bikxi,j−1xkj, ∀X ∈ X . (21)

The problem (PB) can be see as a special case of the pseudo-boolean lexicographical max-min
optimization problemwith the objective function F and the set of feasible solution equal to X̃ ,
i.e., the problem:

(PBG)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

⎛

⎜

⎜

⎜

⎜

⎝

m+p

∑
i=1

p

∑
j=1

gijxij

p

∑
j=1

m+p

∑
k=1

akjxkj +
p

∑
j=2

m+p

∑
i=1

m+p

∑
k=1,k �=i

bikxi,j−1xkj

⎞

⎟

⎟

⎟

⎟

⎠

→ lex−max−min

m+p

∑
i=1

xij = 1, ∀ j ∈ {1, . . . , p},

p

∑
j=1

xij ≦ 1, ∀ i ∈ {1, . . . ,m+ p},

p

∑
j=1

m+p

∑
k=1

ckjxkj +
p

∑
j=2

m+p

∑
i=1

m+p

∑
k=1,k �=i

dikxi,j−1xkj ≦ e,

xij ∈ {0, 1}, ∀ i{1, . . . ,m+ p}, j ∈ {1, . . . , p}.
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We show how the problem (PBG) can be modeled as a new special type of the Prize Collecting
Traveling Salesman Problem, or as a new special type of the Simple Cycle Problem. We
name it max-min lexicographical Traveling Salesman Problem with objective function depending on a
parameter, and we denote it as lex max-min BTSPPF.
To this purpose, let us consider the following complete directed graph G = (V,E), where

V = {0,1, . . . ,m+ p}

and
E = {(i,k) | i ∈ V, k ∈ V, k �= i}.

Let C be the set of all cycles with the following properties:

– contain vertex 0,

– apart from vertex 0, they contain exactly p distinct vertices.

Note that each cycle C ∈ C may be described by a p + 2-dimensional vector (0,u1, . . . ,up,0),
which indicates the order in which the vertices follow one other in the cycle. Since this vector
always contains 0 on the first and on the last position, the useful information is given by the
p-dimensional vector u = (u1, . . . ,up), called descriptor vector or the vector which describes the
cycle C.
For instance, for m = 5, p = 3, the cycle through the vertices 0, 1, 4, 2 and again 0 is described
by the vector u = (1,4,2). Similarly, u = (1,5,4) describes the cycle consisting in the vertices
0, 1, 5 , 4 and returning to 0.

Remark 5.1 The vector u = (u1, . . . ,up) ∈ R
p describes a cycle from C, if and only if the following

two conditions are fulfilled:

i1) uj ∈ {1, . . . ,m+ p}, for all j ∈ {1, . . . , p};

i2) for all k,h ∈ {1, . . . , p}, k �= h, we have uk �= uh.

In the following, we use the function sign : R → {−1,0,1},

signr =

⎧

⎨

⎩

0, if r = 0,
1, if r > 0,
−1, if r < 0.

(22)

Remark 5.2 If u = (u1, . . . ,up) is the descriptor vector of a cycle in C, then the following conditions
hold:

i) For every j∈ {1, . . . , p}, there exists a unique hj ∈ {1, . . . ,m+ p} such that hj = uj and, therefore,
if h ∈ {1, . . . ,m+ p}, we have

(1− sign(|uj − h|)) =

{

1, if h = hj ,

0, if h �= hj .
(23)

ii)
m+p

∑
h=1

(1− sign(|h− uj|)) = 1.

iii) For every i ∈ {1, . . . ,m+ p}, there is at most an index ji ∈ {1, . . . , p} such that i = uji .

.
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Remark 5.3 If X = [xij] ∈ X , then for every j ∈ {1, . . . , p}, the following statements hold:

i) there exists a unique index hj ∈ {1, . . . ,m+ p} such that xhj ,j = 1 and we have xhj = 0, for all

h ∈ {1, . . . ,m+ p} \ {hj};

ii)
m+p

∑
h=1

hxhj = hj .

Theorem 5.4 a) If X = [xij] ∈ X , then the vector u = (u1, . . . ,up), where

uj =
m+p

∑
i=1

ixij, ∀ j ∈ {1, . . . , p}, (24)

is a descriptor of a cycle in C.
b) If the vector u = (u1, . . . ,un) is a descriptor of a cycle in C, then the matrix X = [xij], with

xij = 1 − sign(|i− uj|), ∀ i ∈ {1, . . . ,m+ p}, j ∈ {1, . . . , p}, (25)

verifies the conditions (15) - (17).

Proof. a) If X = [xij] ∈ X , from Remark 5.3, we deduce that, for every j ∈ {1, . . . , p}, there is a
unique hj ∈ {1, . . . ,m+ p} such that

m+p

∑
h=1

hxhj = hj.

Then, in view of (24), we have
uj = hj , ∀ j ∈ {1, . . . , p}. (26)

It follows that uj ∈ {1, . . . ,m+ p}, for all j ∈ {1, . . . , p}.

There may not exist two distinct indices j′, j′′ ∈ {1, . . . , p} such that uj′ = uj′′ . Indeed, if we

have uj′ = uj′′ , then we get that hj′ = hj′′ . Then, as j
′ �= j′′, we have

m+p

∑
h=1

hxhj′ +
m+p

∑
h=1

hxhj′′ = hj′ + hj′′ > 1+ 1.

On the other hand, from (16), we obtain

m+p

∑
h=1

hxhj′ +
m+p

∑
h=1

hxhj′′ ≦ 1+ 1,

that contradicts the previous inequality.
Hence, the numbers uj, j ∈ {1, . . . , p}, are p distinct elements in set {1, . . . ,m+ p}, so the vector
u satisfies the conditions i) and ii) from Remark 5.1. Therefore, the vector u = (u1, . . . ,up) is
the descriptor of a cycle in C.
b) Let us suppose that the vector u= (u1, . . . ,up) is a descriptor of a cycle in C. Let us consider
i ∈ {1, . . . ,m+ p}, j ∈ {1, . . . , p}. Due to the fact that |i− uj|≧ 0, we have

sign(|i− uj|) ∈ {0, 1},
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which implies
xij = 1 − sign(|i− uj|) ∈ {1, 0}.

Hence (17) holds. Based on Remark 5.2, for every j ∈ {1, . . . , p} we have

m+p

∑
i=1

xij = 1,

so (15) takes place.
Let i ∈ {1, . . . ,m + p}. From Remark 5.2, iii), it results that only the following two cases are
possible:

a) There exists ji ∈ {1, . . . , p} such that uji = i and uj �= i, for all j ∈ {1, . . . , p} \ {ji}; in this case
we have

p

∑
j=1

xij =
p

∑
j=1

(1− sign(|i− uj|)) =
p

∑
j=1,j �=ji

(1− 1) + (1− sign(0)) = 1.

b) There is no j ∈ {1, . . . , p} such that uj = i; in this case

p

∑
j=1

xij =
p

∑
j=1

(1− sign(|i− uj|)) =
p

∑
j=1

(1− 1) = 0.

In both cases (17) holds. ⋄

Corollary 5.5 The following statements hold:

i) If X ∈ X̃ is a feasible solution to problem (PBG), then the vector u = (u1, . . . ,up), where uj is
given by (24), for all j ∈ {1, . . . , p}, is the descriptor vector of a cycle in C, cycle which verifies the
condition

p

∑
j=1

cuj ,j +
p

∑
j=2

duj−1,uj
≦ e, (27)

equivalent to
p

∑
j=1

m+p

∑
i=1

cij(1− sign(|uj − i|))+ (28)

p

∑
j=2

m+p

∑
i=1

m+p

∑
k=1,k �=i

dik(1− sign(|uj−1 − i|))(1− sign(|uj − k|)) ≦ e.

ii) If u = (u1, . . . ,up) describes a cycle in C for which condition (27) is verified, then the matrix
X = [xij], where xij is given by (25), is a feasible solution to problem (PBG).

Proof. i) Since X = [xij] is a feasible solution to problem (PBG), the conditions (15)- (17) will
be verified. Hence, based on Theorem 5.4, the vector u = (u1, . . . ,up) describes a cycle in C.
Applying Remark 5.3 we deduce that for every j ∈ {1, . . . , p} there is a unique hj ∈ {1, . . . ,m+
p} such that xhj ,j = 1 and xij = 0, for all i ∈ {1, . . . ,m+ p} \ {hj}. Then

m+p

∑
i=1

cijxij = chj ,j. (29)
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Also, for i,k ∈ {1, . . . ,m+ p} and j ∈ {2, . . . , p}, we have

dikxi,j−1xk,j =

{

dhj−1,hj , if i = hj−1, k = hj
0, if i �= hj−1,or k �= hj .

(30)

From (29) and (30) we get

p

∑
j=1

m+p

∑
k=1

ckjxkj +
p

∑
j=2

m+p

∑
i=1

m+p

∑
k=1,k �=i

dikxi,j−1xkj =
p

∑
j=1

chj ,j +
p−1

∑
j=1

dhj−1,hj .

As X is a feasible solution to (PBG), inequality (18) holds. Therefore, from the previous
equality, we get

p

∑
j=1

chj ,j +
p−1

∑
j=1

dhj−1,hj ≦ e. (31)

Taking into account condition ii) from Remark 5.3, for vector u= (u1, . . . ,up), where uj is given
by (24), we have

uj = hj, for any j ∈ {1, . . . , p}, (32)

which, based on (31), implies that we have

p

∑
j=1

cuj ,j +
p

∑
j=2

duj−1,uj
≦ e,

so (27) holds.
We will prove that (27) is equivalent to (28).
Let us consider j ∈ {1, . . . , p}. From (32), successively, we get

m+p

∑
i=1

cij(1− sign(|uj − i|)) = chj ,j, (33)

and
m+p

∑
i=1

m+p

∑
k=1,k �=i

dik(1− sign(|uj−1 − i|))(1− sign(|uj − k|)) = dhj−1,hj . (34)

From (33) and (34), it results that, if (28) holds, then (27) also holds, and vice-versa. So, (28) is
equivalent to (27).
ii) Let u = (u1, . . . ,un) be a vector which describes a cycle in C and verifies the condition (28).
Consider also the matrix X = [xij], with xij given by (25). From theorem 5.4, we know that
X verifies (15)-(17). We still have to prove that the condition (18) holds. Let us consider
j ∈ {1, . . . , p}. Using (25), we get:

m+p

∑
i=1

cijxij =
m+p

∑
i=1

cij(1− sign(|i− uj|)) = cuj ,j. (35)

Hence
p

∑
j=1

m+p

∑
i=1

cijxij =
p

∑
j=1

cuj ,j. (36)
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Also,

p−1

∑
j=1

m+p

∑
i=1

m+p

∑
k=1

dikxi,j−1xk,j =
p−1

∑
j=1

m+p

∑
i=1

m+p

∑
k=1,k �=i

dik(1− sign(|i− uj|)(1− sign(|i− uj+1|) (37)

=
p−1

∑
j=1

duj ,uj+1
.

From (36)-(37), taking into account (27), it results that (18) holds.⋄
Let us denote by C̃ the set of cycles from C which verify the condition (28), and let U(C) be
the set of vectors which describe the cycle in C. On the setU(C), we define the vector function
F̃ = (F̃1, F̃2), where

F̃1(u) =
p

∑
j=1

guj ,j, ∀ u ∈U(C), (38)

and

F̃2(u) =
p

∑
j=1

auj ,j +
p

∑
j=2

buj−1,uj
,∀ u ∈U(C), (39)

respectively.

Remark 5.6 It is not difficult to prove that:

i) If X = [xij] ∈ X , and u = (u1, . . . ,up) is the vector whose components are defined by (24) for all
j ∈ {1, . . . , p}, then

F1(X) = F̃1(u); (40)

ii) If u = (u1, . . . ,up) ∈ U(C), then, for the matrix X = [xij] whose components are defined by (25),
we have

F̃2(u) = F2(X). (41)

We say that a cycle C0 ∈ C̃ is lexicographical max-min non dominate with respect to the set C̃ if there
is no cycle C ∈ C̃ such that:

F̃1(C)> F̃1(C
0), or F̃1(C) = F̃1(C

0) and F̃2(C)< F̃2(C
0).

The problem of finding a lexicographically max-min non dominated cycle with respect to set
C̃ will be denoted as (PG). We describe this problem as:

(PG)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

⎛

⎜

⎝

∑
p
j=1 guj ,j
p

∑
j=1

auj ,j +
p

∑
j=2

buj−1,uj

⎞

⎟

⎠
→ lex−max−min

p

∑
j=1

cuj ,j +
p

∑
j=2

duj−1,uj
≦ e,

u = (u1, . . . ,up) ∈U(C).

(42)

By optimal solution for (PG)we understand each lexicographicalmax-min non dominated cycle
with respect to set C̃.
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Corollary 5.7 The following statements hold:
i) If X is an optimal solution to problem (PBG), meaning that it is lex-max-min with respect to set
X , then the vector u = (u1, . . . ,up), where uj is given by (24), for all j ∈ {1, . . . , p}, describes a cycle

which is lexicographical max-min with respect to set C̃.
ii) If the vector u = (u1, . . . ,up) describes a cycle which is lexicographical max-min with respect to the

set C̃, then the matrix X = [xij], where xij are given by (25), is an optimal solution to problem (PB),

which means that it is a lexicographical max-min point according with set X̃.

Proof. Let X = [xij] be a point that is lexicographical max-min non dominated with respect

to the set X̃. Based on Consequence 5.5, the vector u = (u1, . . . ,un) is a feasible solution to
problem (PG). Let us suppose that u is not a lexicographically max-min cycle with respect to
the set C̃ . Two cases are possible:
Case I. There exists C∗ ∈ C̃ such that

F̃1(u) < F̃1(v), (43)

where v denotes the vector which describes the circuit C∗. Based on Consequence 5.5, the
matrix Y = [yij], where yij are given by

yij = 1 − sign(|i− vj|), ∀ i, j ∈ {1, . . . ,n} (44)

is a feasible solution to problem (PBG). Based on Remark 5.6, we have F1(Y) = F̃1(v) and
F2(Y) = F̃2(v). Now, by taking into account (43), we get F1(Y) > F1(X), which contradicts
the hypothesis that X is an optimal solution to problem (PBG), which means that it is
lexicographical max-min non dominated with respect to the set of feasible solutions to the
problem. Since this is a contradiction, we deduce that there cannot exist a cycle C∗ ∈ C such
that (43) holds.
Case II. There exists C∗ ∈ C̃ such that

F̃1(u) = F̃1(v), but F̃2(u) > F̃2(v), (45)

where v is the descriptor vector of the cycle C∗. As in the previous case, we consider the matrix
Y = [yij] whose components are given by (44), matrix which is a feasible solution to problem

(PBG). Based on Remark 5.6, we get that F1(X) = F̃1(u), F̃2(u) = F2(X) and F1(Y) = F̃1(v),
F̃2(v) = F2(Y). Therefore, by taking into account (45), the following relations hold:

F1(X) = F1(Y) and F2(X) > F2(Y),

which contradicts the hypothesis that X is a lexicographical max-min point with respect to the
set of feasible solutions to problem (PBG). Similarly, ii) may be proved. ⋄
From Theorem 5.4 and Consequences 5.5, 5.7, it results that solving the problem (PG) may be
reduced to solving problem (PBG) and vice-versa. Therefore, the Registrar Problem consists
in finding a cycle, C0, which is lexicographical max-min non dominated with respect to the
set C̃.

6. The problem (PG) from general point of view

The (PG) problem can be seen, in terms of the Traveling Salesman Problem, as follows: a
traveling salesman must take a tour through exactly p towns, at his choice among the m+ p
given towns, and stays exactly one day in each town. The costs bik of going from town i to

314 Traveling Salesman Problem, Theory and Applications

www.intechopen.com



Some Special Traveling Salesman Problems with Applications in Health Economics 17

town k are also given, for all towns i and k, i �= k. For each town i that is visited, the salesman
gets a bonus gij that depends not only on the location i, but also on the day j he gets to that
location. Also, for each visited location i, in days j, he pays aij for accommodation. The
problem is that of finding a cycle so that the total bonus is maximized and the total costs
(transport costs plus accommodation costs) are minimized. A boundary condition (18) must
also be satisfied.
For this reason, the problem (PG) can be seen as a generalization of the following
problems: Prize Collecting Traveling Salesman Problem, Simple Cycle Problem, Capacitated
Prize-Collecting Traveling Salesman Problem or Orienteering Problem. Note that all these
variants of the Traveling Salesman Problem allow that the cycle not to visit all the vertices of
the graph.
The Prize Collecting Traveling Salesman Problem was posed in 1986 by E. Balas. A synthesis of
the results on this topic and of the solving methods for this problem can be found in (Balas,
2002). In accordance with this paper, in the Prize Collecting Traveling Salesman Problem: a
salesman gets a prize wk in every city k that he visits and pays a penalty cl to every city l that he fails
to visit. Traveling at cost cij between cities i and j our salesman wants to find a tour that minimizes his
travel costs and penalties, subject to a lower bound w0 on the amount of prize money he collects.
In Simple Cycle Problem (see (Fischetti et al, 2002)), a complete undirected graph G = (V,E) is
given. A cost ce is associated to each edge e∈ E and a prize pn is associated to each node n∈V.
The cost of a cycle C is given by the difference between the sum of all costs corresponding to
the edges of this cycle and the sum of all prizes corresponding to the nodes of this cycle. The
problem is to find a min-cost cycle of at least 3 vertices. A further requirement may be that a
given vertex be part of the cycle.
Capacitated Prize-Collecting Traveling Salesman Problem is derived from simple cycle problem.
For this problem, to each node it is assigned a weight and there is a further restriction that the
sum of weights of visited vertices not to exceed a given maximum value.
In the case of the Orienteering Problem or Selective Traveling Salesman Problem, the transport
costs assigned to all edges are zero, that is, ce = 0, for all e ∈ E. In exchange, to each edge e ∈ E
it is assigned a positive value, a duration te, and it is required that the sum of durations for all
visited edges not to exceed a given value.
All these problems can be seen as some variants or generalization of the Traveling Salesman
Problem. Practically (see (Balas, 2002)) each situation involving decisions that affect the
sequence in which various actions, tasks or operations are to be executed, has a traveling
salesman problem aspect to it. We remember that in accordance with (Punnen, 2002) the
Traveling Salesman Problem (TSP) is to find a routing of a salesman who starts from a home
location, visits a prescribed set of cities and returns to the original location in such a way that
the total distance traveled is minimum and each city is visited exactly once.
The differences between the above four TSP variants and the (PG) problem are:

– the fact that the exact number of cycle vertices is fixed,

– the bonus depends not only on the visited vertex, but also on the visiting time, that is, on
the position of the vertex along the cycle;

– the goal is expressed by a vector, with two components (bonus and cost).

The authors of this work do not have knowledge of a paper discussing a TSP variant, where
the bonus depends on the visiting time or where the exact number of vertices to be used is
given (except, obviously, the case where all vertices are to be visited). These are new original
topics, discussed in this work.
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The subject of multi-criteria Traveling Salesman Problem, in a general context, is treated, for
example, by (Ehrgott, 2005). To transfer the concept of optimal solutions to multi-criteria
problems, the notion of Pareto curves was introduced
A Pareto curve is the set of Pareto points or, equivalent, efficient points.
Let D ⊆ R

n be a nonempty set, f = ( f1, ..., fp) : D → R
p a vectorial function, and S ⊆ D. A

point x ∈ S is said to be a max-efficient point of f with respect to S or a max-Pareto point of f
with respect to S if there is no y ∈ S such that

fi(x)≦ fi(y), ∀i ∈ {1, ..., p} and
p

∑
i=1

fi(x) <
p

∑
i=1

fi(y),

or, equivalent,

fi(x)≦ fi(y), ∀i ∈ {1, ..., p} and there is h ∈ {1, ..., p} such that fh(x) < fh(y).

Unfortunately, Pareto curves cannot be computed efficiently in many cases because they
are often of exponential size and NP-hard to compute even for otherwise easy optimization
problems. Therefore, sometimes, one prefers to choose a point on this curve, point subject to
some additional restriction which derives from the scalar components of the scope function.
This point is, often, a maximum point of the weighted sum of these scalar components. In
other cases, it is chosen to be a non-dominant point into a lexicographical ordering relation.
This is exactly the situation presented in this paper.
There exist, also, papers which present possibilities to approximate the Pareto curve (see, for
example (Warburton, 1987), (Angel et al., 2004) or (Manthey, 2009)).
The globally convex structure of Pareto curves in studied for example in (Borges & Hansen,
2001) and (Villagra et al., 2006).
We mention that, in (Feillet et al., 2005), the authors show that if, in the TSP, we consider
that we have two objective functions, the profit and the cost, we obtain a bi-criteria TSP.
According to the results of multi-criteria optimization, for solving bi-criteria TSP three cases
are considered by the authors:
- Both objectives are combined in the objective function and the aim is to find a circuit that
minimizes travel costs minus collected profit, i.e. the bi-criteria Traveling Salesman Problem
may be seen as a prize collecting traveling salesman problem;
- The travel costs objective is stated as a constraint and the aim is to find a circuit that
maximizes collected profit such that travel costs do not exceed a preset value, i.e. the bi-criteria
Traveling Salesman Problem may be seen as a orienteering problem;
- The profit objective is stated as a constraint and the aim is to find a circuit that minimizes
travel costs and whose collected profit is not smaller than a preset value, i.e. the bi-criteria
Traveling Salesman Problemmay be seen as a capacitated prize-collecting Traveling Salesman
Problem.
However, the above transformations cannot be applied to our problem because the profit
and the costs depending, in addition, on the time. Based on these considerations we
choose to work with the lexicographic ordering. We remind that the idea to use the
lexicographic ordering in a Traveling Salesman Problemwas used in (Lupsa et al, 2008), where
an application in health economics is also given.
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7. Algorithms for solving problem (PG)

It is known that, for solving a route choice problem, techniques of branch and bound type are
often used. Based on this technique, in the following, three algorithms are given for solving
problem (PG): a greedy algorithm, a parallel approach algorithm and an exact algorithm.

7.1 A greedy algorithm

The algorithm 0.1 constructs a cycle, in a graph, with p + 1 distinct vertices (vertex 0 plus
other p) which satisfies the boundary condition (18). The algorithms signals the case where
it is impossible to construct such a cycle. For its construction, one always goes to the branch
where the growth of the first component, F̃1, of the goal function, is the highest. If there are
several possibilities of getting the same growth, then it favors that whose second component,
F̃2, is the lowest. In the algorithm, the p-dimensional vector u is used. If C̃ �= ∅, it becomes the
descriptor vector of the optimal solution of problem (PG). Also, the following sets are used:
- Vj, that contains, at every iteration j, the candidate vertices to generate the cycle;
- V∗

j , that, at every iteration j, contains those vertices from Vj , whose corresponding

coefficients from component F̃1 of the scope function are maximum;
If the set V∗

j has more than one element, that vertex in the circuit will be chosen, for which

we obtain a minimal increase in the value of F̃2, the second component of the scope function.
This can be fulfilled by using the real number r. The cost of the current circuit is stored in
rj. If when building a circuit we determine that the restriction on costs is not satisfied, the
last added arc is abandoned, the output vertex being temporarily removed from the set of
candidates.

Algorithm 0.1 The Greedy Algorithm.
input: the natural numbers m and p;

the elements of matrices: G = [gij], i ∈ {0,1, . . . ,m+ p}, j ∈ {1, . . . , p};
A= [aij], i ∈ {0,1, . . . ,m+ p}, j ∈ {1, . . . , p};
B = [bik], i ∈ {0,1, . . . ,m+ p}, k ∈ {0,1, . . . ,m+ p};
C = [cij], i ∈ {0,1, . . . ,m+ p}, j ∈ {1, . . . , p};
D = [dik], i ∈ {0,1, . . . ,m+ p}, k ∈ {0,1, . . . ,m+ p};

output: ok — true if a solution exists
u — the solution

algorithm:

uk := 0, ∀k ∈ {0,1, . . . , p};
r0 := 0;
finish := false;
j := 1;
while not finish do

Vj :=

{

x ∈ {1, . . . ,m+ p} \ {u1, . . . ,uj−1}

∣

∣

∣

∣

rj−1 + cx,j + duj−1,x ≦ e

}

;

if Vj �= ∅ then

g∗ :=max{gx,j | x ∈ Vj};
V∗
j := {x ∈ Vj | gx,j = g∗};

r∗ :=min{ax,j + buj−1,x | x ∈ V∗
j };

R∗ := {x ∈ V∗
j | ax,j + buj−1,x = r∗};

choose x ∈ R∗;
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uj := x;
rj := rj−1 + cx,j + duj−1,x;
j := j+ 1;
if j > p then

ok := true
finish := true

end if

else

if j = 1 then
ok := false
finish := true

end if

Vj := Vj\{uj−1};
j := j− 1;

end if

end while

end algorithm

It is possible to make a small change of this algorithm by introducing that vertex which
minimizes the ratio between the growth of function F̃1 and the growth of function F̃2 relatively
to the set of vertex that do not close the cycle; we mention, also, that the introduction of this
vertex does not exceed the cost limit.

7.2 Parallel approach for the registrar route problem

The algorithm previously presented is a serial one, which means that it is perform with one
processing unit, and depends on the number of hospitals that the registrar has to browse. A
more general situation is when the graph is not complete, it means that the registrar may
not move to each hospital, but only to some of them, let us say n. If this number is big
enough, the serial execution will take a lot of time. In order to speed up and get faster the
result, a parallel approach is more convenient. As in (Feilmeier, 1982) applications for high
performance computing are given. If we use more than one processing unit, we may obtain
the desired result approximately n times faster. We know that the registrar starts from node 0
and has to browse n different locations, being constrained by the restrictions of possible total
cost.
The parallel algorithm is of ”master-slave” type and has the following steps:

1. According to the graph of problem (PG), the algorithm generates the adjacent matrix,
denoted by E = [eik], where eik = 1,if in graph G there is an edge from i to k, and eik = 0 if
not, for every i,k ∈ {0, . . . ,m+ p}.

2. In the systemwork as many processors, as many figures 1 appear on the first row of matrix
A. For instance, if five figures 1 appear on the first row, then five processors will work.
Obviously, the maximum number of processors is n. Every processor will store a copy of
the matrix E.

3. According with the adjacent matrix, every processor builds its own circuit and verifies the
restrictions. If they are fulfilled, the processor memorizes the circuit and sends a message
to the processor master. If one processor finds that there exist more than one admissible
circuit, it gives a signal to the master processor, which will allocate another processor in
charge with the new circuit.
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4. Finally, the processor master will decide which circuit is optimal for problem (PG).

Generally, the parallel machine on which the following algorithm may be implemented
is of SIMD type (Single Instruction stream, Multiple Data stream). Due to this fact, no
communication among Slave processors is needed. They communicate only with the
processor Master. Any type of network may be defined on the parallel machine (for the
parallel calculus see, for example (Chiorean, 2000)). When the parallel network is defined
by the program, every processor gets an identification number. The ProcessorMaster receives
0, and all the other processors in the system receive numbers starting with 1.

Algorithm 0.2 ParPg
algorithm:

Define Network {determine the configuration of processors, get their Id’s}
if id= 0 then

Generate Adjacent Matrix(G,E);{input graph, output matrix E}
Determine Number of Slaves (E,n);{n, equal to values of 1 that there are on the

first row}
Send Message to Slaves(E){send matrix E in every processor Slave}

else

for i = 1 to n in parallel do
Get Message from Master(E);
{copy matrix E fromMaster};
Verify Number of Cycles (E, nr);
if nr≧ 1 then

for j = 1 to nr do
Verify Restrictions on the Cycle(E, j, f inalvalues);
{every processor will work on the ”nr” of cycles};
{in ” f inalvalue”memorizes the values of variables for
the objective function};
Memorize Cycle ( f inalvalues,j,u);
{the corresponding circuit is kept in vector u};
Send Message to Master(j,u);

end for

end if

end for

end if

if id= 0 then
Get Message from Slaves(u){Master collects all the possible cycles}

end if

Determine Optimum cycles( f inalu){Compares cycles and determines the optimum
one, denoted ” f inalu”}
Print( f inalu)

end algorithm

Working this way, with more than one processor, the result is obtained n times faster, where n
is the number of processors in the system.
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7.3 An exact algorithm of the Little type

For solving the problem (PG), we built an exact but not polynomial algorithm, based on the
branch and bound method as in (Little et al, 1963). For its construction, one always goes to
the branch where the growth of the first component, F̃1, of the goal function, is the highest.
If there are several possibilities of getting the same growth, then it favors that whose second
component, F̃2, is the lowest. The bound is made by using two real improper numbers, b f
and bc. These numbers are defined iteratively. In the beginning, b f := 0 and bc := +∞. If we
have at least a cycle, in the graph attached to our problem, then the value of the pair (b f ,bc)
is equal to the lexicographical max-min of the set of all such pair attached to the cycles which
we have been obtain until this moment.
A finite sequence (kh, Ih, Jh, G

h, fh, γh, δh , w
h)Nh=1, where N ≦ (m+ p) . . . (p+ 1), is built.

– kh is a binary variable: it has the value 1 if the term h was not studied yet and the value 0
otherwise.

– Gh, is the work matrix in the h-th iteration.

– uh ∈ IRp will be used for building the descriptor of a cycle.

– the numbers fh and γh are equal to F̃1(u
h), F̃2(u

h), respectively, and there are computed
iteratively.

– δh is equal to the value of right hand side term of bounded equation corresponding to uh; it
is also iteratively computed.

– The vector wk is used to inhibit branching; its components are iteratively computed.

Algorithm 0.3 An Exact Algorithm
input: the natural numbers m and p;

the elements of matrices: G = [gij], i ∈ {0,1, . . . ,m+ p}, j ∈ {1, . . . , p};
A= [aij], i ∈ {0,1, . . . ,m+ p}, j ∈ {1, . . . , p};
B = [bik], i ∈ {0,1, . . . ,m+ p}, k ∈ {0,1, . . . ,m+ p};
C = [cij], i ∈ {0,1, . . . ,m+ p}, j ∈ {1, . . . , p};
D = [dik], i ∈ {0,1, . . . ,m+ p}, k ∈ {0,1, . . . ,m+ p};

output:

algorithm:

I1 := {0,1, . . . ,m+ p};
J1 := {1, . . . , p};
t1 := 1;
n1 := 0;
u1 := (u0,u1, . . . ,un) = (0, . . . ,0);
u∗ := (0, . . . ,0) ∈ R

p+1;
f1 := 0;
γ1 := 0;
δ1 := 0;
b f := 0;
bc :=+∞;
∀i ∈ I1, ∀j ∈ J1, g

1
ij := gij;

∀j ∈ J1, w
1
j :=max{g1ij | i ∈ I1};

h := 1;
K :=

{

k ∈ {1, . . . ,h}
∣

∣tk = 1
}

;
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while K �= ∅ do

s := (maxmaxmin)lex {(nk, fk,γk) | k ∈ K};
choose k ∈ K such that (nk, fk,γk) = s;
j := nk + 1;
I∗ := {i ∈ Ik | δk + cij + duk

j−1,i
> e};

if Ik \ I∗ = ∅ then

tk := 0;
else

∀i ∈ I∗, gkij :=−∞;

wk
j :=max{gij | i ∈ Ik \ I∗};

if fk + ∑
α∈Jk

wk
α < bf then

tk := 0;
else

M := {i ∈ Ik \ I∗ | gij = wk
j };

v :=max{aij + buj−1,i | i ∈ M};

V := {i ∈ M | aij + buj−1,i = v};

choose ukj ∈ V;

if (Ik \ (I
∗ ∪ {ukj }) �= ∅) and

fk +
p

∑
α=1α>j

wk
α +max{gij | i ∈ Ik \ (I

∗ ∪ {ukj })}≧ bf

then

h := h+ 1;
th := 1;
nh := nk;
uh := uk;
uh0 := 0;
fh := fk;
γh := γk;
δh := δk;
Ih := Ik \ I∗;
Jh := Jk;
∀i ∈ I, ∀j ∈ J, ghrs := gkrs;
ghuj ,j

:= −∞;

∀r ∈ J \ {j}, wh
r := wk

r ;
wh
j :=max{ghij | i ∈ Ik};

end if

fk := fk + gk
uk
j ,j
;

γk := γk + auk
j ,j
+ buk

j−1,u
k
j
;

δk := δk + cuk
j ,j
+ duk

j−1,u
k
j
;

if j = p then
if fk ≧ bf then

bf := fk;
bc := γk;
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u∗ := (uk1, . . . ,u
k
p);

end if

else

h := h+ 1;
th := 1;
nh := nk + 1;
uh := uk + ukj e

j;

fh := fk;
γh := γk;
δh := δk;
Ih := Ik \ {u

k
j };

Jh := Jk \ {j};
∀i ∈ I, ∀j ∈ J, ghrs := gkrs;
∀r ∈ I, ghrj :=−∞;

∀s ∈ J, ghuj ,s := −∞;

∀r ∈ J \ {j}, wh
r := wk

r ;
wh
j := gh

uk
j ,j
;

tk := 0;
end if

end if

end if

K :=
{

k ∈ {1, . . . ,h}
∣

∣tk = 1
}

;
end while

if bf=0 then
output: the problem (PBG) is inconsistent;

else

output: u∗ is an optimal solution of (PBG);
end if

end algorithm

The algorithm 0.3 is very easy to implement and it has been used on a number of test cases for
determining the optimal route of the registrar. The output result is optimal.
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Hammer (Ivănescu), P.L. & Rudeanu, S. (1968). Boolean Methods in Operations Research and
Related Areas, Springer, ISBN 0387042911, Berlin

Kang, M. & Lagakos, St. W. (2007). Statistical methods for panel data from a semi-Markov
process, with application to HPV, Biostatistics, Vol. 8, no. 2, 252-264, ISSN 1465-4644

Little, J.D.C.; Murty, K.G.; Sweeney & D.W.; Karel, K. (1963). An algorithm for the traveling
salesman problem. Operation Research, Vol. 11, No. 6, November-December 1963,
972-989, ISSN 0160-5682

Lupşa, L. (1999) A Criterion for Caracterizing a Medical Treatment that Uses Multicriteria
Programming in Pharmacoeconomics. In Analysis, Functional Equations,
Approximation and Convexity. Editura Carpatica, 142-146, ISBN 979-97664-9-8,
Cluj-Napoca
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