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1. Introduction 

Hardwoods (e.g. ash, beech, oak, poplar) and softwoods (e.g. fir, pine, spruce) consist of 
various types of cells: vessel elements, tracheids, libriform fibres, axial parenchyma cells, ray 
parenchyma cells, epithelial cells, etc. These cells exhibit various orientations in relation to 
the standing tree and provide various functions, such as, imparting mechanical strength, 
acting as water-conducting elements, or functioning as storage cells. Wood cells, their cell 
walls and lumens have typical shapes and dimensions. Cell walls usually consist of primary 
and secondary wall layers which are made up from basic natural polymers: cellulose, 
hemicelluloses and lignin. Extractives of durable wood species (such as terpenoids, 
tropolones, stilbenes, flavonoids or chinones) are usually present in the cell lumens, or 
sometimes even in the cell walls (Fengel & Wegener 1984).  
Wood is a natural organic material and as such it can be degraded by biological agents: 
bacteria, fungi and insects. The use of wood is thereby limited by its susceptibility to 
organisms that may damage its structure and deteriorate its properties.  
Wood-destroying fungi, such as brown-rot (Serpula lacrymans, Coniophora puteana, Antrodia 

vaillantii, Gloeophyllum trabeum, Lentinus lepideus, etc.) and white-rot (Trametes versicolor, 

Trametes hirsuta, Schizophyllum commune, etc.) basidiomycetes, or soft-rot (Chaetomium 

globosum, Monodictys putredinis, etc.) ascomycetes, destroy polysaccharides (cellulose and 
hemicelluloses) present in the cell walls. They may also, in different degrees, degrade the 
lignin (Arantes et al. 2010, Schmidt 2006). Fungi attain the depolymerization of 
polysaccharides by producing various types of hydrolytic enzymes, e.g. degradation of 
crystalline cellulose is achieved using etracellular endo-1,4-ß-glucanases, exo-1,4-ß-
glucanases, and 1,4-ß-glucosidase. Brown rot-fungi - which do not have exo-1,4-ß-
glucanases - use the low molecular non-enzymatic Fenton chelator-mediated system 
consisting of oxalic acid, iron cations and hydrogen peroxide (Eriksson et al. 1990, Goodell et 

al. 2007, Hastrup et al. 2010, Messner et al. 2003).  Rotten wood has lower density and lower 
strength (Reinprecht 1992, Wilcox 1978). In parallel to the changes above, rot-fungi also 
change the moisture, colour, acoustic and other properties of wood, with an expressive 
influence on wood quality. However, these fungi can only degrade the structural 
components of wood in situations when its moisture content (MC) is 20 % or more (Carll & 
Highley 1999).  
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Other wood-degrading fungi, such as blue stain fungi (commonly called staining fungi – 
growing inside of wood) and microscopic fungi (commonly called moulds – growing on 
wood surfaces), are not able to depolymerise the cellulose and other building polymers in 
the cell walls of wood. These fungi metabolize simple sugars and starch present in ray cells 
and axial cell lumens. Staining fungi (Ceratocystis pilifera, Aureobasidium pullulans, Alternaria 
alternata, etc.) release pigments and cause colour changes in inner parts of the wood, while 
simultaneously increasing its permeability as a result of fine perforation of cell walls by 
penetration hyphae and also by disruption of pits in tracheids or in other cell elements. 
Some of these strains are also known to be able to cause soft rot in hardwoods under optimal 
conditions (e.g. Phialophora spp.). Colonization of wood by staining fungi occurs at moisture 
contents (MC) above 30 %, e.g. sapwood of softwoods is optimally attacked at MC of 100 – 130 
%, while sapwood of tropical and other hardwoods at MC of 40 – 80 % (Fougerousse 1985, 
Zabel & Morrell 1992). Moulds (Aspergillus niger, Penicillium brevi-compactum, Trichoderma 
viride, etc.) produce masses of coloured spores on wood surfaces, and some of them also yield 
pigments (Reinprecht 2008). Moulds have only a minor influence on wood quality. Growth of 
moulds on wood surfaces is not so dominantly dependant on the wood’s MC, as they are 
influenced mainly by the relative humidity (RH) of the surrounding air, which has to be 
minimally about 80 % (Viitanen & Ritschkoff 1991).  
Protection of solid wood and wooden materials (plywood, laminated veneer lumbers, 
particleboards, fibreboards, etc.) prior to fungal attacks can be accomplished by the use of 
one of the following procedures: 
- exposure of wood and wooden products to convenient environmental conditions, e.g. 

without contact with ground and without influence of rain using various design tools 
(Foliente et al. 2002), when MC of wood is stable under 20 – 26 % and RH of air is stable 
under 80 – 90 % (Wang & Morris 2010),  

- usage of more durable wood species (EN 350-2, Taylor et al. 2002, Van Acker et al. 2003), 
- thermal, chemical or enzymatic modification of wood (Hill 2006, Reinprecht & 

Vidholdová 2008), 
- bio-control of wood with antagonist organisms (Phillips-Laing et al. 2003, Singh & 

Chittenden 2008),   
- application of fungicides. 
In the present, the service life of wooden products exposed to wet conditions is usually 
increased by using more durable wood species or by treatment of wood with effective and 
ecologically convenient fungicides (Brischke & Rapp 2008). However, in the future a bigger 
emphasis will be given to the use of modified woods, without any negative influence on the 
environment (Suttie 2008).       
Sleepers, poles, fences, shingles, decking, cladding, windows, log cabins, and many other 
wooden products exposed to exterior commonly have an MC above 20 %. The requirement 
of their fungicide protection in the 2nd till 5th classes of exposure by the EN 335-1 depends on 
the natural durability of used wood species by the EN 350-2. For wooden structural 
elements it is complexly given in the EN 460. Wood species with a lower amount of decay-
inhibiting heartwood extractives (terpenoids, stilbenes, etc.) have a minimal natural 
durability, e.g. beech, birch, hornbeam, poplar, fir, spruce, and more others (EN 350-2). In 
this fact, wooden products from less durable wood species intended for higher risk in-
service expositions have to be made either from modified wood substances (e.g. plywood 
from thermally modified or acetylated veneers), or from wood substance, glue or paint 
treated with a suitable fungicide (see Chapter 2).   
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2. Fungicides used for wood protection – world viewpoint  

Fungicides are inorganic or organic substances acting against fungi (Tab. 1). Their toxicant 
or retardant mode of action depends on their chemical structure from which all important 
biocidal properties are derived. Some fungicides have simultaneously bactericidal, 
insecticidal or other biocidal effects, e.g. boric acid (Lloyd 1998).   

2.1 Modes of action of fungicides and their efficacy  
Activity of the wood-degrading fungi can be suppressed by more biochemical modes of 
action of fungicides (Eaton & Hale 1993, Reinprecht 2008):  
- Inhibitors of respiration, by which either the formation of acetyl coenzyme A (CoA) is 

inhibited or the respiratory chain phosphorylation is interrupted, and simultaneously 
production of the high-energy intermediate “adenosine triphosphate” (ATP) is 
suppressed. Cupric ion Cu2+ from copper sulphate, copper oxide, copper naphthenate, 
copper-8-hydroxyquinolinate, Cu-HDO, etc. is a typical inhibitor of respiration 
processes in fungal cells. It has affinity to different chemical groups in the cells of fungi, 
particularly to thiol groups, resulting in the non-specific denaturation of proteins and 
enzymes. Similar inhibitory effects were found at the arsenic compounds, 2-
phenylphenol, pentachlorophenol and other phenolic compounds, carboxamides, 
tributyltin compounds, or isothiazolones.    

- Inhibitors of polysaccharide biosynthesis, and/or inhibitors of protein, lipid and nucleic 
acid biosynthesis. Well known inhibitors of the chitin (polysaccharide from N-
acetylglucosamine units) synthesis in the cell walls of fungi are polyoxins, antibiotics 
derived from a streptomycete. Lipid synthesis is suppressed by imidazoles, 
pyrimidines, or triazoles.  

- Inhibitors of cell division act by inhibiting the synthesis of microtubules. During cell 
division (mitosis) the genetic information stored in the nucleus in DNA 
(deoxyribonucleic acid) must be copied and the products transformed to the two 
daughter cells. The benzimidazole derivatives (e.g. carbendazim, benomyl) interfere 
with microtubule subunit polymerization and such preventing mitosis, at which 
depress the DNA synthesis, as well.    

- Disruptors of cell membranes of fungi, in which structure and function the sterols 
(especially ergosterol) play an important role. Tiazoles (e.g. azaconazole, propiconazole, 
tebuconazole) act as inhibitors of sterol biosynthesis, and this process is connected with 
disruption of cell membranes. Tar oils also disrupt the cell membranes when the lipids 
in membranes are soluble in the non-polar oil liquids. Semi-permeable membranes of 
fungi can be dehydrated and damaged by quarternary ammonium compounds (QAC), 
e.g. by didecyl-dimetyl-ammonium chloride (DDAC), in connection with leaking of cell 
constituents.      

- In-activators of enzymes usually inhibit several enzymatic processes at the same time. 
They often react with thiol groups in proteins (e.g. mercury-based fungicides used in 
the past, dicarboximides), inhibit glycolysis (e.g. mercury Hg2+ and copper Cu2+ 
cations), or inhibit other enzymatic reactions (e.g. boric acid and various boron 
compounds which form stable complexes with vitamins, coenzymes or other biological 
molecules having e.g. poly-ols groups (Lloyd et al. 1990), and simultaneously inhibit 
metabolic activity, enzymatic function and growth of fungi – so they act more as 
fungistatics rather than fungicides).     
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- Retardants of Fenton depolymerisation of polysaccharides in cells of wood are substances 
which chemically bond Fe3+ ions (e.g. tropolon, β-tujaplicin), and in this fact decrease 
the activity of brown-rot fungi (Gérardin et al. 2002).     

- Retardants of fungal spread in wood and other materials in buildings, e.g. non-toxic 
amino acid analogue “AIB” α-aminoisobutyric acid targets adaptive nitrogen 
redistribution mechanisms that are unique to rot-fungi, and which are essential to their 
ability to spread in buildings and colonise fresh wood sources poor in nitrogen 
(Watkinson & Tlalka 2008).  

Efficacy of fungicides depends on their ability to damage fungal cells, suppress growth, 
enzymatic or other activities of rotting-fungi in wooden or in model testing substrates, etc. 
In laboratory and field tests, and also in practice it is determined as a critical minimal 
concentration (%) or as a minimal critical retention in wood (g/m2, kg/m3). However, 
efficacy is not a constant value, because it is influenced by more biological and 
environmental factors presented inside and outside of the fungal cells (Reinprecht 2008): 
- velocity of adsorption of fungicide on the surface of fungal cells, which depends e.g. on the 

pH value of wood,  
- velocity of accumulation of fungicide into fungal cells, which can be increased in presence of 

conditioners,     
- species of fungus, when individual fungi non-seldom have a selective resistance to the 

molecule of fungicide (e.g. borates are effective against rotting-fungi but not against 
moulds; copper compounds are effective against soft-rot fungi, staining fungi and 
moulds but they have a lower efficacy against white-rot and brown-rot fungi, especially 
against fungi from the families of Antrodia and Serpula which create non-toxic crystals of 
copper oxalate (Hastrup et al. 2005),  

- amount of fungal cells, because the fungicide in interaction with cells of a living fungus 
can be sometimes inactivated and its concentration is brought down (e.g. fungicide for 
curative usage have to be applied in a higher concentration than for preventive usage), 

- amount of the applied fungicide, because its under-critical concentrations are not usually 
effective for a long time, when the fungus can be adapted on molecules of the fungicide, 
presence of other substances, which catalyse or retard efficacy of the fungicide (e.g. 
efficacy of QAC is synergistically increased in presence of inorganic copper compounds 
(Härtner & Barth 1996)), 

- temperature, moisture, UV light and other environmental factors, which influence the 
activity of fungal cells (e.g. cells are disposed to damage at higher temperatures – so the 
necessary of fungicide molecules is lower), the transport of fungicide to fungal cells 
(e.g. diffusion transport of water soluble fungicides is more intensive in wetter and 
warmer wood substance – so the necessary of fungicide molecules is lower), etc.         

2.2 The most used fungicides for wood protection  
Natural decay resistance of wood, plywood and other wooden materials against fungi can 
be increased by various synthetic and natural chemicals having fungicide or fungistatic 
effects.  
In the 20th century, protection of wood against fungi included the use of the following 
chemicals: traditional coal tar oils, various mercury-based compounds (HgCl2, ...), fluorine 
compounds (NaF, KF, CuSiF6.6H2O, MgSiF6.6H2O, ZnSiF6.6H2O, Na2SiF6.6H2O, ...), arsenic-
based compounds (As2O3, As2O5, FeAsS, Na2HAsO4, ...), copper-based compounds 
(CuSO4.5H2O, CuO, CuCO3.Cu(OH)2, Cu-HDO = bis/N-
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cyclohexyldiazeniumdioxy/copper, CuN = copper naphthenates, copper-8-quinolinolate, 
...), zinc-based compounds (ZnCl2, ZnO, ...), chromium-compounds (Na2Cr2O7, K2Cr2O7, 
CrO3, ...), boron compounds (H3BO3, Na2B4O7.10H2O, ...), quarternary alkyl-ammonium 
compounds (QAC, e.g. DDAC = didecyl-dimetyl-ammonium chloride), pentachlorophenol 
(PCP) and its sodium salt sodium pentachlorophenolate, organotin compounds (TBTO = 
bis/tributyltin/oxide, ...), etc. In the 70-90th years of the 20th century new organic substances 
have been tested and subsequently used for protection of wooden structures against fungi, 
e.g. sulfamides (dichlofluanid, tolylfluanid, …), carbamates (IPBC = 3-iodo-2-propynyl-
butyl-carbamate), dithiocarbamates, but first of all various hetero-cycles – e.g. 
benzothiazoles (TCMTB = 2-thiocynomethylthio-benzothiazole, …), benzoimidazoles 
(carbendazim, thiabendazole = 2-thiazol-4-yl-1H-benzoimidazole, …), triazoles 
(propiconazole, tebuconazole, …), isothiazolones (DCOIT = 4,5-dichloro-2-n-octyl-4-
isothiazol-3-one), or furan derivatives with the biologically active group CH3-C=C-C=O 
(furmecyclox, …) (Eaton & Hale 1993, Reinprecht 1996, 2008, Richardson 1993, Unger et al. 
2001).  
Fungicides containing the fluorine, arsenic, copper or zinc molecules with predestination for 
exterior expositions were usually combined with chromium, which fixed them into stable in 
water non-soluble complexes, e.g. F/Cr = Wolmanit U, Cu/Cr = CC salts, Cu/Cr/B = CCB 
salts, Cu/Zn/Cr/B = CBZ salts, Cu/Cr/As = CCA salts, etc. (Dahlgren & Hartford 1972, 
Peek & Willeitner 1984). In present years the chromium can be, by the Biocidal Product 
Directive 98/8/EC, used only as a fixative agent in the form of chromic acid CrO3, not as a 
fungicide (Jüngel & Melcher 2006, Jüngel & Hellkamp 2008). Applications of the mercury, 
fluorine, pentachlorophenol, organotin and also of some other compounds including 
traditional compositions of tar oils with the carcinogen benzo-α-pyrene, have been stopped 
already during the 20th century due to environmental, health or other aspects. 
Today in the 21st century, the industrial protection of wood against fungi has responded to 
environmental, legislative and economic pressures to utilize more environmentally sensitive 
formulations (Wallace & Dickinson 2006). Usage of arsenic in the copper-chromated-
arsenate (CCA) and in other preservatives was restricted (Preston 2000, Evans 2003). Timber 
preservation is carried out either with modified coal tar oils “creosotes” without benzo-α-
pyrene and having only a minimal amount of easily evaporated naphtalene derivatives (tar 
oils only for pressure impregnation of sleepers and poles), and with selected types of 
inorganic and organic fungicides having oral LD50 above 500 ppm for the animal organisms, 
at which these fungicides may not have mutagenic and cancer effects on animals (Tab. 1).  
Coming out from the health and environmental demands on biocidal products determined 
in the Directive 98/8/EC of the European Parliament and of the Council of 16 February 
1998, and also in its other Commission Regulation (EC) reports No. 1896/2000, 2032/2003, 
1048/2005, 1849/2006 1451/2007, only a limited number of active substances will be 
permitted in the European market after 2014 (Krajewski & Strzelczyk-Urbaňska 2009). 
Already today in the Annex I to the Directive 98/8/EC there is only a small number of 
active substances from PT 8 (wood preservatives), e.g. fungicides IPBC, K-HDO, 
propiconazole, tebuconazole, dichlofluanid, or thiabendazole.  
As a result of these regulations, in the future will probably be a reduced interest for 
investigation of new biocidal – fungicide active substances, mainly those on the basis of 
heavy metals (not only chromium, tin or arsenic, but also copper, etc.), which usage is 
already now limited in a practice. According to Leithoff & Blancquaert (2006) the price for 
notification of existing active substances varies from 3.3 to 6.0 million Euro, at which the 
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______________________________________________________________________________________
                BIOCIDE                                                                                                       EFFICACY                      
                                                                                                                             Fungicide      Insecticide 
______________________________________________________________________________________ 

 Boron compounds (boric acid, borax, ...)                                               +                    + 
 Carbamates (IPBC, ...)                                                                               +  
 Copper inorganic compounds (copper oxide, ...)                                 + 
 Copper naphtenates and citrates                                                            +       
 Creosotes                                                                                                    +                    + 
 Isotiazolones (DCOIT, ...)                                                                         + 
 N-organodiazeniumdioxy-metals (Cu-HDO, ...)                                  +                  (+)     
 Quarternary ammonium compounds – QAC (DDAC, ...)                  +                  (+)  
 Sulfamides (dichlofluanid, tolylfluanid, ...)                                          +                
 Triazoles (propiconazole, tebuconazole, ...)                                          +         

__________________________________________________________________________________ 
 Natural substances (chitosan, essential oils, ...)                                   +                  (+)                   

______________________________________________________________________________________  
Note:  + it is a basic biocidal activity; (+) it is an additional biocidal activity 

Table 1. The most important fungicides for wood protection used today in the Europe and 
also in the world (Reinprecht & Tiralová 2007a) 

highest 85-90 % expenses are connected with the toxicology and eco-toxicology studies. 
Lower prices are needed for registration of existing (0.2-0.5 million Euro) or new 
preservative products (0.3-1.4 million Euro). On the other hand, the price for evaluation, 
notification and registration of a new active substance is usually from 30 to 40 million Euro 
(Reinprecht 2008). 
Commercial wood preservatives used in the present contain mainly boron compounds 
(boric acid, disodium tetraborate, disodium octaborate, glycol borates, etc. often modified 
with fixatives, water repellents or other protective additives against leaching), quarternary 
alkyl-ammonium compounds, triazoles (azaconazole, propiconazole, tebuconazole), 
benzoimidazoles, isothiazolones, sulfamides, carboxamides, or 3-iodo-2-propynyl-butyl-
carbamate, and to this time also various copper-based compounds (CuO, CuCO3.Cu/OH/2, 
Cu-HDO = bis/N-cyclohexyldiazeniumdioxy/copper, etc.). Interesting for the future could 
be also other compounds with biological efficiency, e.g. aqueous based silver compositions 
or nano-silver particles – especially those between 100-200 nm (Ellis et al. 2007), triazines 
(Milata et al. in press), aminosilicone macro emulsions – ASMaE (Ghosh et al. 2008), 1,3-
dimethylol-4,5-dihydroxy-ethyl-urea – DMDHEU (Xie et al. 2005), or from natural 
substances especially the chitosan (Schmidt et al. 1995, Eikenes et al. 2005).  
Nanotechnologies are surely promising for wood preservation, as well. Nanometal 
characteristics may be totally different from the characteristics of the elemental metals and 
potentially may perform in an unusual manner. Nanometal preparations have several 
characteristics (e.g. size and charge), that may improve their performance in wood 
protection applications. If their particle size is smaller than the diameter of pores in the 
bordered pits or in the wood cells, complete penetration and uniform distribution in wood 
can be expected (Akhtari & Arefkhani 2010). However, in solid wood with a small amount 
of trace elements (Mn, Fe, Co, Ni, Cu, Zn, Mo, Pb, etc), which have a positive or negative 
physiological influence on the mycelium growth of fungi, the additional treatment of wood 
tissue with nano-particles of silver, copper, zinc, aluminium or other metals (nanobiocides) 
can be effective only if their concentration will be under-threshold toxicity range (Wažny & 
Kundzewicz 2008).            
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From the point of view of efficacy and ecology of fungicides it is also  very important their 
stability in treated wood. The main problem associated with the development of 
environmentally friendly wood preservatives for high hazard end uses, based on organic 
compounds, is the observed biotransformation of these chemicals. Some strains of 
proteobacteria (Alcaligenes, Enterobacter, Pseudomonas, Ralstonia, etc.) are able to degrade 
IPBC, propiconazole, chlorothalonil and other organic fungicides (Wallace & Dickinson 
2006). Propiconazole and tebuconazole are partly degradable also by the black-stain fungus 
Epicoccum purpurascens (Stirling & Morris 2010). According to these authors, if it proves to be 
possible to disrupt the mechanism of detoxification processes of organic fungicides, this 
could herald a new generation of environmentally friendly wood preservatives. On the 
other hand, intentional detoxification of organic fungicides can be important at 
reconstruction of old heritage buildings, and at remediation of carbon-based preservative-
treated wood at the end of its service life.        
Boron compounds: Boric acid H3BO3, disodium-tetraborate-decahydrate Na2B4O7.10 H2O 
(borax), disodium-octaborate-tetrahydrate Na2B8O13.4H2O (timbor), zinc borates Zn(BO2)2 
(Kirkpatrick & Barnes 2006, Lin & Furuno 2001), and also some other boron compounds 
belong to traditional preservatives for wood protection against wood-destroying fungi and 
insects in interior exposures (Dickinson & Murphy 1989, Lloyd 1998, Luo et al. 2005). Boron 
compounds have also certain fire retardant effect. They are usually applied in water 
solutions, or by diffusion methods at treatment of wet wood. Advantage of these 
compounds is their low toxicity to humans and the environment. In order to reach a better 
efficacy, they have to be applied in higher amounts, approximately from 3 to 20 kg/m3 of 
wood (Lyon et al. 2009, Pallaske 2004, Reinprecht 2007). Their disadvantage is a lower 
efficacy against moulds (Reinprecht et al. 1986).  
Inorganic boron compounds used in outdoor exposures have to be modified with fixatives 
or with water repellents, polymerizable monomers or other protective additives to reduce 
their leachability (Babuder et al. 2004, Lloyd et al. 2001). Polyvinyl alcohols belong to the 
most known fixatives which form stable complex with the borate ions (Mohareb et al. 2010a). 
Complexes with boron create also tannins (Pizzi & Baecker 1996). Fixation of boron in wood 
can be secured also by silicone gels (Furuno & Imamura 1998) and animal proteins (Mazela 
et al. 2007, Thevenon & Pizzi 2003).  
Organic compounds of boron, e.g. in esters (tetramethyl-ammonium bis/salicyl/borates – 
Humphrey et al. 2002; ammonium borate oleate “ABO” – Lyon et al. 2009), are usually more 
stable against leaching with water. The newly developed didecyl-dimethyl-ammonium 
tetrafluoroborate (DBF) is acceptably stable as well as effective against white-rot and brown-
rot basidiomycetes (Kartal et al. 2005) and in soil-bed tests against soft-rot fungi (Kartal et al. 
2006). The DBF with or without incorporation with acryl-silicon type resin emulsion showed 
a good decay resistance against basidiomycetes after severe weathering (Kartal et al. 2004, 
2006).     
Carbamates: 3-iodo-2-propynyl-butyl-carbamate (IPBC) is an organic fungicide, which can be 
applied in organic solvents (acetone, xylene), and also in water emulsions. The IPBC is 
effective against various types of wood-degrading fungi (Hansen 1984), however it is mainly 
used against moulds and staining fungi. Activity of IPBC against fungi can be enhanced 
with borates (Cassens & Eslyn 1981), or against the dry rot fungus Serpula lacrymans 
approximately about 50 % in the presence of 2g/l of α-aminoisobutyric acid (Bota et al. 
2010). 
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Copper compounds are mainly used in water, amine or organic solutions, but in recent 
years also in the form of micronized copper particles “MCQ”, usually ranging from 10 to 700 
nm (Matsunaga et al. 2007, McIntyre 2010). For example copper carbonate used in the form 
of MCQ is fixed to wood creating octahedral complexes with six oxygen atoms surrounding 
the central copper (Xue et al. 2010). From studies made by Chen (2010), it is evident that both 
oxidation of hemiacetals by Cu2+ in cellulose and hemicelluloses, and oxidation of guaiacyl 
lignin by Cu2+ to quinone methides took place, which led to complex formation of copper 
with all wood components. However, for long term efficacy of copper compounds in 
exterior exposures it is important not only the fixation of copper ions to polysaccharide and 
lignin in cell walls of wood, but also of their possible migration in the wood, e.g. from the 
surface of treated wood onto untreated check surfaces (Choi et al. 2001).        
However, copper preservatives are not effective against all types of wood-inhabiting fungi. 
It is well known, that most brown-rot fungi (Serpula lacrymans, Serpula himantioides, Antrodia 
radiculosa, Oligoporus placentus, Fomitopsis palustris, etc.), which use Fenton reaction at 
depolymerization of cellulose, are tolerant towards copper-based wood preservatives as a 
consequence of creation the non-active copper oxalate crystals, as well as other gene 
predictions (Hastrup et al. 2005, Tang et al. 2010, Schilling & Inda 2010, Woo & Morris 2010). 
Copper oxalate is insoluble in water and copper in this form has a greatly reduced 
inhibitory effect on fungal growth (Humar et al. 2001). Thereby, broad-spectral preservatives 
require the addition of suitable co-fungicide (e.g. boron-compound), to protect wood against 
copper tolerant fungi.       
Creosotes: Coal tar oils – creosotes, patented in 1836 by German chemist Franz Moll and first 
used for wood impregnation by John Bethell in 1838. In the 19th and 20th centuries, creosotes 
were the most commonly used wood preservatives throughout the world, with a worldwide 
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production of approximately 16 million metric tons (Eaton & Hale 1993). Creosotes consist 
from 200 to 800 different compounds, mainly from neutral polycyclic aromatic 
hydrocarbons (anthracene, phenantrene, pyrene, chrysene, ...), tar phenols (cresol, naphtol, 
...) and tar bases (quinoline, acridine, ...). They have good fungicide and insecticide effects at 
wood retention level between 30 kg/m3 (against insects) and 120 kg/m3 (against soft-rot 
fungi). In Europe, their composition and usage is controlled by the West European Institute 
for Wood Impregnation (WEI). However, now and mainly in the future, their application 
will be significantly restricted because of their negative influences on the environment.      
Isotiazolones: DCOIT (4,5-dichloro-2-n-octyl-4-isothiazol-3-one), Kathone (2-n-octyl-4-
isothiazol-3-one), Kathone CG (5-chloro-2-methyl-4-isothiazol-3-one) and others 
isotiazolones are used for wood protection as bactericides and fungicides in retentions from 
0.15 to 1.28 kg/m3. Some of them can also be used against termites. They are applied either 
in organic solvents or in water emulsions (Hegarty et al. 1997).   
 

C C

C

S

N

C8H17 - nCl

Cl O

 
DCOIT 

Quarternary ammonium compounds: QAC with various alkyl or aryl groups (R1, R2, R3, R4), 
and with chloride, tetrafluoroborate, nitrate, acetate or other anion X- (Zabielska-Matejuk & 
Skrzypczak 2006), have been used approximately 30 years for wood protection (Nicholas & 
Preston 1980). QAC are usually more effective against staining fungi and moulds (Micales-
Glaeser et al. 2004), and less effective against wood-destroying fungi. However, DDAC 
(didecyl-dimetyl-ammonium chloride) has a sufficient efficiency against rotting-fungi, as 
well. QAC are soluble in water and miscible with alcohol. In wood are fixed by ionic 
reactions with carbonyl groups of lignin and hemicelluloses, and by interactions with its –
OH groups (Nicholas et al. 1991). Due to their lower stability in environment, their rapid 
fixation close to the wood surface, and their influence on higher absorption of water by 
wood from environment, the QAC are not convenient for treatment of wood in contact with 
ground. Nowadays, QAC are used for treatments of structural timbers in interior and 
exterior above ground expositions, usually in combination with copper-compounds (e.g. 
CuCO3.Cu/OH/2), boron-compounds (e.g. H3BO3) or triazoles (e.g. propiconazole) 
(Reinprecht & Tiralová 2007a, 2007b). 
 

R1

R3

R2

R4

N

X+ -

 
QAC 

R1, R2  - alkyl groups with 1 to 6 carbon atoms 
R3        - alkyl group with 1 to 20 carbon atoms, or benzyl group 
R4        - alkyl group with 8 to 22 carbon atoms 
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Sulfamides: These compounds (dichlofluanid = N,N-dimethyl-N’-phenyl-N’-
/flurodichloromethylthio/-sulfamide, tolylfluanid = N,N-dimethyl-N’-p-tolyl-N’-
/fluorodichloromethylthio/-sulfamide, etc.) have typical active biological groups –S-C-
(Cl2)F or –S-C-(Cl3), which are connected with nitrogen atom. They are more effective 
against staining fungi and moulds (Buschhaus 1992), but in higher concentrations they are 
able to suppress activity of rotting-fungi, as well. Sulfamides are used in organic solvents or 
water emulsions, and they are often added also to exterior coatings for the preventive 
treatment of structural elements without soil contact.    
 

CH3

CH3

NSO2S N

F

Cl

Cl

C

           

CH3

CH3

NSO2S N

F

Cl

Cl

C

CH3  
                                     Dichlofluanid                                        Tolylfluanid 

Triazoles: Propiconazole ±cis/trans(1-[[2-(2,4-dichlorophenyl)-4-propyl-1,3-dioxolan-2-yl]-
methyl]-1H-1,2,4-triazole), tebuconazole (Alpha-[2-(4-chlorophenyl)-ethyl]-alpha-(1,1-
dimethylethyl)-1H-1,2,4-triazole-1-ethanol) and azaconazole are well known organic 
fungicides often used in various commercial formulations for wood protection against all 
types of wood-degrading fungi (Wüstenhöfer et al. 1993). They are applied in non-polar and 
semi-polar organic solvents, or in water emulsions. The 1,2,4-triazoles are stable in 
environment, and have only a low toxicity to animals. Their efficacy can be increased with 
antioxidants or with metal chelators (Bakhsous et al. 2006). A typical natural antioxidant is 
caffeine (1,3,7-trimethylxanthine) which induces a strong alteration of cell wall architecture 
of fungi, inhibiting their growth. Its combination with propiconazole is effective against 
wood-destroying basidiomycetes (Lekounougou et al. 2007).      
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                        Propiconazole                                                          Tebuconazole  

Metal azole complexes have been known from the 70th years of the 20th century. Now, after 
restriction of CCA salts, the use of copper in combination with organic co-biocide come into 
interest of more researches (Evans et al. 2008). Metal-centred azole complexes formed from 
propiconazole or tebuconazole with copper acetate, e.g. Cu(tebuconazole)2(OAc)2, or other 
metal substances create crystals which by more studies and patents have either lower or 
higher efficiency against fungi in comparison to original compounds.  
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Natural substances: Interest in the exploration and use of natural products as fungicides is 
rapidly growing worldwide. Different natural substances are potentially suitable for wood 
protection before attack by fungi: plant extracts, essential oils, heartwood extractives, waxes 
and resins from bark, and other bioproducts, e.g. chitosan (Singh & Singh 2010). However, 
industrial uptake of these compounds by wood preservation has been limited until now due 
to the following reasons: - incompatibility in efficacy of a compound on nutrient medium at 
screening tests and on wood in a practice; - narrow spectrum of fungicidal activity of some 
of these compounds, e.g. only against selected species of moulds; - variability in chemical 
composition; - incompatibility with legislation and registration of new compounds for 
market. In spite of these limitations, the potential is enormous for developing protection 
technologies based on the use of natural compounds as fungicides.  
Natural organic compounds established as safe to human health and environment such as 
chitosan, essential oils, etc. have been investigated with aim of replacing inorganic and 
synthetic organic fungicides. Problems with their high leachibility from treated wood can be 
solved either with their in situ polymerization with wood tissues, e.g. by enzymatic 
polymerization of essential oil phenols with wood lignin, or by their nano-formulation in a 
form of micronized particles (Singh & Singh 2010). Their fungicidal or commonly biological 
activity can also be improved using a combination of natural products (Maoz et al. 2007).  
Essential oils are commercially used as perfumes, flavouring food additives, or 
pharmaceutical products. Some of them have good antifungal properties against wood-
degrading fungi, e.g. cinnamon, geranium, lavender, oregano, thyme. Essential oils with 
phenolic or aldehyde and ketone components like thymol, carvone or carvacrol show 
evidently higher activity against wood-rotting basidiomycetes as those with hydrocarbon 
monoterpenes or ester monoterpenes (Amusant et al. 2009). Carvone, citronellol, geraniol, 
thymol and borneol are effective inhibitors of mould spore germination (Clausen et al. 2010).  
Extracts from heartwood of more durable tropical or temperate wood species (Cupressus 
lusitanica, Dalbergia sissoo, Eperua falcata, E. grandiflora, Milicia excelsa, Taiwania 
cryptomerioides, Tectona grandis, Thuja plicata, etc.) contain bioactive compounds: 
polyphenolics (e.g. flavonoids, sterols), terpenics (e.g. cedrol, agathadiol, epimanool, bornyl 
acetate, cedrene), alkaloids, or stilbenes. These extracts inhibit activity of various types of 
wood-degrading fungi (Amusant et al. 2005, Chang et al. 2003, Kazemi et al. 2006, Mohareb et 
al. 2010b). However, alteration of their chemical structures during extraction processes from 
durable trees, during pressure or unpressured treatment of less durable wood species, or 
during exposure of treated wood products to environment can lead to loss of their original 
antifungal activity.      
Chitosan is 1-4 linked heterogeneous polymers of D-glucosamine (FA = 0), usually also with 
N-acetyl-D-glucosamine units (FA ≠ 0). This natural compound is derived from crustacean 
shells. To some extent is water soluble under acidic conditions. It can act both fungistatically 
and as a fungicide at higher concentrations (Eikenes et al. 2005).      
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Wood treated with 1-5 % concentrations of chitosan proved effective against the brown-rot 
fungi Coniophora puteana and Gloeophyllum trabeum (Schmidt et al. 1995), and also against the 
white-rot fungus Trametes versicolor (Maoz & Morrell 2004). Efficacy of chitosan depends 
also on its molecular weight (MW). Chitosan with lower MW has been found to be the most 
effective against Trametes versicolor and Poria placenta basidiomycetes (Mohareb & Badawy 
2008).  

3. Evaluation and testing of fungicides for wood protection in Slovakia  

In Slovakia, after its formation from Czechoslovakia in 1993, there has been a relatively poor 
interest for investigation of new active compounds with fungicide effects for wood 
preservation. Basic research at a limited level has been performed either in the capital 
Bratislava – in the Slovak Forest Products Research Institute, in the Chemical-Technological 
Faculty of the Slovak Technical University, in the Pharmacy faculty of the University of 
Comeniana, and simultaneously in Zvolen – in the Faculty of Wood Sciences and 
Technology of the Technical University in Zvolen.  
The following compounds have been prepared (in Slovakia or also in Czech Republic) and 
tested by screening methods (poisoned agar-malt soil, poisoned filter papers, etc.) and 
European standards (EN 113, P ENV 839 – with treatment of wood samples) in the 
mycological laboratory of TU in Zvolen: 
• more organic compounds with a potential fungicide efficiency (e.g. tributyltin-N,N-

diethyl-dithiocarbamate and other organotin-dithiocarbamates, copper and zinc 
dithiocarbamates, N-salicylidene-L-glutamato-copper(II) and other copper chelates, or 
1,3,5-triazines with three identical hetero-cyclic groups),  

• traditional boron fungicides in mixtures with inorganic ammonium salts (fire 
retardants),  

• waste glycols modified with boron compounds (B-glycol-complexes), or with boron and 
waste copper compounds (Cu-B-glycol-complexes), together with selected additives.   

Boric acid, disodium tetraborate, tributyltinnaphtenate (TBTN), 2-
thiocyanomethyltiobenzothiazole (TCMTB) and some other commercial fungicides have 
been used and tested also for antifungal protection of wooden composites – plywood, 
particleboards, etc. During the laboratory experiments interest was given to necessary 
changes related with technological parameters of their preparation (e.g. temperature and 
time of pressing), and on their effects against fungi. Tests showed that fungicides added to 
wooden composites in higher amounts provided successful antifungal activity. However, 
some fungicides had a negative influence on the moisture and strength properties of 
composite products with phenol-formaldehyde or melamine-urea-formaldehyde glues 
(Reinprecht & Štefka 1989, Reinprecht & Perlác 1995).    

3.1 Evaluation and antifungal tests of new organic compounds  
Between 1993 and 2008, the antifungal efficacy of newly prepared organotin compounds, 
metal dithiocarbamates, copper chelates and 1,3,5-triazines was tested at Zvolen’s TU. These 
organic compounds were prepared in Bratislava in the Chemical-Technological Faculty of 
STU, or in the Pharmacy faculty of UC, and some of them also in Brno - Czech Republic in 
the Chemical faculty of VUT.  
Organotin-dithiocarbamates: During 1993-1998, the antifungal efficacy of  more organotin 
compounds, e.g. tributyltin-N,N-diethyl-dithiocarbamate (TBT-DEDTK), triphenyltin-N,N-
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diethyl-dithiocarbamate (TPT-DEDTK), tribenzyltin-N,N-diethyl-dithiocarbamate (TBzT-
DEDTK), tributyltin-N-pyrrolidinyl-dithiocarbamate (TBT-PoDTK), tributyltin-N-
piperidinyl-dithiocarbamate (TBT-PiDTK), tributyltin-N-morpholinyl-dithiocarbamate 
(TBT-MfDTK), dibutyltin-di-N-pyrrolidinyl-dithiocarbamate (DBT-DPoDTK), tributyltin-
N,N-dipropyl-dithiocarbamate-dipropionate (TBT-DPrDTK-DPr), among others,  was 
valued in screening and standard tests (Kizlink et al. 1996a, 1996b, Reinprecht 1996, 
Reinprecht & Kizlink 1996, 1999), Their activity was compared with the commercial 
organotin fungicides bis/tributyltin/oxide (TBTO) and tributyltinnaphtenate (TBTN).   
Anti-mould tests were carried out against a mixture of moulds (Aspergillus amstelodami, 
Aspergillus niger, Paecilomyces varioti, Penicillium brevicompactum, Penicillium cyclopium and 
Trichoderma viride), firstly by screening method on poisoned agar-malt soil and then by 
standard method STN 49 0604 with beech samples 50 x 20 x 5 mm treated with organotin 
compounds by dipping or pressure impregnation technology. Anti-decay tests were 
performed against the brown-rot fungi Serpula lacrymans and Coniophora puteana and the white-
rot fungus Trametes versicolor, firstly by screening method on poisoned agar-malt soil and then 
by modified EN 113 standard using pressure impregnated beech samples 120 x 8.5 x 8.5 mm. 
Before carrying out the antifungal tests, treated beech samples were naturally aged without 
contact with ground under an angle 45° during the period of 0, 2 or 4 months. From the 
organotin-dithiocarbamates tested, only the TBT-DEDTK had sufficient antifungal efficiency 
comparable with the commercial organotin compounds TBTO and TBTN (Reinprecht 1996).  
Copper and zinc dithiocarbamates: Metal dithiocarbamates with aromatic or hetero-cyclic 
groups were prepared and then tested in screening tests against wood-destroying fungi 
Coniophora puteana and Trametes versicolor (Reinprecht et al. 2003). However, their antifungal 
efficacy, e.g. of copper/Cu2+/-N-morpholinyl-dithiocarbamate, zinc/Zn2+/-N-morpholinyl-
dithiocarbamate, copper/Cu2+/-N-piperidinyl-dithiocarbamate, zinc/Zn2+/-N-piperidinyl-
dithiocarbamate, and some others, was not sufficient. Antifungal effect of these metal 
dithiocarbamates was evidently lower in comparison with the organotin-dithiocarbamate 
TBT-DEDTK.  
N-salicylidene-L-glutamato-copper(II) and other copper chelates:  Antifungal and antimicrobial 
activity of various copper chelates does not show promising results against growth 
inhibition of wood-rotting fungi from a practical perspective (Kizlink et al. 2003, Reinprecht 
et al. 2003, Švajlenová et al. 1997). In screening tests the activity of newly prepared copper 
chelates, e.g. of (Cu/salicylidene/-glycin)-chelate, (Cu/chlorobenzaldehyde/-glycin)-
chelate, (Cu/anizaldehyde/-glycin)-chelate, (Cu/fural/-glycin)-chelate or 
(Cu/chlorbenzaldehyde/-beta-alanine)-chelate, against the fungi C. puteana and T. versicolor, 
was slightly lower that the well-known (Cu2/salycilidene/-beta–alanine)-chelate. However, 
antifungal activity of all these chelates was evidently lower in comparison with the 
commercial fungicide Tebuconazole (Reinprecht et al. 2003).  
In antifungal screening tests with other copper chelates (Reinprecht et al. 2009), it was 
determined that activity of the N-salicylidene-L-glutamato-copper(II) chelate complexes 
(Cu/N-salicylidene-L-glutamato/X, where X = ligand) against the fungi Coniophora puteana 
and Trametes versicolor was better in comparison to the parent substance monohydrate 
diaqua/N-salicylidene-L-glutamato/copper(II) complex (Cu/N-sal-L-glu/.3H2O), and also 
to the free uncoordinated ligands X: urea, tiourea (TU), tetramethyltiourea (T-metu), 
imidazole (Im) or pyrazole (Pz) (Fig. 1 and 2). Activity of these copper chelates increased at 
higher concentrations from 0.1 % to 1.0 %. Their efficiency was better against the brown-rot 
fungus C. puteana. However, activity of the tested copper chelate complexes was 4 to 20 
times lower, when compared with the commercial fungicides IPBC and Tebuconazole.   
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Trametes versicolor
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Notes:  

• Screening tests with poisoned filter papers Whatman 3 CHR ∅ 14 mm treated with solutions of 
copper chelates or ligands X, which were located 20 mm from fungus inoculate 

• Each value in the figure corresponds to the arithmetic mean of three samples. 

Fig. 1. Growth inhibition indexes of fungus mycelium on the malt-agar soil (RIŽP) of 
selected N-salicylidene-L-glutamato-copper(II) chelates Cu/N-sal-L-glu/X between the 0 
and 7th day of screening test (Reinprecht et al. 2009) 
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Trametes versicolor
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Notes:  

• Screening tests with poisoned papers Whatman 3 CHR ∅ 14 mm treated with solutions of copper 
chelates, or ligands X 

• Each value in the figure corresponds to the arithmetic mean of three samples. 

Fig. 2. Indexes of fungus mycelium growth on poisoned filter papers (IPP) of selected N-
salicylidene-L-glutamato-copper(II) chelates Cu/N-sal-L-glu/X between the 7th and 14th day 
of screening test (Reinprecht et al. 2009) 

1,3,5-triazines with three identical hetero-cyclic groups: Symmetrical triazines (s-triazines or 
1,3,5-triazines) are a larger class of compounds exploited in many applications, most of them 
due to their biological properties (Afonso et al. 2006, Milata et al. 2001). New 1,3,5-triazines 
with three identical groups: benzotriazol-1/2-yl, imidazol-1-yl, pyrazolyl-1-yl, 3,5-
dimethylpyrazolyl-1-yl, 4,5-diphenylimidazol-1-yl, benzimidazolyl-1-yl, 2-
methylbenzimidazolyl-1-yl, or 2-phenylbenzimidazolyl-1-yl were synthesised. Their 
biological activity against wood-destroying fungi Serpula lacrymans, Coniophora puteana and 
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Trametes versicolor was tested in screening tests by the method of poisoned filter papers. S. 
lacrymans occurred as the most sensitive fungus on presence of 1,3,5-triazines.  
Triazines with three imidazole or three 4,5-diphenylimidazole groups were a slightly more 
effective than other ones. However, their efficacy in comparison with the commercial 
fungicides Tebuconazole and IPBC was insufficient (Milata et al. – in press).   

3.2 Antifungal efficiency of boron compounds in mixtures with inorganic ammonium 
salts   
The aim of the experiment was to propose a suitable type of the preservative for treatment of 
wood in interiors with a complete fungicide, insecticide and fire-retardant effect (Reinprecht & 
Pánek 2007). Chemicals based on boron (boric acid and disodium tetraborate decahydrate 
/borax/) were used as biocides “fungicide + insecticide”, and chemicals based on inorganic 
ammonium salts (ammonium sulphate and dihydrogenammonium phosphate) were used as 
fire-retardants. Fungicide efficacy of inorganic boron-amino preservatives with different 
portions of boron and ammonium salts was valued against the wood-destroying fungi 
Coniophora puteana and Trametes versicolor (by screening test, and then by the P ENV 839 – Tab. 
2), and also against the mixture of moulds Alternaria alternata, Aspergillus niger, Aspergillus 
amstelodami, Penicillium cyclopium and Penicillium brevi-compactum (by screening test, and then 
by the Slovak standard STN 49 0604 – Tab. 3). 
  

Fungus 
Wood 

preservative 

Concentration of  
boron compounds 
in the preservative

cB 
(%) 

Retention of 
boron 

compounds by 
wood 

RB (g/m2) 

Weight loss of 
sap-pine wood 

samples at 
decay 
Δm (%) 

AS - - 20.80 
0.25 0.45 18.92 
0.5 1.07 19.03 
1.0 1.96 12.40 
2.5 4.06 8.15 

Coniophora 
puteana 

 
AS + B 

5.0 8.76 2.30 
AS - - 12.22 

0.25 0.47 14.11 
0.5 1.07 11.69 
1.0 1.75 7.74 
2.5 4.52 4.32 

Trametes 
versicolor 
 

 
AS + B 

5.0 8.94 3.54 

Notes: 

• AS = ammonium salt (50 % NH4H2PO4 – dihydrogenammonium phosphate, and 50 % /NH4/2SO4 
– ammonium sulphate) applied in the form of 35 % water solution. 

• B = mixture of boron compounds 1:1 (50 % H3BO3 – boric acid, and 50 % Na2B4O7.10H2O – 
disodium tetraborate decahydrate), added to the AS preservative in various amounts. 

• Each value in the table corresponds to the arithmetic mean of four samples. 
• Weight losses of control untreated samples by C. puteana = 34.36 %, and by T. versicolor = 20.72 %.  

Table 2. Fungicide efficacy of wood preservatives containing ammonium salts (AS) and 
boron compounds (B) – standard test by P ENV 839 (Reinprecht & Pánek 2007) 
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Results of the screening and standard mycological tests showed that sufficient efficacy of the 
inorganic boron-amino preservative against brown-rot (C. puteana) and white-rot (T. 

versicolor) fungi can be achieved only if at least 5 % amount of boron compounds (2.5 % of 
boric acid and 2.5 % of borax) are used. In this situation the weight losses of treated sap-pine 
samples were under 3 %, or under 4 % (Tab. 2). On the other hand, the 5 % concentration of 
boron in the boron-amino preservatives is not a guarantee of a sufficient efficacy of treated 
wood against the mould attack (Tab. 3). This can be explained by a lower efficacy of boron 
against moulds than against wood-destroying fungi. An alternative explanation might be 
that the presence of nitrogen in ammonium salts can often support growth of moulds.  
  
 

Mixture of 
moulds 

Wood 
preservative 

Concentration of  
boron compounds 

in the 
preservative 

cB  

(%) 

Retention of 
boron 

compounds by 
wood 

RB   
(g/m2) 

Growth of 
moulds on sap-

pine wood 
surfaces 
Moulds 
(0 – 4) 

AS - - 4 
0.25 0.43 4 
0.5 1.02 3.8 
1.0 2.11 3.8 
2.5 4.18 3.6 

A. alternata 
A. amstelodami 
A. niger 
P. cyclopium 
P. brevi-
compactum 

AS + B 

5.0 8.94 3.2 

Notes: 

• Each value in the table corresponds to the arithmetic mean of 20 samples. 
• Growth of moulds on untreated samples was always maximal (Moulds = 4), it means that more as 

50 % of wood surfaces was covered with microscopic fungi – moulds.  

Table 3. Efficacy of wood preservatives containing ammonium salts (AS) and boron 
compounds (B) against moulds – test by the national standard STN 49 0604 (Reinprecht & 
Pánek 2007)   

3.3 Antifungal efficiency of waste glycols modified either with boron compounds (B-
glycol-complexes), or with boron and waste copper compounds (Cu-B-glycol-
complexes)   
Exploitation of metals (Cu, Cd, Co, Fe, Mn, Ni, Pb, Ti, V, W, Zn, Zr) and their salts which 
can be obtained by treatment of electrical and electronical (E&E) wastes is now one of the 
main interests of researchers and technical workers. This interest is a direct result of the 
European Union Direction No 2002/96/ES (about wastes from electrical and electronical 
devices), which gives not only demands on recycling of metals obtained from wastes, but 
also informs about possibilities of how to use salts of these metals and their mixtures for 
chemical products. Some metal salts from electrical and electronical wastes can be used as 
wood preservatives, plant preservatives, anti-corrosive protective agents of steels, or 
stabilizing agents of plastics (Edenbaum 1992).  
The aim of the experiment was to prepare modified waste substances (copper and glycols) 
obtained from electrical and cooling waste products, and use them as wood preservatives 
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with antifungal effects (Reinprecht & Kizlink 2007). Waste glycols “Fridex” were mixed with 
boron compounds H3BO3 and Na2B4O7.10H2O (B-glycol-complexes), or also with copper 
compounds (Cu-B-glycol-complexes). Both types of these compounds were modified as well 
as with the QAC fungicide “Althosan MBO – lauryl-benzyl-dimethyl-ammonium chloride”, 
or also with some other additives. For complexes of the type I., II. and III., the Cu(water-
waste) products, or also the cupric-salicylate, were added (Tab. 4).  
 
___________________________________________________________________________________________________

1) 20 % Boron-glycol +80 % Ethanol-Water 
2) 20 % Boron-phosphor-glycol + 80 % Ethanol-Water 
3) 10 % Boron-glycol +10 % Boron-phosphor-glycol + 80 % Ethanol-Water    
4) 3 % H3BO3  + 2 % Na2B4O7.10H2O +5 % Fridex + 1 % Althosan MBO + 0.25 % KSD + 88.75 % Water 
5) 3 % H3BO3 + 2 % Na2B4O7.10H2O + 5 % Fridex + 2 % Althosan MBO + 0.25 % KSD + 87.75 % Water  
6) 3 % H3BO3 + 2 % Na2B4O7.10H2O + 5 % Fridex + 2 % A0lthosan MBO + 1 % KSD + 1 % UR + 86 % Water  
7) 3.5 % H3BO3 + 2 % Na2B4O7.10H2O +5 % Fridex + 2 % Althosan MBO + 1 % UR + 86.5 % Water  
8) 3 % H3BO3 + 1.5 % Na2B4O7.10H2O + 5 % Fridex + 2 % Althosan MBO + 0.5 % UR +  88% Water  
9) 3 % H3BO3 + 1.5 % Na2B4O7.10H2O + 5 % Fridex + 2 % Althosan MBO + 1 % TUR + 87.5 % Water  
10) 3.5 % H3BO3 + 2 % Na2B4O7.10H2O + 5 % Fridex + 2 % Althosan MBO + 1 % TUR + 86.5 % Water 
11) 3 % Cu(OH)2.CuCO3 +2 % H3BO3 + 5 % Fridex + 5 % Althosan MBO + 5 % MEA + 80 % Water  
12) 3 % Cu(OH)2.CuCO3 + 2 % H3BO3 + 8 % Fridex + 2 % Althosan MBO + 5 % MEA + 80 % Water 
13) 3 % Cu(OH)2 + 2 % H3BO3 + 8 % Fridex + 2 % Althosan MBO + 5 % MEA + 80 % Water 
14) Complex I.    =  1 % CuCO3 + 1 % H3BO3 + 3 % MEA + 5 % glycol + 90 % Cu(water-waste)                              
15) Complex II.   =  1 % Cu(OH)2.CuCO3 + 1 % H3BO3 + 3 % MEA + 5 % glycol + 90 % Cu(water-waste)  
16) Complex III. =   95 % Complex II. + 5 % cupric-salicylate ___________________________________________________________________________________________________

 
Notes:  
• Boron-glycol was prepared by the reaction from boric acid, borax and ethyleneglycol, and boron-

phosphor-glycol was prepared by the reaction from boric acid, borax, phosphoric acid and 
propyleneglycol (Bukovský et al. 1998). 

• Additives: Fridex (waste glycols), Cu(water-waste) waste products with approximately 0.7 % of 
copper, Althosan MBO (QAC = lauryl-benzyl-dimethyl-ammonium chloride), KSD 
(potassiumhydrogensulphate), UR (urea), TUR (thiourea), MEA (monoethanolamine), SA 
(sulphuric acid) → only drops for pH value regulation between 7 and 10.   

Table 4. Composition of the B-glycol and Cu-B-glycol complexes (Reinprecht & Kizlink 2007) 
 

Efficacy of all prepared complexes No. 1-16 against the brown-rot fungus Coniophora puteana 
and the white-rot fungus Trametes versicolor was tested by the method of poisoned filter 
papers Whatman 3 CHR ∅ 14 mm, using 10 %, 33 % or 100 % water solution of these 
complexes. Three poisoned filter papers and one control paper were situated on agar-malt 
soil in each Petri dishes with a diameter of 120 mm, where inoculate of used fungus was 
previously situated in its centre (Fig. 3). Table 5 presents results obtained with the 10 % 
solutions of tested compounds. 
Antifungal effect of the Cu-B-glycol-complexes was nearly comparable with the standard 
Wolmanit CX-H 200 (mixture of 2.5 % Cu-HDO, 4.2 % Cu(OH)2.CuCO3 and 25 % H3BO3 in 
water). Copper in the glycol-complexes had an apparent positive antifungal effect, 
comparing a higher efficiency of the Cu-B-glycols (No. 11-13) with a lower efficiency of the 
B-glycols (No. 4-10). Activity of copper was slightly better against the white-rot fungus T. 

versicolor than against the brown-rot fungus C. puteana (No. 11-13). However, the complexes 
I., II. and III., based on the waste copper products: Cu(OH)2.CuCO3-H3BO3-ethanolamine-
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glycol-Cu(water-waste) and CuCO3-H3BO3-ethanolamine-glycol-Cu(water-waste), and 
without the QAC “Althosan MBO”, were less effective against the wood-destroying fungi, 
specially against the T. versicolor (No. 14-16).  

 
 

____________________________________________________________________________________________

Tested                                            Coniophora puteana                                           Trametes versicolor  
compound                  Inhibition zone      Growth on papers           Inhibition zone     Growth on papers   
                                               (mm)                      (mm)                                   (mm)                      (mm)   
c = 10 %                        7th day  14th day     7th day  14th day               7th day  14th day    7th day  14th day         
____________________________________________________________________________________________
B-glycol complexes 
  1                                      1-5         0                0          8-12                         0-2        0               0-2       8-14           
  2                                      1-3         0                0        10-12                           0         0               1-4        14                
  3                                      1-3         0                0          9-11                           0         0               1-4      12-14      
  4                                      4-6         0                0          5-7                           0-4        0                 0         2-7  
  5                                      4-8         0                0          4-7                           1-4        0                 0         1-4                 
  6                                      3-4         0                0          5-9                           1-2        0                  0         2-6                
  7                                      2-4         0                0          6-11                         0-1        0                  0         3-7   
  8                                      3-7         0                0          5-8                           0-2        0                  0         3-7  
  9                                      2-7         0                0          4-9                           1-3        0                  0         2-6 
10                                      3-6         0                0          5-8                           2-3        0                  0         2-4 ____________________________________________________________________________________________

Cu-B-glycol complexes 
11                                      6-12       0                0           3-5                          5-8      2-3                0           0                  
12                                      5-10       0                0           2-5                          6-9      1-2                0         0-3  
13                                      6-10       0                0           2-5                          4-7      0-1                0         0-2 
14                                      7-12       0                0           0-6                          0-2        0                0-1       6-10    
15                                      4-6         0                0           4-7                          0-2        0                0-2       8-12 
16                                      5-10       0                0           2-5                          0-3        0                0-2     10-12 
____________________________________________________________________________________________

Standard 
Wolmanit CX-H 200      8-15     3-9               0            0                            3-6       0-1               0         0-3        
____________________________________________________________________________________________

Controls                             0          0                0-4        14                             0          0              10-14     14                 
____________________________________________________________________________________________ 

 

Note:  

• Each value in the table corresponds to the arithmetic mean of nine poisoned papers situated in 
three Petri dishes. 

 

Table 5. Screenings of the antifungal efficacy of B-glycol and Cu-B-glycol complexes against 
the fungi C. puteana and T. versicolor, at using their c = 10 % water solutions in poisoned 
filter papers (Reinprecht & Kizlink 2007)         

 
Waste glycol compounds and waste copper compounds can be in exceptional cases used for 
preparation of wood preservatives: glycols as solvents and copper as fungicides. However, 
the chemical composition of all waste compounds used as wood preservatives with 
fungicide activity has to be exactly known, because it is very important from the ecological 
aspects and also from the point of view of the stability and durability of antifungal or other 
protection effects.         
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Fig. 3. Activity of the B-glycol-complex (No. 7) and the Cu-B-glycol complex (No. 11) against 
the fungi C. puteana and T. versicolor, determined by the screening test with poisoned filter 
papers in the 14th day  

4. Conclusion 

In present various types of inorganic and organic fungicides are commonly used for 
preservation of wood and wooden composites against moulds, staining fungi and rotting-
fungi. However, in future the timber industry will need new environmentally more friendly 
preservatives. Among the most perspective fungicides probably belong the natural 
substances (chitosan, essential oils, ...) and synthetically prepared organic compounds 
(hetero-cycles, carbamates, ...). Research in these fields have to be complex with aim to give 
on market only healthy-safe, stable and effective products.      
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