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1. Introduction 
 

Plant identification is very important in control design. The relay method belongs among 
special kinds of experimental frequency response identification. It was originally used for 
plant identification by Rotach (Rotač, 1964) and lately also for controller autotuning, see 
reference (Åstrőm & Wittenmark, 1989; Åstrőm, 1993; Åstrőm & Hägglund, 1995; Bi et al., 
1997; Hang et al., 1993; Lu et al., 1998; Shen et al., 1999; Tan et al., 1996; Wang et al., 1999). 
Autotuning of controllers for MIMO plants is described in references (Halevi et al., 1997; 
Loh & Vasnani, 1994; Semino & Scali, 1998). At present more publications exist which are 
devoted to identification or controller autotuning on the basis of the relay experiment, e.g. 
(Besançon-Voda & Roux-Buisson, 1997; Hang et al., 2002; Huang et al. 2005; Johnson & 
Moradi, 2005; Kaya & Atherton, 2001; Lee et al., 1995; Leva & Donida, 2009; Leva & Maggio, 
2009; Liu & Gao, 2009; Majhi, 2005; Majhi, 2007; Panda & Yu, 2003; Panda & Yu, 2005; 
Prokop et al., 2010; Sung et al., 2009; Tan et al., 2001; Tan et al., 2002; Vítečková & Víteček, 
2005; Vivek & Chidambaram, 2005). 
The aim of this paper is to summarily describe and show the basic modifications of the relay 
methods from the viewpoint of experimental plant identification and to bring out the 
computational formulas for simple plants. Two-position symmetric relays without and with 
hysteresis and with the integrator in front of the relay and behind of the relay are considered. 
 
2. Relay Method without Integrator 
 

In experimental plant identification using the relay method without the integrator it is 
assumed that the relay is plugged into the closed-loop system in lieu of a controller in 
accordance with Fig. 1, where: e, w, u and y are the control error, desired, manipulated and 
controlled variables, GP(s) – the plant transfer function, N(a) – the describing function of the 
relay (Fig. 2), s – the complex variable in L-transform, a – the harmonic oscillation amplitude. 
 

 
Fig. 1. Closed-loop system with two-position relay 
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The relay role is to effect stable oscillations of the closed-loop system in Fig. 1, i.e. to cause 
rise of the stable limit cycle. The describing function method is suitable to verify the limit 
cycle rise (Vukić et al., 2003). The describing function of the relay N(a) can be considered as 
the complex gain which depends on the harmonic oscillation amplitude a with the angular 
frequency ω 
 
 tate sin)(   (1) 
 
in the relay input and therefore it is possible to work with it like a common transfer 
function. 
The condition of the limit cycle rise of the non-linear closed-loop system in Fig. 1 has the 
simple form 
 

 
)(

1)(j
aN

GP   (2) 

 )(je)()(j  P
PP AG   (3) 

 
where GP(jω) is the plant transfer function in the frequency domain, )(PA  – the plant 
transfer function magnitude, )(P  – the plant transfer function phase. 
The relation (2) is in analogy with the stability boundary for the linear control system 
 

 1)(j oG  (4) 
 
where Go(jω) is the open-loop control system transfer function in the frequency domain. 
 

 
Fig. 2. Two-position symmetric relay: a) with hysteresis, b) without hysteresis 
 
From comparison of the relations (2) and (4) it is obvious that the term –1/N(a) has the same 
role as the critical point –1 for the linear control systems and therefore it is called a critical 
characteristic.  
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For the two-position symmetric relay with hysteresis ( 0 , Fig. 2a) or without hysteresis 
( 0 , Fig. 2b) the describing function and the corresponding critical characteristic have the 
forms (Vukić et al., 2003) 
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where 2  is the hysteresis width, u0 – the relay amplitude (maximum value of the 
manipulated variable u), AN(a) – the critical characteristic magnitude, )(aN  – the critical 
characteristic phase. 
Because the describing function (5) uses only the fundamental harmonic component of the 
oscillation at the relay input, therefore the describing function method is the approximate 
method, which gives more accurate results if the behaviour of the plant with the transfer 
function GP(s) is close to behaviour of a low-pass filter (Vukić et al., 2003). 
The condition represents the complex equation (2) can be substituted by two generally 
nonlinear equations 
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By solving of (7) the amplitude aM and the angular frequency M  can be obtained. If the 
obtained values aM and M  are positive and real, then in the closed-loop system in Fig. 1, 
the stable limit cycle rises with the oscillation amplitude aM at the relay input and with the 
angular frequency M (Vukić et al., 2003). 
The geometric interpretation of the solution of the complex equation (2) or the two real 
equations (7) is given in Fig. 3. The arrows of the curve )j( PG  and the critical characteristic 
(6) show the directions of the growth of the angular frequency   and the harmonic 
oscillation amplitude a at the relay input (1). 
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role as the critical point –1 for the linear control systems and therefore it is called a critical 
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where 2  is the hysteresis width, u0 – the relay amplitude (maximum value of the 
manipulated variable u), AN(a) – the critical characteristic magnitude, )(aN  – the critical 
characteristic phase. 
Because the describing function (5) uses only the fundamental harmonic component of the 
oscillation at the relay input, therefore the describing function method is the approximate 
method, which gives more accurate results if the behaviour of the plant with the transfer 
function GP(s) is close to behaviour of a low-pass filter (Vukić et al., 2003). 
The condition represents the complex equation (2) can be substituted by two generally 
nonlinear equations 
 

 
)()(
)()(

a
aAA

NP

NP







 (7) 

 
By solving of (7) the amplitude aM and the angular frequency M  can be obtained. If the 
obtained values aM and M  are positive and real, then in the closed-loop system in Fig. 1, 
the stable limit cycle rises with the oscillation amplitude aM at the relay input and with the 
angular frequency M (Vukić et al., 2003). 
The geometric interpretation of the solution of the complex equation (2) or the two real 
equations (7) is given in Fig. 3. The arrows of the curve )j( PG  and the critical characteristic 
(6) show the directions of the growth of the angular frequency   and the harmonic 
oscillation amplitude a at the relay input (1). 
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Fig. 3. Geometric interpretation of relay method without integrator 
 
If in the closed-loop system in Fig. 1 the stable limit cycle rises, then from the measured 
values aM and M  on the basis of the equations (7) is possible to obtain two unknown plant 
parameters, see Fig. 4. 
For w(t) = 0 the plant output variable y(t) (except for sign) is the relay input variable e(t), the 
equality 
 yM aa   (8) 
 

holds and the angular frequency M  is the same for all closed-loop system variables and it 
can be determined from the formula 
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Fig. 4. Courses of relay output variable u(t) and plant output variable y(t) in the case of 
stable limit cycle rise 
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An application of the relay with hysteresis is useful in the case of existence of noise. In this 
case it is recommended so as to hysteresis width 2  was greater then double noise 
amplitude and the relay amplitude u0 should be such so as to output plant variable 
amplitude ay was at least triple noise amplitude (Hang et al., 1993). Between the output 
oscillation amplitude ay and the relay amplitude u0 a direct proportion holds. 
For the relay with hysteresis the angular frequency (9) is lower then for the relay without 
hysteresis. 
From Fig. 3 it is obvious that the relay method without the integrator is suitable for 
proportional and integral plants with time delay. The plant gain can be determined from the 
steady state or by the other corresponding way. For the relay without hysteresis the equality 

 M  holds. 

 
Example 2.1 
For the proportional plant with transfer function 
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it is necessary to determine the plant time constant Ti and plant time delay Tdi on condition 
that the plant gain k1 and plant order i are known, using the relay method without 
integrator. 

 
Solution: 
For plant (10) the relations  
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hold. 
From experimentally obtained periodic course of the output variable y(t) the oscillation 
amplitude ay and period Ty can be measured (see Fig. 4), and than on the basis of the 
relations (6b), (6c), (7), (8), (9), (11b) and (11c) for a = aM = ay and M   the formulas 
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hold. 
From experimentally obtained periodic course of the output variable y(t) the oscillation 
amplitude ay and period Ty can be measured (see Fig. 4), and than on the basis of the 
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can be obtained. 
E.g. for a proportional (first order plus time delay) plant with the transfer function  
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from formulas (12) for i = 1 can be obtained 
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Likewise for a proportional (second order plus time delay) plant with the transfer function 
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from formulas (12) for i = 2 can be obtained 
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Notice: 
The plant (10) parameters Ti and Tdi for known k1 and i can also be determined from the 
ultimate (critical) gain of a proportional controller kpc and the ultimate (critical) period Tc, it 
holds 
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The ultimate controller gain kpc and the corresponding ultimate period Tc, must be 
determined iteratively. In this case formulas (15) are exact and therefore the accuracy of the 
determined parameters Ti and Tdi is considerably higher. 

 
Example 2.2 
Likewise in the example 2.1 on the basis of the relay method (without the integrator) for the 
integral plant with the transfer function 
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it is necessary to determine the plant time constant Ti and plant time delay Tdi on condition 
that the plant gain k1 and order i are known. 

 
Solution: 
For the plant (16) on the basis of the relations (11) it can be written directly 
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For experimentally obtained plant oscillation amplitude ay and period Ty (see Fig. 4), and 
than on the basis of the relations (6b), (6c), (7), (8), (9), (17a) and (17b) for a = aM = ay and 

M   the formulas  
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can be obtained. 
E.g. for the integral (integral plus first order plus time delay) plant with the transfer function  
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from the formulas (18) for i = 1 can be obtained 
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Likewise for a proportional (second order plus time delay) plant with the transfer function 
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Notice: 
The plant (10) parameters Ti and Tdi for known k1 and i can also be determined from the 
ultimate (critical) gain of a proportional controller kpc and the ultimate (critical) period Tc, it 
holds 
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The ultimate controller gain kpc and the corresponding ultimate period Tc, must be 
determined iteratively. In this case formulas (15) are exact and therefore the accuracy of the 
determined parameters Ti and Tdi is considerably higher. 

 
Example 2.2 
Likewise in the example 2.1 on the basis of the relay method (without the integrator) for the 
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it is necessary to determine the plant time constant Ti and plant time delay Tdi on condition 
that the plant gain k1 and order i are known. 

 
Solution: 
For the plant (16) on the basis of the relations (11) it can be written directly 
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For experimentally obtained plant oscillation amplitude ay and period Ty (see Fig. 4), and 
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can be obtained. 
E.g. for the integral (integral plus first order plus time delay) plant with the transfer function  
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Likewise for the integral (integral plus second order plus time delay) plant with the transfer 
function 
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from the formula (18) for i = 2 can be obtained 
 

 1
2

2 2
01

2 
y

yy

a
uTkT

T


 (20b) 

 



















22
2

2 arctg2arctg2
22 




yy

y
d

aT
TT

T  (20c) 

 
Notice: 
As well in this case the plant (16) parameters Ti and Tdi for known k1 and i can be 
determined from the ultimate controller gain kpc and the ultimate period Tc, it holds that 
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The formulas (21) are exact, but the ultimate controller gain kpc and the corresponding 
ultimate period Tc must be determined iteratively. 

 
3. Relay Method with Integrator 

The relay method with integrator is extending the previous approach (Åstrőm & Hãgglund 
1995). It can be used in two alternatives: with the integrator behind of the relay (Fig. 5a) and with 
the integrator in front of the relay (Fig. 5b). Both these alternatives must be strictly differentiated. 
For both alternatives in Fig. 5 the condition of the stable limit rise has a form [compare with (2)] 
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a) 

 
b) 

 
Fig. 5. Closed-loop system with relay with integrator: a) behind of relay, b) in front of relay 
 

 
Fig. 6. Geometric interpretation of relay method with integrator 
 
If the solution, i.e. the values a = aM and M  , are positive and real (Fig. 6), then in the 
closed-loop systems in Fig. 5 the stable limit cycle rises with the oscillation amplitude aM 
and the angular frequency M  at the relay input. 
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Fig. 5. Closed-loop system with relay with integrator: a) behind of relay, b) in front of relay 
 

 
Fig. 6. Geometric interpretation of relay method with integrator 
 
If the solution, i.e. the values a = aM and M  , are positive and real (Fig. 6), then in the 
closed-loop systems in Fig. 5 the stable limit cycle rises with the oscillation amplitude aM 
and the angular frequency M  at the relay input. 
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From Fig. 6 it is obvious that the relay method with the integrator is applicable only for 
proportional plants. For the relay without hysteresis with the integrator the relation 

2/ M  holds. 

 
a) Integrator is behind the relay 
In this case for w(t) = 0 the output plant variable y(t) (except for sign) is the input relay 
variable e(t), and therefore (8) holds, i.e. aM = ay. 
 
Example 3.1 
For the plant (10) from the example 2.1 it is necessary when using the relay method with the 
integrator behind the relay, to determine the plant time constant Ti and plant time delay Tdi 
on condition that the plant gain k1 and its order i are known. 
 
Solution: 
From the experimental obtained periodic course of the output variable y(t) the amplitude ay 
and period Ty were obtained (Fig. 4). On the basis of the relations (6b), (6c), (8), (9), (11b), 
(11c) and (23) for a = aM = ay and M   can be obtained the relations (18), which are the 
same like in the example 2.2. 
 
Example 3.2 
On the basis of the relay method without hysteresis and with the integrator behind the relay 
for the second order oscillatory plant 
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it is necessary to determine the plant time constant T0 and plant damping coefficient 0  on 
condition that the plant gain k1 is known. 
 
Solution: 
For the plant (24) holds 
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For the relay without hysteresis with the integrator the relation 
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holds. 
On the basis of the relations (6b), (25b), (26a) and the first equation in (23) can be obtained 
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From the experimental obtained values ay and Ty (see Fig. 4) by means of (26) the unknown 
parameters T0 and 0  can be determined. 

 
b) Integrator is in front of relay 
In this case for w(t) = 0 the input relay variable is given 
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and therefore the relation 
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holds. 
With respect to high frequency damping by the integrator, an accuracy of the relay method 
with the integrator in front of the relay is less then the accuracy of the relay method with the 
integrator behind the relay. 

 
Example 3.3 
For proportional plant (10) from example 2.1 it is necessary by the relay method with the 
integrator in front of the relay to determine plant time constant Ti and plant time delay Tdi 
on condition that the plant gain k1 and plant order i are known. 

 
Solution: 
On the basis of the relations (6b), (6c), (9), (11b), (11c), (23) and (28) for a = aM and M   
can be obtained 
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The formula (29a) is the same as the formula (12a). 
E.g. for proportional plant (13a) on the basis of the formulas (29) for i = 1 can be obtained 
 

 
























2

2

22
1

1

4

arctg2arctg
22







yyy

y
d

TaT
TT

T  (30) 

 
The formula for T1 is the same as the formula (13b). 
Likewise for proportional plant with the transfer function (14a) on the basis of the formulas 
(29) for i = 2 can be obtained 
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The formula for T2 is the same as the formula (14b). 

 
Example 3.4 
On the basis of the relay method without hysteresis and with the integrator in front of the 
relay for the second order oscillatory plant (24) from the example 3.2 it is necessary to 
determine the plant time constant T0 and plant damping coefficient 0  on condition that the 
plant gain k1 is known. 

 
Solution: 
Likewise in the example 3.2 for the relay without hysteresis with the integrator (in front of 
or behind the relay) (26a) holds. Further on the basis of the relations (6b), (25b), (26a), (28) 
and the first equation in (23) can be obtained 
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From the periodic course of the output variable y(t) the amplitude ay and period Ty of the 
oscillation and on the basis of the formulas (26a) and (32) parameters T0 and 0  can be 
determined. 

 

Notice: 
The plant transfer function (24) can be expressed in terms of the damping coefficient value 

0  in forms 
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where T1 > T2 are the different plant time constants, which can be determined on the basis of 
the formulas 
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The plant parameters T0 and 0  can be also determined by means of the integral controller 
with the transfer function 1/TIs, which is plugged into the closed-loop system in Fig. 1 in 
lieu of the relay or the proportional controller with the transfer function kp, which is plugged 
into the closed-loop systems in Fig. 5 in lieu of the relay and causing the stable oscillation. 
Then from the measured ultimate period Tc any closed-loop system variable and from the 
ultimate controller gain kpc or the ultimate integral time TIc = 1/kpc the above mentioned 
parameters can be determined on the basis of the formulas  
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Likewise in the cases of the plants (10) and (16) the values of the ultimate parameters Tc, kpc 
or TIc must be determined iteratively but on the other side the formulas (35) are exact.  

 
4. Conclusions 

The book chapter describes the use of the relay method with and without hysteresis and 
further more with and without integrator, which is plugged in behind or in front of the relay 
for experimental identification of the simple plants. The relay method without the integrator 
is suitable for proportional and integral plants and the relay method with the integrator is 
suitable only for proportional plants. For proportional and integral plants with multiple 
time constants with time delay and for second order oscillatory proportional plant the 
general formulas for computation of their two parameters are derived. Experimentally it is 
possible to obtain one point of the plant frequency response, i.e. two values of the plant 
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The formula for T1 is the same as the formula (13b). 
Likewise for proportional plant with the transfer function (14a) on the basis of the formulas 
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The formula for T2 is the same as the formula (14b). 

 
Example 3.4 
On the basis of the relay method without hysteresis and with the integrator in front of the 
relay for the second order oscillatory plant (24) from the example 3.2 it is necessary to 
determine the plant time constant T0 and plant damping coefficient 0  on condition that the 
plant gain k1 is known. 

 
Solution: 
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From the periodic course of the output variable y(t) the amplitude ay and period Ty of the 
oscillation and on the basis of the formulas (26a) and (32) parameters T0 and 0  can be 
determined. 

 

Notice: 
The plant transfer function (24) can be expressed in terms of the damping coefficient value 
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where T1 > T2 are the different plant time constants, which can be determined on the basis of 
the formulas 
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The plant parameters T0 and 0  can be also determined by means of the integral controller 
with the transfer function 1/TIs, which is plugged into the closed-loop system in Fig. 1 in 
lieu of the relay or the proportional controller with the transfer function kp, which is plugged 
into the closed-loop systems in Fig. 5 in lieu of the relay and causing the stable oscillation. 
Then from the measured ultimate period Tc any closed-loop system variable and from the 
ultimate controller gain kpc or the ultimate integral time TIc = 1/kpc the above mentioned 
parameters can be determined on the basis of the formulas  
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Likewise in the cases of the plants (10) and (16) the values of the ultimate parameters Tc, kpc 
or TIc must be determined iteratively but on the other side the formulas (35) are exact.  

 
4. Conclusions 

The book chapter describes the use of the relay method with and without hysteresis and 
further more with and without integrator, which is plugged in behind or in front of the relay 
for experimental identification of the simple plants. The relay method without the integrator 
is suitable for proportional and integral plants and the relay method with the integrator is 
suitable only for proportional plants. For proportional and integral plants with multiple 
time constants with time delay and for second order oscillatory proportional plant the 
general formulas for computation of their two parameters are derived. Experimentally it is 
possible to obtain one point of the plant frequency response, i.e. two values of the plant 
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parameters, it is possible by means of several experiments (with or without hysteresis, 
without or with the integrator, with the integrator in front of or behind the relay) to obtain 
more values of the plant parameters or take out the average of these values etc. It is obvious 
that the relay methods can be used only for the plants, which can oscillate or which cannot 
be destroyed by oscillation. 
 
This work was supported by research project GACR No 102/09/0894. 
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