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The Advantage of Intelligent Algorithms for TSP 

Yuan-Bin MO 
College of Mathematics and Computer Science, Guangxi University for Nationalities, 

China 

1. Introduction 

Traveling salesman problem (TSP) means that a travelling salesman needs to promote 
products in n cities (including the city where he lives). After visiting each city (each city can 
be visited once), he returns to the departure city. Let’s suppose that there is one road to 
connect each two cities. What is the best route to follow in order to minimize the distance of 
the journey?  
TSP has been proven to be a NP-hard problem, i.e. failure of finding a polynomial time 
algorithm to get a optimal solution. TSP is easy to interpret, yet hard to solve. This problem 
has aroused many scholars’ interests since it was put forward in 1932. However, until now, 
no effective solution has been found. 
Though TSP only represents a problem of the shortest ring road, in actual life, many 

physical problems are found to be the TSP. Example 1, postal route. Postal route problem is 

a TSP. Suppose that a mail car needs to collect mails in n places. Under such circumstances, 

you can show the route through a drawing containing n+1 crunodes. One crunode means a 

post office which this mail car departures from and returns to. The remaining n crunodes 

mean the crunodes at which the mails need to be collected. The route that the mail car 

passes through is a travelling route. We hope to find a travelling route with the shortest 

length. Example 2, mechanical arm. When a mechanical arm is used to fasten the nuts for 

the ready-to-assembling parts on the assembly line, this mechanical arm will move from the 

initial position (position where the first nut needs to be fastened) to each nut in proper order 

and then return to the initial position. The route which the mechanical arm follows is a 

travelling route in the drawing which contains crunodes as nuts; the most economical 

travelling route will enable the mechanical arm to finish its work within the shortest time. 

Example 3, integrated circuit. In the course of manufacturing the integrated circuit, we often 

need to insert thousands of electrical elements. It will consume certain energy when moving 

from one electrical element to the other during manufacturing. How can we do to arrange 

the manufacturing order to minimum the energy consumption? This is obviously a solution 

for TSP. Except for the above examples, problems like route distribution of transportation 

network, choice of tourist route, laying of pipelines needed for city planning and 

engineering construction are interlinked with the problems of finding the shortest route. So, 

it is of significance to make a study on the problem of the shortest route. This renders us a 

use value. 

As finding a solution for TSP plays an important role in the real life, since the TSP appeared, 
it has attracted many scholars to make a study on it.   
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2. Mathematical description for the TSP and its general solving method 

2.1 Mathematical description for the TSP 

According to the definition of the TSP, its mathematical description is as follows: 

              min ij ijd x∑   (2.1.1)  
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 {0,1}ijx ∈    , 1,2,i j n= A   i j≠   (2.1.5)  

Where ijd  means the distance between the city i and city j; decision variable 1ijx =  means 

the route the salesman passes through (including the route from city i and city j); 0ijx =  

means the route which isn’t chosen by the salesman. Objective function (2.1.1) means the 

minimum total distance; (2.1.2) means that a salesman only can departure from the city i for 

one time; (2.1.3) means that a salesman only can enter the city j for one time; (2.1.2) and 

(2.1.3) only give an assurance that the salesman visits each city once, but it doesn’t rule out 

the possibility of any loop; (2.1.4) requires that no loop in any city subset should be formed 

by the salesman ; S  means the number of elements included in the set S . 

2.2 Traditional solving method for TSP 

At present, the solving methods for TSP are mainly divided into two parts: traditional 
method and evolution method. In terms of traditional method, there are precise algorithm 
and approximate algorithm.  

2.2.1 Precise algorithm for solving the TSP 

Linear programming 
This is a TSP solving method that is put forward at the earliest stage. It mainly applies to the 
cutting plane method in the integer programming, i.e. solving the LP formed by two 
constraints in the model and then seeking the cutting plane by adding inequality constraint 
to gradually converge at an optimal solution.  
When people apply this method to find a cutting plane, they often depend on experience. So 
this method is seldom deemed as a general method. 
Dynamic programming  

   S  is the subset of the set {2,3, }nA . k S∈  and ( , )C S k  means the optimal travelling route 

(setting out from 1, passing through the points in S  and ending to k ). When 1S = , 

1{{ }, } kC k k d=  and ( 2,3, )k n= A . When 1S > , according to the optimality principle, the 
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dynamic programming equation of TSP can be written as 
{ }

( , ) min [ ( { , }, ) ]jk
j S k

C S k C S j k j d
∈ −

= − +  

and the solution can be obtained by the iterative method based on dynamic programming. 

As the time resource (i.e. time complexity) needed for dynamic programming is 2( 2 )nO n ⋅ , 

and its needed space resource (i.e. space complexity) is ( 2 )nO n ⋅ , when n is added to a 

certain point, these complexities will increase sharply. As a result, except for the minor 

problem, this is seldom used.  
Branch-bound algorithm 
Branch-bound algorithm is a search algorithm widely used by people. It controls the 
searching process through effective restrictive boundary so that it can search for the optimal 
solution branch from the space state tree to find an optimal solution as soon as possible. The 
key point of this algorithm is the choice of the restrictive boundary. Different restrictive 
boundaries may form different branch-bound algorithms. 
Branch-bound algorithm is not good for solving the large-scale problem. 

2.2.2 Approximate algorithm for solving the TSP 

As the application of precise algorithm to solve problem is very limited, we often use 

approximate algorithm or heuristic algorithm. The result of the algorithm can be assessed by 
*/C C ε≤ . C is the total travelling distance generated from approximate algorithm; *C  is 

the optimal travelling distance; ε  is the upper limit for the ratio of the total travelling 

distance of approximate solution to optimal solution under the worst condition. The value 

of ε >1.0. The more it closes to 1.0, the better the algorithm is. These algorithms include:   
Interpolation algorithm 
Interpolation algorithm can be divided into several parts according to different interpolation 
criteria. Generally it includes following steps:    
Step 1. Choose the insertion edge (i and j) and insertion point k through a certain way. 

Insert k into i and j to form { , , , , }i k jA A ; 

Step 2. Follow the process in an orderly manner to form a loop solution.  
Interpolation algorithm mainly includes: 

1. Latest interpolation effect 2ε = . Time complexity: 2( )O n . 

2. Minimum interpolation effect 2ε = . Time complexity: 2( lg )O n n . 

3. Arbitrary interpolation effect 21g 0.16nε = + . Time complexity: 2( )O n . 

4. Farthest interpolation effect 2 lg 0.16nε = + . Time complexity: 2( )O n . 

5. Convex interpolation effect ε  (unknown). Time complexity: 2( lg )O n n . 

Nearest-neighbour algorithm 
Step 1.   Choose one departure point randomly;  
Step 2.  Choose the nearest point in an orderly manner to add to the current solution until 

the loop solution is formed. 

Effect: (lg 1) 2nε = + . Time complexity: 2( )O n  
Clark & Wright algorithm 

Step 1. Choose one departure point P randomly to calculate ij pi pj ijs d d d= + + ;   

Step 2. Array ijs  in ascending order;   

Step 3. Connect each ( , )i j  in an orderly manner upon arrangement to form a loop 

solution. 
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Effect: 2 lg 7 2 21nε = + . Time complexity: 2( )O n  
Double spanning tree algorithm 
Step 1.  First determine the minimum spanning tree. 
Step 2. Determine the Euler loop by adding a repetitive edge to each edge of the tree; 
Step 3. Eliminate the repetitive point in the sequence of Euler loop point to form a loop 

solution. 

Effect: 2ε = . Time complexity: 2( )O n  
Christofides algorithm 
Step 1. First determine the minimum spanning tree; 
Step 2. Solve the minimum weight matching problem to all the singular vertexes of the tree; 
Step 3. Add the matching edge to the spanning tree to determine its Euler loop; 
Step 4. Eliminate the repetitive point in the sequence of Euler loop point to form a loop 

solution. 

Effect: 2 3ε = . Time complexity: 3( )O n  

r opt−  algorithm 

This algorithm is a locally improved search algorithm and is put forward by Lin and other 

people (1965). Its thought is to improve the current solution by exchanging r  edges each 

time according to the given initial loop. As for different r , we find from massive calculation 

that 3 opt−  is better than 2 opt− , and 4 opt−  and 5 opt−  are not better than 3 opt− . The 

higher the r  is, the more time the calculation will take. So we often use 3 opt− . 

Effect: 2ε =  ( 8, 4)n r n≥ ≤ . Time complexity: ( )rO n  
Hybrid algorithm 

Use a certain approximate algorithm to find an initial solution and then improve the 

solution by using one or several algorithms of r opt− .Usually, Hybrid algorithm will help 

you to get better solution, but it takes a long time. 
Probabilistic algorithm 

Based on the given 0ε > , this algorithm is often used to solve the TSP within the range of 

1 ε+ .Suppose that G is in the unit square and function ( )t n  is mapped to the positive ration 

number and satisfies the following two conditions: (1) 2 2log logt n→ ; (2) to all n , n t  is 

the perfect square, so the steps are as follows:  

Step 1. Form the network by using 1/2[ ( ) ]t n n  as size. Divide the unit square into ( )n t n  

and G  into several ( )n t n  subgraphs; 

Step 2. Use dynamic programming to find the optimal loop for each subgraph; 

Step 3. Contract ( )n t n  subgraph into one point. The distance definition is the shortest 

distance of the optimal sub-loop of the original subgraph. In addition, determine 

the minimum generation number T of the new graph; 

Step 4. See T ∪ {the optimal sub-loop of each optimal sub-loop of } as the close loop with 

repetitive point and edge. According to the condition of the triangle inequality, 

reduce the repetitive points and edges to find a TSP loop. 

Effect: 1ε = +  (give the positive number randomly). Time complexity: ( lg )O n n . 
As these traditional algorithms are local search algorithms, they only help to find a local 

optimal solution when used for solving the TSP. It is hard to reach a global optimal solution 

and solve large-scale problem. So, people started to look for an evolution algorithm to solve 

the TSP. 
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3. Evolution algorithm for solving the TSP 

As stated above, the traditional algorithms used to solve the TSP have some limitation. With 
the development of evolution algorithm, many numerical optimization algorithms appear. 
They are ACA, GA, SA, TS, PSO and IA, etc. These algorithms are, to some extent, random 
search algorithms. ACA and PSO are typical parallel algorithms. Though they cannot 
guarantee to help you to obtain an optimal solution within the limited time, they can give 
you a satisfactory solution within the affordable time range. To figure out the effect of the 
solution for TSP obtained by using optimization algorithm, we should consider the 
algorithm’s search ability. Algorithm with strong optimization will produce better effect. 
Algorithm which is easy to trap in local extremum often helps you to obtain the local 
optimal solution for TSP. 

3.1 Ant colony algorithm for solving the TSP 

Ant colony algorithm (ACA) is a relatively new analogy evolution algorithm, which was put 

forward by scholars such as Italian scholar Dorigo. They called it ant colony system and 

used this ant colony to solve the TSP, achieving fairly good experimental result. As for ACA, 

n  represents the number of cities for the TSP; m represents the number of ant in the ant 

colony; ijd  ( , 1,2, , )i j n= A  represents the distance between city i  and city j ; ( )ij tτ  

represents the concentration of pheromone on the line of city i  and city j  at the time of 

t .At the initial time, the concentration of pheromone on each route is similar to one another. 

When (0)ij Cτ = , C  is a constant. During the moving process, ant ( 1,2, , )k m= A  will 

determine which direction it will change according to the concentration of pheromone on 

each route. ( )k
ijP t  represents the probability for ant to move from city i  to city j  at the time 

of t . Its formula is  
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( ) ( )( )
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ij ij
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is isij

s

t t
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t tP t

other

α β

α β
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⎧
⎪ ∉⎪= ⎨
⎪
⎪⎩

∑   (3.1.1) 

Wherein: tabuk ( 1,2, , )k m= A  means that ant k  has passed through the set of the city. From 

the beginning, tabuk  has only one element, i.e. the departure city of ant k . With the process 

of evolution, the elements for tabuk  increase continuously; allowed {1,2, , } tabuk kn= −A  

means the next city that ant k  is allowed to choose. ijη  represents the visibility, and is taken 

from the reciprocal of the length of the route ( , )i j ; ,α β  regulates the relatively important 

degree of pheromone concentrationτ  and visibilityη . 

As time goes by, the pheromone on each route gradually disappears. Parameter 1 ρ− is 

used to represent the volatility of pheromone. After ω  time, the ants complete one circle. 

Pheromone concentration on each route can be adjusted according to the following formula:  

 ( ) ( )ij ij ijt tτ ω ρ τ τ+ = ⋅ + Δ       (0,1)ρ ∈   (3.1.2) 

 
1

m
k

ij ij
k

τ τ
=

Δ = Δ∑   (3.1.3) 
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Wherein:  k
ijτΔ  means the pheromone concentration left on the route ( , )i j  by the k  ants 

during the process of this circle; ijτΔ  means the total pheromone concentration released on 

the route ( , )i j  by all the ants during the process of this circle. 
   ACA not only uses the positive feedback principle which may, to some extent, quicken the 
evolution process, but also is a parallel algorithm in nature. The ongoing process of 
information exchange and communication between individuals helps to find a better 
solution. It is easy to converge at a local extremum when there is only one individual. 
However, through cooperation, multiple individuals will help us to get a certain subset of 
the solution space, which provide a better environment for us to carry out a further 
exploration on solution space. The movement of multiple individuals in the ant colony is 
random. Actually, the measures taken to avoid the possibility of appearance of local 
extremum slow down the velocity of convergence. When the scale of ant colony expands, it 
will take a longer time to look for a better route.  
In the light of the above problems, many scholars at home and abroad make an 
improvement of the basic ACA. Though some achievements have been made, they are not 
enough as a whole. Some principles are still needed to found to make a proof and test in 
practice.  

3.2 Solve the TSP through particle swarm optimization 

Ant colony algorithm is a discrete random number algorithm, which is suitable for solving 
the discrete optimization problem. TSP is a typical discrete optimization problem, so, since 
the appearance of ant colony algorithm, many scholars have used this algorithm to solve the 
TSP. However, as the travelling salesman problem is a NP, and the pheromone needs to be 
updated when ant colony algorithm is iterated each time, so, when solving the large-scale 
TSP, it will meet some problems such as slow searching speed. Though scholars at home 
and abroad have made some efforts to accelerate the searching speed, but what they’ve 
done is not enough as a whole. Some principles are still needed to found to make a proof 
and test in practice. Particle swarm optimization is a continuous algorithm. Its iteration 
formula is simple and easy to achieve. A slight improvement of this algorithm will help you 
to solve the discrete optimization problem of the travelling salesman. As its iteration 
formula is very simple, a use of this algorithm may help you to solve the slow searching 
speed problem found from the ant colony algorithm. 
At present, different improvement algorithms for PSO have been provided to solve the TSP. 
In particular, great result has been made by Maurice who used discrete PSO algorithm to 
solve the TSP.A hybrid PSO algorithm which is used to solve the TSP is provided on the 
basis of GA, AC and SA. Application of PSO algorithm to solve the travelling salesman 
problem is a fresh attempt. However, as the traditional PSO will easily trap in the local 
optimal solution, we provide two improve strategies for the standard PSO and use them to 
solve the TSP. 

4. Solve the TSP through improved PSO algorithm 

4.1 Solve the TSP through DPSO algorithm 
4.1.1 DPSO principle 

Dynamic programming is a typical deterministic algorithm for solving the optimization 
problem. It is provided on the basis of the optimality principle and non-aftereffect and used 
for the algorithm of multistage decision process. Optimality principle: any truncation of the 
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optimal decision still remains the optimal state; non-aftereffect: after truncation in any stage, 
the decision made in the later stage is only connected to the initial state of this stage and has 
no connection to others. Dynamic programming, through optimality principle and non-
aftereffect, analyze the optimization problem in stages to simplify the problem, which 
greatly reduce the calculation steps. 
PSO algorithm is an interactive parallel searching algorithm as well as a good attempt to 
look for global extremum. However, when solving the optimization problem of high 
dimensional function, as the mutual restraint exists between each dimensional variable, 
disadvantage has been found when the PSO algorithm is used to solve this problem. 
According to the numerical value test result, this algorithm is proven to be very effective 
when the dimension is low. The solving process of dynamic programming is to simplify the 
complex problem to obtain the solution. A combination of this with the property of PSO 
algorithm will surely improve the optimal performance of the PSO algorithm. 

As for the solution of the problem 1 2 imin ( ) ( , , , ),   . .  a , n i if f x x x s t x b= ≤ ≤x A 1,2, .i n= A   

(4.1.1.1), a strategy should be provided to fix some variables and change the remaining 

variables; i.e. partition the variable and approximate the optimal solution of the majorized 

function through partitioning to convert the high dimensional optimization problem into 

low dimensional optimization problem to get the condition optimal solution. Then fix the 

other part to get the other group of condition optimal solution. Use this information to carry 

out a comprehensive optimization process. Be aware that this strategy is different from the 

principle of dynamic programming, because aftereffect exists when partition optimization is 

applied. So, a strategy method concerning reasonable approximation of global extremum 

should be provided for the partition optimization of aftereffect.  
It is hard to decide the order of fixed variable in the process of calculation.  Different 
strategies can be used during the process of practical operation; after the algorithm traps in 
the local extremum, it may pick some components to be fixed randomly from the local 
optimal solution, or choose some components alternately; at the same time, transform the 
original problem into two problems after some components are picked randomly. If the 
dimension is too high, this problem can also be transformed into multiple problems to find a 
solution.  See the following problem 

 1 2 3 4 5 6min ( , , , , , )f x x x x x x , (4.1.1.2)  

If PSO algorithm gives a local optimal solution 1* 1* 1* 1*
1 2 6( , , )x x x=x A , the following two 

strategies can transform the high dimension optimization into low dimension optimization: 

(1) pick several components randomly, e.g. pick 3 components 1* 1* 1*
1 2 4, ,x x x , then the result is  

                 1* 1* 1*
1 2 3 4 5 6min ( , , , , , )f x x x x x x  (4.1.1.3) 

A local optimal solution 1* 1* 2* 1* 2* 2*
1 2 3 4 5 6( , , , , , )x x x x x x  is given by using the PSO algorithm 

again. Then pick some components randomly or alternately (for example, if you pick 

components 1, 2 and 4 last time, you can pick components 3, 5 and 6 this time); in this way, a 

new optimal problem is found. Continue the run until you find a satisfactory result. (2) Pick 

some components randomly and divide the original problem into several problems, 

including: ① 1* 1* 1*
1 2 3 4 5 6min ( , , , , , )f x x x x x x  and 1* 1* 1*

1 2 3 4 5 6min ( , , , , , )f x x x x x x . It may write 

down all the possible forms (i.e. 3
6 20C = ) of the three variables to divide the original 
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problem into 20 optimization problems. ① If you think the dimension is too high, pick p  ( p  

is relatively high in number) components randomly and transform the original problem into 

several optimization problems. You can also list all the p
nC  optimization problems and use 

PSO algorithm to solve several optimization problems you get. Then compare the results of 

these optimization problems and pick the best one to use as the local optimal solution next 

step, and further analyze this solution until you find the satisfactory result. 

4.1.2 Computational steps of the DPSO  

As for the optimization problem of the formula (4.1.1.1), the key algorithm steps are as 
follows:   

Step 1. Randomly generate the initial population m . Under normal circumstances, 10m ≥ . 

Step 2. After figure up certain algebras through PSO or after use PSO and find that the 

target values within several successive algebras remain the same, set the optimal 

solution as * 0 0 0
1 2( , , )nx x x=x A . 

Step 3. Pick [ ]
2

n
 component randomly from the optimal solution *x  and set it as 

1 2
[ ]

2

0 0 0, ,
ni i ix x xA . 

Step 4. Use PSO to solve the following two optimization problems 

  
1 2

[ ]
2

0 0 0
1 2min ( ) ( , , , , , , , )

ni i i nf f x x x x x x=x A A A A , (4.1.2.1) 

and 

  
1 2

[ ]
2

0 0 0
1 2min ( ) ( , , , , , , , )

ni i i nf f x x x x x x=x A A A A . (4.1.2.2) 

In these two optimization problems, one is the function of [ ]
2

n
n −  dimension and the other 

is the function of [ ]
2

n
 dimension. 

Step 5. Choose the best result from these two optimization problems to use as the current 

optimal solution *x  to see if it can reach a satisfactory result. If not, iterate the steps 

by starting from step 3; if a satisfactory result is obtained, terminate the 
computational process and get the optimal solution. 

Note: Other strategies may be applied to Step 3, and here is only one of them. In order to 

ensure the rapid convergence of the algorithm, pick the optimal solution after each 

calculation to use it as a particle for the calculation next time.  

4.1.3 Solve the TSP through DPSO 

For the TSP with n cities ( 1 2, , na a aA ), use 1 2 1( , , , , )i i in ia a a aA  to represent the route (i.e. 

1 2i i ina a a→ →A ). 1 2, , ,i i ina a aA  is an array of 1 2, , , na a aA  and is called solution sequence. 
As stated above, DPSO algorithm is applicable to the continuous problem. As TSP is a 

typical discrete problem, its solution is a sequence or loop rather than a point within the 
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solution space. In order to apply DPSO to TSP, we introduce to you some definitions and 

algorithms of the solution sequence. 

Definition 1  Exchange and exchange sequence  Exchange the j  point and k  point of the 

solution sequence to form a new solution sequence. This is called exchange and is 

indicated with ( , )E j k .Exchange ija  and ika  in the solution sequence of 

( , , , , , , , )1 2a a a a ai i ij inikT = A A A . The new solution after exchange is ( , )T E j k+ . The 

ordered sequence 1 2( , , , )mQ E E E= A  after m times of exchanges is called exchange 

sequence. Exchange T  through the exchange sequence in an orderly manner to generate a 

new solution. i.e.  

         1 2 1 2( , , , ) [( ) ]m mT Q T E E E T E E E+ = + = + + + +A A   (4.1.3.1) 

When 0m = , Q  is equivalent to empty sequence. This means that formula (6.4.1.3.1) doesn’t 

do any exchange for the solution sequence. Under such circumstances, you can add an 
exchange result to the exchange sequence and place this exchange result to the end of the 
sequence to form a new sequence.  

Definition 2  Solution sequence difference  As for any two solution sequences 1T  and 2T  

of the same TSP, the exchange sequence Q  always exists. As a result,  2 1T T Q= +  is 

formed. Q  is the difference of the solution sequences 2T  and 1T , i.e. the result of 

2 1T T− .When 1 1 2( , , )nT a a a= A  and 2 1 2( , , )nT b b b= A  are found, you can use the following 

procedure 1 to calculate 2 1Q T T= − . 
Procedure 1  Q = empty sequence  

 for 1j =  to n   

 for 1i =  to n   

 if i ja b=  and i j≠  then add ( , )E i j  to Q  

          end 
            end 

In respect of 1T  and 2T , there are many Qs to be used in the formula 2 1T T Q= + . 

Definition 3  Product of decimal and exchange sequence  (0,1)η∈  and exchange sequence is 

Q  which has an exchange of 0n . If 0 0

0 0

1m m

n n
η +

≤ <  ( 0m  is an integer from 0 to 0 1n − ), 

Qη ⋅  is the sequence formed by 0m  exchange before Q .   

Through this operation, the above algorithm can be used to solve the discrete optimization 
problem like TSP. 

4.1.4  Test and discussion of the performance of the algorithm  

Use 14 points of the TSP provided by Huang Lan and other people to test the effectiveness 
of the algorithm. Description of the 14 points of the TSP is listed in table 1. 
 

Point 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

X 16.47 16.47 20.09 22.39 25.23 22.00 20.47 17.20 16.30 14.05 16.53 21.52 19.41 20.09 

Y 96.10 94.44 92.54 93.37 97.24 96.05 97.02 96.29 97.38 98.12 97.38 95.59 97.13 94.55 

Table 1. Position data for 14 points 
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Use DPSO to carry out 8 times of tests and set the parameters as 1 0.53ω = ,  1 0.35η =  and 

2 0.45η = . The number of the initial population is 600. Set the maximum iterative number as 

300. The result as follows:  
 

Test serial number 1 2 3 4 5 6 7 8 

Get the algebra of 
the optimum value 

30.8785 
58 30 58 58 58 58 93 196 

Get the best route 
each time 

6-12-7-13-8-11-9-10-1-2-14-3-4-5 

Tabela 2.                            

Algorithm analysis table 

Number of the solution space (14-1)!/2=3 113 510 400 

Average iterative number (58× 5+30+93+196)/8=76.125 

Average search space for each test 600+76.125× 200=15825 

Proportion of the search space to 
solution space 

15825/3113510400=0.000508% 

Tabela 3. 

From the above test, we can see that DPSO may go beyond the local extremum to gen the 

final optimal solution for the problem. To achieve this, we should transform the high 

dimension optimization into low dimension optimization. We should optimize the 

remaining components while maintain some components unchanged; by doing this 

alternately, the ability for algorithm to optimize the high dimension problem will be 

strengthened. This improved algorithm only represents an improvement on the calculative 

strategy front. It does not add additional calculation and step to the algorithm, hence, 

maintaining the simplification of the PSO algorithm. At the same time, it helps to transform 

a high dimension optimization problem into several low dimension optimization problems, 

which will not complicate the calculation procedure. 

4.2  Solve the TSP through MCPSO 

When use MCPSO to solve the TSP, you also need to go through the relevant procedure 
which is used by continuous optimization algorithm to solve the discrete optimization 
problem; except for the above methods, MCPSO also has midpoint problem, so we 
introduce you the following definition:  

Definition  Midpoint solution sequence  Set two solution sequences 1 1 2( , , )nT a a a= A  and 

2 1 2( , , )nT b b b= A  for n cities of TSP and make the solution sequence as 

1 1 11 2 1 2( , , , , , , , )n n n nT a a a b b b+ += A A  ( 1 [ / 2]n n= ).If repetitive point appears in the solution, 

adjustment can be made according to the procedure 2 to make it become a feasible 

solution sequence and call it a midpoint solution sequence of 1T  and 2T .  
Procedure 2   

Step 1. Search for the repetitive point of 
11 2, , , na a aA  from 

1 11 2, , ,n n nb b b+ + A  and replace it 

with 0; 
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Step 2.  Search for the points which are different from the points of 
1 11 2, , ,n n nb b b+ + A  from 

1 11 2, , ,n n na a a+ + A  and replace the 0 point in an orderly manner. 

4.2.1  Steps for MCPSO to solve the TSP  

The steps for MCPSO algorithms to solve the TSP are as follows:  

Step 1. Set relevant parameters l , 1β , 2β  and δ , and begin to conduct initialization 

complex. Each point is the solution sequence generated randomly and is indicated 
with x ; 

Step 2. Pick l  solution sequences, good and bad, for rx  and fx , and calculate the 

midpoint sequence mx  and ratio λ . Then determine the best solution sequence 1x ;   

Step 3. Based on certain probability,  

               Pick formula 1 2 1( ) ( )p f r f fφ φ= + − + −x x x x x x  through probability 1β  

               Pick formula 1 2 1( ) ( )p r r f fφ φ= + − + −x x x x x x  through probability 2β  

               Pick formula 1 2 1( ) ( )p f f r fφ φ= + − + −x x x x x x  through probability 1 21 β β− −  

to get m  new solution sequences px  to replace the bad solution sequence fx  to form a new 

complex; 
Step 4. If the satisfactory result is reached, go to Step 5; otherwise, go back to Step 2; 
Step 5. Show the optimal solution. 

4.2.2 Test and discussion of the performance of the algorithm  

Test the algorithm based on the 14 points of the TSP provided by Huang Lan and other 

people. The optimum value is 30.8785.We use this problem to test the optimal performance 

of MCPSO algorithm. Its parameters are 0.85δ = , 1 0.675β = , 2 0.175β =  and 50l = . The 

pop-size is 600 and the upper limit of iterative number is 200. In order to facilitate 

comparison, we also use SGA and ACO to solve this problem. These two have the same 

pop-size and iteration upper limit as MCPSO. Each algorithm is run for 10 times. The 

parameter setting for these two algorithms are: SGA: multiplying probability 

0.2rP = ,crossing probability 0.6cP =  and mutation probability 0.05mP = ; ACO: constant 

20C = , pheromone factor 1α = , heuristic factor 1β = , and information keeping factor 

0.8ρ = . The results of these algorithms are shown in the table 4.2.2.1 and the change curve 

of average mean fitness is shown in the figure 4.2.2.1. 
ACO and integer-coded SGA can be directly used to solve the discrete optimization 
problems such as TSP. These algorithms have the ability to search for the global optimal 
solution, but the efficiency is relatively low as they can only make a change based on the 
probability. MCPSO is a continuous algorithm which introduces the group searching 
mechanism of PSO into the complex method. It considers the global property between 
solutions through geometry point, optimization and other principles so as to shorten the 
distance between the solution with poor adaptability and the solution with good 
adaptability. In order to avoid being trapped in the local extremum, certain probability will 
be considered. Shortening the distance between bad solution and good solution will help 
you to get the optimal solution in a more precise way within a short time, and greatly 
enhance the searching ability. The appearance of the algorithm targeted to TSP solution 
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sequence not only helps to keep the above characteristics of MCPSO, but also guarantees the 
effective application of MCPSO to discrete problems. As for the 14 points of TSP, the 
running of MCPSO algorithm (7 out of 10 times) will help you to find the optimal solution 
with relatively low iterative number. However, after 10 times of running of ACO and SGA, 
no optimal solution is found. From this, we can see the advantage of MCPSO. 
                         

Algorithm 

Number of 
times of 

reaching the 
optimum 

value 

Minimum 
algebra for 

reaching the 
optimum 

value 

Average algebra 
for reaching the 
optimum value

Best value
Average 

value 
Standard 
deviation 

ACO 0 N/A N/A 31.8791 33.6888 3.7000 

SGA 0 N/A N/A 34.4509 35.9578 3.4209 

MCPSO 7 35 143.57 30.8785 31.0262 0.7137 

Table 4. Comparison of the results from three algorithms 

 
                        

Fig. 1.  

5. Application of the improved PSO algorithm for the TSP 

PCB’s digital control drilling problem can be described as follows: Process all the holes by 

starting from the tool changing point (repetition and omission are not allowed). After the 

processing, return to this point to do tool changing and processing for other aperture. In 

terms of digital control programming, we should consider the order of drill hole processing 

to minimize the time idle running, i.e. the best route problem of tool changing or the TSP 

problem in nature. With regard to the processing problem for a series of holes, the 

coordinate for these 20 holes has been listed in the figure 5.1. We use PCB-CAD software 

and PSO, SGA, ACO, DPSO and MCPSO to solve this problem. The parameter setting for 

PSO is: 0.25ω = , 1 0.3c =  and 2 0.45c = . The speed will be indicated through exchange 

sequence. The parameters of the other three algorithms are the same as above. The tool 

Iterative number
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changing routes generated are shown in figures 5.1 to 5.6. The latter five algorithms are run 

individually for 10 times with the upper limit of iterative number each time of 200 and pop-

size of 600. The figures presented are their optimal structures. The path lengths for the tool 

changing routes generated from 6 algorithms are given in table 5.2. 
 

No. x  y  No. x  y  No. x  y  

1 1 1 8 2.5 7.5 15 7 15.5 

2 1 3 9 2.5 1 16 7 13.5 

3 1 7 10 3.5 2 17 7 12.1 

4 1 8 11 3.5 8.2 18 7 12 

5 2.5 14 12 3.5 12.9 19 7 10 

6 2.5 13.5 13 3.5 13.2 20 7 4 

7 2.5 13 14 3.5 13.9    

Table 5. Position for 20 holes 

 Algorithm PCB-CAD ACO SGA PSO MCPSO DPSO 

Average 
length 

61.5555 60.5610 58.6334 59.4244 43.4923 44.4978 

Minimum 
length 

61.5555 56.7481 52.2687 53.2687 40.1203 40.1203 

Table 6. Calculation result comparison                               

 

Fig. 5.1 Tool changing route chart generated from PCB-CAD            

 

Fig. 5.2 Tool changing route chart generated from PSO                  
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Fig. 5.3 Tool changing route chart generated from SGA 

 
 

Fig. 5.4 Tool changing route chart generated from ACO                

 
 

Fig. 5.5 Tool changing route chart generated from MCPSO              

 

Fig. 5.6 Tool changing route chart generated from DPSO 
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From above, see can see that the lengths of tool changing routes generated from 

optimization algorithms are shorter than that generated from PCB-CAD software, of which 

the MCPCO enjoy the shortest length (about 29% shorter than others). Determination of the 

best route for PCB digital control drilling can effectively solve the optimization problem of 

the digital control programming in the course of PCB processing and develop a PCB 

automatic programming system. 

6. Summary  

This article consists of the definition of TSP, mathematical description methods, traditional 

solving methods for the TSP and problems existing in the traditional solving methods. At 

the same time, it introduces the evolution algorithms for solving the TSP. Based on this, two 

algorithms (MCPSO and DPSO) are provided. Finally, it shows us the best tool changing 

route for the digital control drilling by using the algorithms given.  
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