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Spain 

1. Introduction     

Faced with a scientific force and a critical need to solve large-scale and/or time-constrained 
problems, the industry reports that access to high-performance computing (HPC) capability 
is required now more than ever. Continued hardware and software advances, such as more 
powerful and lower-cost processors, have made it easier for scientists and engineers to 
install and use clusters / multi-cores and complete high-performance computing jobs.  
In particular, the Traveling Salesman Problem (TSP) is one of the most famous problems 
(and the best one perhaps studied) in the field of the combinatorial optimization. In spite of 
the apparent simplicity of their formulation, the TSP is a complex solving problem and the 
complexity of its solution has been a continue challenge to the mathematicians for centuries. 
Not only the study of this problem has attracted people from mathematics but also many 
researchers of other fields like operations research, physics, biology, or artificial intelligence, 
and accordingly there is a vast amount of literature on it. On the other hand, not yet an 
effective polynomial-time algorithm is known for the general case. Many aspects of the 
problem still need to be considered and questions are still left to be answered satisfactorily. 
A significant challenge is being able to predict TSP performance order. It is important to 
bear in mind, that the TSP conclusions drawn could eventually be applied to any TSP family 
problem. There are important cases of practical problems that can be formulated as TSP 
problems and many other problems are generalizations of this problem. Therefore, there is a 
tremendous need for predicting the performance order of TSP algorithms. 
Measuring the execution time (performance) of a TSP parallel algorithm for all possible 
input values would allow answering any question about how the algorithm will respond 
under any set of conditions. Unfortunately, it is impossible to make all of these 
measurements. TSP performance depends on the number of cores used, the data size, as 
well as other parameters. Detecting the main other parameters that affect performance order 
is the real clue to obtain a good estimation. The issue of measuring performance for the TSP 
problem in practice and how to relate practical results to the theoretical analysis is 
addressed in this chapter as a knowledge discovery methodology.  
The defined methodology for performance modelling begins by generating a representative 
sample of the full population of TSP instances and measuring their execution times. An 
interactive and iterative process explores data in search of patterns and/or relationships 
detecting the main parameters that affect performance. Knowing the main parameters 
which characterise time complexity, it becomes possible to suspect new hypotheses to 
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restart the process and to produce a subsequent improved time complexity model. Finally, 
the methodology predicts the performance order for new data sets on a particular parallel 
computer by replacing a numerical identification. The methodology arises out of the need to 
give an answer to a great number of problems that are normally set aside. Besides, this is a 
good starting point for understanding some facts related with the non-deterministic 
algorithms, particularly the data-dependents algorithms. Any minimum contribution in this 
sense represents a great advance due to the lack of general knowledge.  
An Euclidean TSP implementation, called global pruning algorithm (GP-TSP), to obtain the 
exact TSP solution in a parallel machine has been developed and studied. It is used to analyze 
the influence of indeterminism in performance prediction, and also to show the usefulness of 
the methodology. It is a branch-and-bound algorithm which recursively searches all possible 
paths and prunes large parts of the search space by maintaining a global variable containing the 
length of the shortest path found so far. If the length of a partial path is bigger than the current 
minimal length, this path is not expanded further and a part of the search space is pruned. The 
GP-TSP execution time depends on the number of processors (P), the number of cities (C), and 
other parameters. As a result of our investigation, right now the sum of the distances from one 
city to the other cities (SD) and the mean deviation of SDs values (MDSD) are the numerical 
parameters characterizing the different input data beyond the number of cities. 
Comparisons of experimental results with predictions have been quite promising. Therefore, 
the efficacy of the methodology proposed has been demonstrated. In addition to the 
prediction capability, an interesting and practical issue from this research has been 
discovered: how to select the best starting city. With this important and non-trivial selection, 
the time spent on evaluation has been dramatically reduced. 
This chapter is organized as follows. The next section describes the Traveling Salesman 
Problem, their computational complexity and their applications in several fields. Besides, it 
provides detailed coverage of the GP-TSP parallel algorithm. Section 3 presents the 
knowledge discovery methodology to the problem of predicting the TSP performance. 
Section 4 focuses on the discovering process carried out to find the significant input 
parameters and building the GP-TSP prediction model. In addition, two outstanding 
experiments have been studied. Section 5 summarizes and draws the main conclusions of 
this chapter. Appendix A shows the specification of the parallel machine used along the 
experimentation stage. Appendix B shows the characteristics of a clustering tool used to 
discover internal data information. 

2. Traveling Salesman Problem 

The Traveling Salesman Problem (TSP) is one of the most famous problems (and the best 
one perhaps studied) in the field of combinatorial optimization. In spite of the apparent 
simplicity of its formulation, the TSP is a complex data-dependent problem. Not only the 
complexity of its solution has been a continue challenge to the researchers of several fields 
but also the prediction of its performance. Predicting TSP performance is vital due to there 
are many practical problems that can be formulated as TSP problems and others problems 
are generalizations of this problem. 

2.1 Problem statement 

The TSP for C cities is the problem of finding a tour visiting all the cities exactly once and 
returning to the starting city such that the sum of the distances between consecutive cities is 
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minimized (TSP page, 2010). The requirement of returning to the starting city does not 
change the computational complexity of the problem.  

2.2 Computational complexity 

The TSP has been shown to be NP-hard (Karp, 1972). More precisely, it is complete for the 

complexity class (FPNP)1, and the decision problem version is NP-complete. If an efficient 

algorithm is found for the TSP problem, then efficient algorithms could be found for all 

other problems in the NP-complete class. Although it has been shown that, theoretically, the 

Euclidean TSP is equally hard with respect to the general TSP (Garey et al., 1976), it is 

known that there exists a sub exponential time algorithm for it. 

The most direct solution for a TSP problem would be to calculate the number of different 

tours through C cities. Given a starting city, it has C-1 choices for the second city, C-2 choices 

for the third city, etc. Multiplying these together it gets (C-1)! for one city and C! for the C 

cities. Another solution is to try all the permutations (ordered combinations) and see which 

one is cheapest. At the end, the order is also factorial of the number of cities. Briefly, the 

solutions which appear in the literature are quite similar. 

The factorial algorithm's complexity motivated the research in two attack lines: exact 

algorithms or heuristics algorithms. The exact algorithms search for an optimal solution 

through the use of branch-and-bound, linear programming or branch-and-bound plus cut 

based on linear programming (Karp, 1972) techniques. Heuristics solutions are 

approximation algorithms that reach an approximate solution (close to the optimal) in a 

time fraction of the exact algorithm. TPS heuristics algorithms might be based on genetic 

and evolutionary algorithms (Tsai et al., 2002), simulated annealing (Pepper et al., 2002), 

Tabu search, neural networks (Aras et al., 2003), ant systems, among others. 

2.3 Practical problems 

The TSP often comes up as a subproblem in more complex combinatorial problems. The best 

known and important one of which is the vehicle routing problem, that is, the problem of 

determining for a fleet of vehicles which customers should be served by each vehicle and in 

what order each vehicle should visit the customers assigned to it (Christofides, 1985).  

Another similar example is the problem of arranging school bus routes to pick up the 

children in a school district. The TSP naturally arises in many transportation and logistics 

applications (TSP page, 2010). 

Besides problems having the TSP structure occur in the analysis of the structure of crystals 

(Bland & Shallcross, 1989), in material handling in a warehouse (Ratliff & Rosenthal, 1983), 

in genome rearrangement (Sankoff & Blanchette, 1997), in phylogenetic tree construction 

(Korostensky & Gonnet, 2000), and predicting protein functions (Johnson & Liu, 2006), 

among others. Important practical computer science problems including the TSP structure 

appear in clustering of data arrays (Lenstra & Kan, 1975), in sequencing of jobs on a single 

machine (Gilmore & Gomory, 1964), in physical mapping problems (Alizadeh et al., 1993), 

in drilling of printed circuits boards (Duman, 2004). 

                                                 

1 The class NP is the set of decision problems that can be solved by a non-deterministic Turing machine 

in polynomial time. FP means function problems. 

www.intechopen.com



 Traveling Salesman Problem, Theory and Applications 

 

240 

2.4 Related problems 

An equivalent formulation in terms of graph theory can be described. Given a complete 
weighted graph find a Hamiltonian cycle with the least weight. The vertices would 
represent the cities, the edges would represent the roads, and the weights would be the cost 
or distance of that road (Gutin & Punnen, 2006). 
Another related problem consists of finding a Hamiltonian cycle in a weighted graph with 
the minimal length of the longest edge. This problem, known as the bottleneck traveling 
salesman problem, is really useful in transportation and logistics areas. 
Related variations on the TSP include the resource constrained traveling salesman problem 
which has applications in scheduling with an aggregate deadline (Miller & Pekny, 1991). 
The prize collecting TSP (Balas, 1989) and the orienteering problem (Golden et al., 1987) are 
special cases of the resource constrained TSP. The problem of finding a tour of maximum 
length is the objective in MAX TSP (Barvinok et al., 2003). The maximum scatter TSP is the 
problem of computing a path on a set of points in order to maximize the minimum edge 
length in the path. It is motivated by applications in manufacturing and medical imaging 
(Arkin et al., 1996).  

2.5 GP-TSP parallel algorithm 

As a representative of the practical problems, a global pruning TSP algorithm (called GP-

TSP), has been deeply studied. It obtains the exact TSP Euclidean solution in a parallel 

machine. For simplicity, the algorithm works with cities in R2 instead of R3 and uses the 

Euclidean distance due to it is the most straightforward way of computing distances 

between cities in a two-dimensional space. Nevertheless, the choice of the distance measure 

used (Euclidean, Manhattan, Chebychev, …) is irrelevant. More over, it would be the same 

to work with an equivalent formulation in terms of graph theory. Therefore, the ideas of this 

article can be generalized. 

The GP-TSP algorithm is indeed both useful and profitable to analyze the influence of 

indeterminism in performance prediction. It is a branch-and-bound algorithm which 

recursively search all possible paths. It follows the Master-Worker programming paradigm 

(Fritzsche, 2007). Each city is represented by two coordinates in the Euclidean plane. 

Considering C different cities, the Master defines a certain level L to divide the tasks. Tasks 

are the possible permutations of C-1 cities in L elements. The granularity G of a task is the 

number of cities that defines the task sub-tree, this is G = C - L. At the execution start-up the 

Master sends the cities coordinates to every Worker. 

A diagram of the possible permutations for five cities (Vienna, Graz, Linz, Barcelona, 

Madrid), considering the salesman starts and ends his trip at Vienna, can be seen in Figure 

1. The Master can divide this problem into 1 task of level 0 or 4 tasks of level 1 or 12 tasks of 

level 2 for example. The tasks of the first level would be represented by the cities Vienna and 

Graz for the first task, Vienna and Linz for the second, followed by Vienna and Barcelona, 

and Vienna and Madrid. The requirement of returning to the starting city is without 

detracting from the generality. In this closed cycle the salesman may begin and end in the 

city who wants. 

Knowing the latitude and longitude of two cities on the Earth, it is possible to determine the 

distance between them in kilometres. The table 1 lists the latitude and longitude of the five 

cities mentioned previously. Figure 2(a) shows a strictly lower triangular distance matrix 

where each box contains the Euclidean distance in kilometres between two cities. 
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Fig. 1. Possible paths for the salesman considering five cities: Vienna, Graz, Linz, Barcelona, 
Madrid 
 

 Latitude Longitude

Barcelona 40° 26' north 3° 42' west

Graz 48° 13' north 16° 22' east

Linz 47° 05' north 15° 22' east

Madrid 48° 19' north 14° 18' east

Vienna 41° 18' north 2° 06' east 

Table 1. Latitude and longitude of the five cities 

Workers are responsible for calculating the distance of the permutations left in the task and 
sending to the Master the best path and distance of these permutations. One of the 
characteristics of the TSP is that once the distance for a path is superior to the already 
computed minimum distance it is possible to prune this path tree.  
Figure 2(b) and Figure 2(c) exhibit the pruning processes for the GP-TSP algorithm where 

each arrow has the distance between the two cities it connects. Analyzing Figure 2(b), the 

total distance for the first followed path (in the left) is of 3845 km. The distance between 

Vienna and Barcelona on the second path (in the right) is already of 4737 km. It is then not 

necessary for the algorithm to keep calculating distances from the city Barcelona on because 

it is impossible to reach a better distance for this branch. Analyzing the other example, the 

total distance for the first followed path (in the left of Figure 2(c)) is of 3845 km. Then, the 

distance between Linz and Barcelona on the second path (in the right of Figure 2(c)) is 

already of 4839 km. Therefore, it is not necessary for the algorithm to keep calculating 

distances from the city Barcelona on. 

3. TSP knowledge discovery methodology 

The scientific experimental knowledge discovery methodology presented here is a first 
attempt to estimate the performance order of a TSP parallel algorithm. As well as the 
process of knowledge discovery is certainly not new, it is typical of the experimental  
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Fig. 2. (a) Matrix of Euclidean distances between cities (in km), (b)-(c) Two pruning 
processes in the GP-TSP algorithm 

sciences. An experimental science is based on observation of performing repeated controlled 
experiments. Before computers were used to automate this process, people involved in 
math, physics or statistics were using probability techniques to model historical data.  
The methodology consists of three main phases. First, the design and composition of 
experiments to define and improve the TSP asymptotic time complexity. Next, the 
validation of the built model. Finally, the definition of the TSP asymptotic time complexity. 

3.1 Design and composition of experiments to define and improve the asymptotic 
time complexity 

Foremost it is important understanding the application domain and the relevant prior 
knowledge, and analyzing their behavior step by step, in a deep way. It is a try-and-error 
method that requires specialists to manually or automatically identify the relevant 
parameters that can affect the execution time of the algorithm studied. Discovering the 
proper set of parameters is the basis to obtain a good capacity of prediction.  
Designing a well-built experiment involves articulating a goal, choosing an output that 
characterizes an aspect of that goal and specifying the data that will be used in the study 
taking into account the worked hypotheses at that time. The experiments must provide a 
representative sample (a good training data set) first to measure the quality of the model / 
hypotheses and then to fit the model. After the necessary training data have been defined 
the TSP parallel algorithm studied must process each experiment obtaining a tour visiting 
and the execution time invested as output. 
The term knowledge discovery in databases (KDD) refers to the process of analyzing data 
from different perspectives and summarizing it into useful information. Technically, KDD is 
the process of finding correlations or patterns among dozens of fields in large relational 
databases. A KDD process, a bold closed curve in Figure 3, involves data preparation, 
defining a study, reading the data and building a model, understanding the model, and 
finally predicting. It is an interactive and iterative process, surrounding numerous steps 
with many decisions that the end-user carries out (Groth, 1998). 

www.intechopen.com



Predicting Parallel TSP Performance: A Computational Approach   

 

243 

Executing TSP 
parallel algorithm KDD process

Space of 
possible 

hypotheses

Training 
data

Experiments

preprocessing

preprocessed
data

transformation

source
data

executing
data mining 
algorithm

transformed
data

patterns / 
correlations

understanding 
the patterns

Training 
data

Experiments + 
execution times Knowledge

(model)

data
cleaning

TSP asymptotic 
time complexity (O)predicting

s

xe
d

med

aning

 

Fig. 3. Knowledge acquisition 

Inside the KDD process, a gray closed curve in Figure 3, the stages of data preparation and 
defining a study surrounds both the decision of choosing between the data mining 
techniques (classification, regression, clustering, dependency modeling, summarization of 
data, or change and deviation detection), and also the selection of the data mining algorithm 
to apply according to the chosen technique. 
Regarding the analysis of the problem, a clustering study could be performed to potentially 
identify groups. Clustering is the process of partitioning of a data set into subsets (clusters), 
so that the data in each subset (ideally) share some common trait (often proximity according 
to some defined distance measure). Therefore, a clustering data-mining tool through k-
means algorithm analyzes the measured times and the main parameters values that affect 
performance in order to summarize these into a useful information. Knowing the main 
parameters which characterize time complexity, it becomes possible to suspect new 
hypotheses to restart the process and to produce a subsequent improved time complexity 
model. 
Figure 3 shows the knowledge acquisition process which includes the design of 
experiments, the execution of the TSP parallel algorithm and the KDD process. There is no 
doubt that the design of experiments is directly related to the suspected hypotheses. The 
solid lines in Figure 3 represent the compulsory path to follow in the methodology and the 
dashed lines represent paths of refinement. 

3.2 Validation of the model 

A new data set is proposed to be able to validate the created model. Although the validation 

data set constitutes a hold-out sample, it has not been considered in the building of the 

model. This enables to estimate the error in the predictions without having the assumption 

that the execution times follow a particular distribution. 

The analytical formulation, together a particular architecture, is used to make predictions for 

each experiment in the validation data. The quality analysis is a relevant issue in this stage and 

has to include interest measurements. The prediction for each experiment is then compared to 

the value of the dependent variable that was actually observed in the validation data obtaining 

the prediction error. Then the average of the square of these errors enables to compare 

different models and to assess the accuracy of the model in making predictions.  
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It is important to bear in mind that every stage in the design of experiments to obtain and 
improve the asymptotic time complexity is validated. Figure 4 exhibits the entire model 
validation phase. 
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Fig. 4. Model validation phase 

3.3 Definition of the asymptotic time complexity 

The refined built model allows defining the asymptotic time complexity for the TSP parallel 
algorithm studied, Figure 5. Then the analytical formulation will be instanced with values 
coming from a new input data set and a particular parallel computer in order to give a 
prediction of performance. 
 

Knowledge
(model)

TSP asymptotic time 
complexity (O)

 

Fig. 5. The final definition of the TSP asymptotic time complexity 

The entire TSP knowledge discovery methodology is shown in Figure 6. Every stage in the 

methodology defined can implicate a backward motion to previous steps in order to obtain 

extra or more precise information to fit the final model. 

4. Analyzing the GP-TSP algorithm 

Using simple experiments, varying one or two values at a time, it is possible to infer that time 
required for the parallel GP-TSP algorithm depends on certain parameters.  Discovering these 
significant GP-TSP input parameters is the main issue of this section. Then, the prediction of 
GP-TSP performance order and two relevant experiments are analyzed. 
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Fig. 6. Performance prediction using the knowledge discovery methodology 

4.1 Discovering the significant GP-TSP input parameters 

It is clear that the GP-TSP execution time depends on the number of processors (P), the 
number of cities (C), and other parameters. Discovering the other parameters is the key to obtain a 
good or an acceptable prediction of performance order. Undoubtedly, the knowledge 
discovery in databases process (KDD process) has been one of the most profitable stages in the 
scientific examination. A huge amount of data sets was processed with the only goal of finding 
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some common properties. First intuitions guided the different tests in order to determine the 
characteristics, the relationships, and the patterns between the data sets.  
As a result of the investigation, right now the sum of the distances from one city to the other 
cities (SD) and the mean deviation of SDs values (MDSD) are the numerical parameters 
characterizing the different input data beyond the number of cities (C). But how these final 
parameters have been obtained? Next, it is described the followed way to discover the above 
mentioned dependencies (SD and MDSD) and the construction of a model. 

4.1.1 First hypothesis å location of the cities (geographical pattern) 

Given a number of cities with its pattern of distribution, the initial experiments have 
provided evidence that times required for the completion of the algorithm are dissimilar. In 
order to understand the general process, show its progress and results, it has been chosen an 
example data set to follow along this section. It consists of five different geographical 
patterns of fifteen cities each one (named GPat1 to GPat5) as it is shown in Figure 7. 
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Fig. 7. Five patterns defined for fifteen cities 

The GP-TSP implementation receives the number of cities (C) and their coordinates ((x1, y1), 
…, (xi, yi), …, (xC, yC)), the level (L), and the number of processors (P) as input parameters. It 
behaves recursively searching all possible paths and applying the global pruning strategy 
whenever it is feasible and, finally, generating the minimal path and the time spent. 
Table 2 shows the GP-TSP execution times (in sec.) by pattern (columns GPat1 to GPat5) and 
starting city (1...15) using only 8 nodes of the parallel machine described in Appendix A. It is 
important to observe the dispersion of times while maintaining constant the number of 
processors (P) and the number of cities (C). 
Hence before continuing, there are two important concepts to refresh. The main goal of data 
mining is finding useful patterns and knowledge in data. Besides, clustering is one of the 
major data mining techniques, grouping objects together into clusters that exhibit internal 
cohesion (similar execution time) and external isolation. Therefore, in this work, clustering 
has been applied to discover the internal information and then to decrease the data-
dependence. This general action has been done using the well-known k-means clustering 
algorithm (MacQueen, 1967) included in the Cluster-Frame tool; see Appendix B for extra 
information about the tool. With the idea of obtaining quite similar groups with respect to 
the groups (patterns) used at the beginning, k was fixed in five (k is the number of clusters). 
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The initial centroids (one for each cluster) were randomly selected by the clustering tool. 
Figure 8 shows the experiments by cluster in the Cluster-Frame environment. 
 

Geographical pattern (GPat) 
  

1 2 3 4 5 

Starting 
city 

Time 
spent 

Assigned
cluster 

Time
spent

Assigned
cluster 

Time 
spent

Assigned
cluster 

Time
spent

Assigned
cluster 

Time 
spent 

Assigned 
cluster 

1 216.17 1 36.50 3 15.34 2 10.51 4 8.03 5 

2 214.44 1 36.82 3 15.19 2 10.49 4 7.82 5 

3 77.25 1 38.09 3 15.57 2 10.02 4 7.71 5 

4 72.64 1 37.29 3 15.02 2 10.30 4 7.91 5 

5 70.94 1 18.54 2 15.84 2 10.41 4 7.83 5 

6 74.21 1 17.83 2 15.24 2 10.24 4 7.71 5 

7 75.59 1 18.16 2 10.31 4 10.36 4 7.93 5 

8 73.72 1 18.03 2 10.34 4 10.26 4 7.87 5 

9 69.47 1 17.79 2 10.27 4 9.98 4 8.14 5 

10 74.96 1 17.48 2 10.23 4 9.88 4 8.22 5 

11 75.89 1 17.07 2 10.24 4 9.85 4 8.04 5 

12 70.17 1 17.39 2 10.28 4 9.87 4 8.12 5 

13 73.73 1 18.10 2 10.36 4 9.88 4 7.98 5 

14 70.87 1 17.37 2 10.17 4 9.95 4 8.02 5 

15 73.30 1 18.00 2 10.32 4 9.97 4 7.78 5 

Mean 92.23  22.97  12.32  10.14  7.94  

Table 2. GP-TSP execution times (in sec.) and assigned cluster by k-means algorithm 

 

 

Fig. 8. Cluster-Frame environment 
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The k-means algorithm aims at minimizing a squared error function. In Equation (1), it is 
presented the widely used objective function with n data points and k disjoint subsets 

 ( ) 2

1 1

| |
k n

j
ji

j i

x c
= =

−∑∑  (1) 

where |xi(j)-cj|2 is a chosen distance measure between a data point xi(j) and the cluster 
centroid cj. The entire function is an indicator of the distance of the n data points from their 
respective cluster centroids. 
Table 2 show the assigned cluster for each experiment after executing k-means algorithm. 
For the clusters 1 to 5, the centroids values were 92.23 sec., 16.94 sec., 37.17 sec., 10.19 sec., 
and 7.94 sec., respectively.  
The quality evaluation involves the validation of the above mentioned hypothesis. For each 
experiment, the assigned cluster was confronted with the defined graphic pattern 
previously. The percentage of hits expresses the capacity of prediction. A simple observation 
is that the execution times were clustered in a similar way to patterns fixed at starting, see 
Figure 7. In this example, the capacity of prediction was near of 75% (56 hits on 75 
possibilities). There was a close relationship between the patterns and the execution times. 
Conclusions: The initial hypothesis for the GP-TSP has been corroborated; the capacity of 
prediction has been greater than 75% for the full range of experiments worked. The 
remaining percentage has given evidence of the existence of other significant parameters. 
Therefore, a deep analysis of results revealed an open issue remained for discussion and 
resolution, the singular execution times by pattern. Another major hypothesis was 
formulated. At this stage, the asymptotic time complexity was defined as O(P, C, pattern).  

4.1.2 Second hypothesis å location of the cities and starting city 

The example data set is the same used previously. Comparing each chart of Figure 7 with its 
corresponding column in Table 2 it is easy to infer some important facts. The two far cities 
(1, 2) in Figure 7(a) correspond with the two higher time values of starting city 1 and 2 in 
Table 2(GPat1). The four far cities (1, 4) in Figure 7(b) correspond with the four higher 
execution time values of starting city 1 to 4 in Table 2(GPat2). The six far cities in Figure 7(c) 
correspond with the six higher time values of Table 2(GPat3). The cities in Figure 7(d) are 
distributed among two zones; therefore, the times turn out to be similar enough, see Table 
2(GPat4). Finally, the cities in Figure 7(e) are closed enough; in consequence, the times are 
quite similar, see Table 2(GPat5). 
An additional important observation is that the mean of execution times by geographical 
pattern decreases as the cities approach, see again Table 2. 
Conclusions: Without doubt, the location of the cities and the starting city (C1) play an 
important role in execution times; the hypothesis has been corroborated. However, an open 
issue remained for discussion and resolution: how to relate a pattern (in general) with a 
numerical value which means execution time. This relationship would be able to establish a 
numerical characterization of patterns. On this basis, an original hypothesis was formulated. 
At this point, the GP-TSP asymptotic time complexity was redefined as O(C, P, pattern, C1).  

4.1.3 Third hypothesis å sum of distances and mean deviation of sum of distances 

What parameters could be used to quantitatively characterize different geographical 
patterns in the distribution of cities? In graph theory, the distance of a vertex p, d(p), of such 
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a connected graph G is defined by d(p) = Σ d(p, q) where d(p, q) is the distance between p and 
q and the summation extends over all vertices q of G. This measure is an inverse measure of 
centrality. Therefore, following the ideas previously mentioned, the sum of the distances 
from one city to the other cities (SDj, as it is shown in Equation 2), and the mean deviation of 
SDs values (MDSD) are the worked inputs right now. As greater is the sum of the distances, 
the lower is the centrality. 

 
( ) ( )2 2

1

: 1 j i j i
C

x x y y

j
i

j j C SD
− + −

=
∀ ≤ ≤ =∑  (2) 

The SD value is an index time. If a j particular city is very remote of the others, its SDj will 

be considerably greater to the rest and consequently its execution time will also grow. This 

can be observed in Table 3. 

Why is it needed to consider MDSD in addition to SD as a significant parameter? Quite 

similar SD values from the same geographical pattern (same column) of Table 3 imply 

similar execution times. The SD4 and SD10 values for the geographical pattern 1 are 230.11 

and 234.84, respectively. Then, their execution times are similar 72.64 sec. and 74.96 sec. 

(labelled with the symbol ◊). Instead, this relation is not true considering similar SD values 

coming from different geographical patterns (different columns). The SD3 value for 

geographical pattern 1 and the SD10 value for geographical pattern 2 are similar (315.51 and  

 

Geographical pattern (GPat) 
  

1 2 3 4 5 

Starting 
city 

Time 
spent 

SD 
Time 
spent 

SD 
Time
spent

SD 
Time
spent

SD 
Time 
spent 

SD 

1 216.17 853.94 36.50 746.10 15.34 664.60 10.51 643.75 8.03 148.74 

2 214.44 887.44 36.82 740.49 15.19 649.14 10.49 635.54 7.82 104.16 

3 * 77.25 * 315.51 38.09 820.63 15.57 707.70 10.02 555.70 7.71 141.15 

4 ◊ 72.64 ◊ 230.11 37.29 789.80 15.02 678.07 10.30 599.99 7.91 103.35 

5 70.94 226.88 18.54 345.83 15.84 643.65 10.41 611.45 7.83 111.79 

6 74.21 244.56 17.83 330.76 15.24 638.04 10.24 595.58 7.71 102.81 

7 75.59 276.09 18.16 369.56 10.31 467.99 10.36 592.68 7.93 111.28 

8 73.72 294.62 18.03 383.38 10.34 490.55 10.26 639.61 7.87 147.14 

9 69.47 233.53 17.79 370.10 10.27 491.52 9.98 574.23 8.14 123.19 

10 ◊ 74.96 ◊ 234.84 * 17.48 * 323.12 10.23 446.48 9.88 578.78 8.22 172.52 

11 75.89 259.19 17.07 332.87 10.24 477.42 9.85 544.61 8.04 124.64 

12 70.17 234.22 17.39 325.19 10.28 449.03 9.87 534.91 8.12 131.68 

13 73.73 306.99 18.10 383.11 10.36 504.79 9.88 530.72 7.98 109.78 

14 70.87 239.19 17.37 327.02 10.17 451.21 9.95 574.97 8.02 124.96 

15 73.30 295.27 18.00 372.00 10.32 494.09 9.97 534.36 7.78 96.29 

MDSD  140.94  165.47  90.60  31.56  16.78 

Table 3. GP-TSP execution times (in sec.) and sum of the distances from each starting city 
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323.12, respectively) but the execution times are completely dissimilar  77.25 sec. and 17.48 

sec. (labelled with the symbol *). The reason is due to the different between the MDSD 

values of geographical pattern 1 and 2. 

Conclusions: It is important to emphasize that the GP-TSP algorithm obtains good results of 

prediction. The asymptotic time complexity for the GP-TSP algorithm should be defined as 

O(P, C, SD, MDSD). Another important fact has been reached beyond was originally sought. 

Choosing the j city which has minimum SDj associated value, it is possible to obtain the 

exact TSP solution investing less amount of time. Much better results it would be reached if 

the algorithm begins considering the closer L cities to j city.  

4.2 Predicting GP-TSP performance order 

The GP-TSP has a time complexity of O(P, C, SD, MDSD). The analytical formulation allows 

making predictions for a new data set on a particular parallel computer. Figure 9 shows the 

prediction framework.  

 

New input 
data

Use

Prediction of 
performance 

Architecture of the 
parallel computer

TSP asymptotic 
time complexity (O)

 

Fig. 9. The prediction of performance framework 

4.3 Two relevant GP-TSP experiments 

Additional TSP experiments have been performed to verify certain hypotheses. Some of 

them have shown how important is the geographical pattern of the cities instead of knowing 

their coordinates. Other experiments which follow a specific pattern have helped to confirm 

the strong compliance of our hypotheses. Due to the significance, these two groups of 

experiments were chosen to be developed in this section. 

4.3.1 Importance of the geographical pattern 

Making geometric transformations (shifting, scaling, and rotation) to well-known patterns is 

without no doubt a trivial test. This is an excellent case study for understanding the 

importance of geographical pattern. Applying each one of the transformations to a set of 

cities, similar execution times are expected executing the same algorithm. This leading to 

conclude, the time required to reach the solution of the GP-TSP algorithm is invariant to 

certain transformations into the geographical patterns. 
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The coordinates of a city shifted by Δx in the x-dimension and Δy in the y-dimension are 

given by 

 ´ ´x x x y y y= + Δ = + Δ  (3) 

where x and y are the original and x’ and y’ are the new coordinates. 

The coordinates of a city scaled by a factor Sx in the x-direction and y-direction (the city is 

enlarged in size when Sx is greater than 1 and reduced in size when Sx is between 0 and 1) 

are given by 

 ´ ´x yx xS y yS= =  (4) 

The coordinates of a city rotated through an angle θ about the origin of the coordinate 

system are given by 

 ´ cos sin ´ sin cosx x y y x yθ θ θ θ= + = − +  (5) 

An example set consisting of fifteen cities is chosen from the historical database. The 

execution times were obtained using 32 nodes of the parallel machine described in 

Appendix A. The shifting and rotation transformations are obtained interchanging x-

coordinate by y-coordinate, and the scaling transformation dividing by 2 both coordinates. 

All these patterns are shown in Figure 10.  

 

0

5000

10000

15000

20000

25000

30000

35000

0 5000 10000 15000 20000 25000 30000 35000

x-coordinate

y
-
co

or
d
in
a
te

Original

Shifed+Rotated

Scaled

 
 

Fig. 10. A historical pattern consisting of fifteen cities. Besides, the same pattern shifted and 
rotated, and then the pattern scaled 
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Table 4 exhibits the execution times for the example set starting by each one of the cities.  

Analyzing the values by row, the historical execution times and the execution times of the 

geometric transformations for an experiment (row) are quite similar as it was to be expected. 

For all the experiments, the mean deviation was smaller than 2%. 

 

 

 

Pattern Starting
city Historical Shigted+Rotated Scaled

Mean 
deviation

1 46.25 48.52 47.30 0.78 

2 100.30 105.60 102.77 1.81 

3 73.48 76.34 74.52 1.04 

4 32.92 34.52 33.75 0.54 

5 30.83 31.96 31.35 0.39 

6 30.49 31.92 31.22 0.48 

7 31.77 33.00 32.21 0.45 

8 30.10 31.06 30.43 0.35 

9 31.08 32.13 31.92 0.42 

10 30.98 32.24 31.60 0.42 

11 29.94 31.09 30.36 0.42 

12 30.33 31.53 30.85 0.42 

13 31.45 32.82 32.14 0.46 

14 32.67 33.44 32.53 0.37 

15 32.49 33.49 32.89 0.36 

 
 

Table 4. Comparison of execution times (in sec.) using 32 nodes for the three patterns plotted 
in Figure 9 

4.3.2 Limit case  

A singular case is to have the cities uniformly distributed in a circumference, see an example 

in Fig. 11. As the MDSD value will be near to 0, similar execution times are expected. The 

idea is considering a limit case in order to confirm the hypothesis with respect to the MDSD 

value and the geographical pattern. 

Table 5 exhibits a comparative study of GP-TSP behaviour; the means and means deviations 

of execution times of different number of cities uniformly distributed in each circumference 

pattern are shown. The number of cities is between 15 and 25. As it can be appreciated in 

Table 5, there is a progressive increase in the mean times. For every circumference, the 

execution times were quite similar starting by each one of the cities. The mean deviations 

were smaller than 4%. 
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Fig. 11. A circumference pattern composed of 24 uniformly distributed cities 

 

#Cities 15 16 17 18 19 20 21 22 23 24 25 

Mean 12.71 17.47 23.42 32.93 42.95 54.94 68.67 129.53 367.29 1085.57 2957.15 

Mean 
deviation 

0.03 0.04 0.08 0.08 0.07 0.10 0.10 0.11 0.30 2.12 3.03 

Table 5. Mean and mean deviation of execution times (in sec.) using 32 nodes by the number 
of cities that are present in each circumference pattern 

5. Conclusions 

This chapter introduces a knowledge discovery methodology to estimate the performance 

order of a hard data-dependent parallel algorithm that solves the traveling salesman 

problem. It is important to understand that the parallel performance achieved depends on 

several factors, including the application, the parallel computer, the data distribution, and 

also the methods used for partitioning the application and mapping its components onto the 

architecture. 

Briefly, the general knowledge discovery methodology begins by designing a considerable 

number of experiments and measuring their execution times. A well-built experiment 

guides the experimenters in choosing what experiments actually need to be performed in 

order to provide a representative sample. A data-mining tool then explores these collected 

data in search of patterns and/or relationships detecting the main parameters that affect 

performance. Knowing the main parameters which characterise performance, it becomes 

possible to suspect new hypotheses to restart the process and to produce a subsequent 

improved time complexity model. Finally, the methodology predicts the performance order 

for new data sets on a particular parallel computer by replacing a numerical identification. 
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A TSP parallel implementation (called GP-TSP) has been deeply studied. The GP-TSP 

algorithm analyzes the influence of indeterminism in performance prediction, and also 

shows the usefulness and the profits of the methodology. Their execution time depends on 

the number of cities (C), the number of processors (P), and other parameters. As a result of 

the investigation, right now the sum of the distances from one city to the other cities (SD) 

and the mean deviation of SDs values (MDSD) are the numerical parameters characterizing 

the different input data beyond the number of cities. The followed way to discover this 

proper set of parameters has been exhaustively described.  

The defined methodology for performance modelling is applicable to other related problems 

such as the knapsack problem, the graph partition, the bin packing, the motion planning, 

among others. 

Appendix 

A. Specification of the parallel machine 

The execution has been reached with a 32 node homogeneous PC (Cluster Pentium IV 

3.0GHz., 1Gb DDR-DSRAM 400Mhz., Gigabit Ethernet) at the Computer Architecture and 

Operating Systems Department, University Autonoma of Barcelona. All the 

communications have been accomplished using a switched network with a mean distance 

between two communication end-points of two hops. The switches enable dynamic routes 

in order to overlap communication. 

B. Characteristics of Cluster-Frame environment 

Cluster-Frame is a dynamic and open environment of clustering (Fritzsche, 2007). It permits 

the evaluation of clustering methods such as K-Means, K-Prototypes, K-Modes, K-Medoid, 

K-Means+, K-Means++ for the same data set. Using Cluster-Frame, the results reached 

applying different methods and using several parameters can be analyzed and compared. 
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