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1. Introduction 

In order to reach high quality of the metal forming process and full functionality of the 
product, the properties of the material which the future product will be made of, have to be 
determined as precisely as possible. One of very important properties of material is impact 
toughness, which is defined as the ability of a material to resist fracture under the effect of 
shock loading. It is defined by the energy required to break a piece of metal of standard 
shape and with a cross-sectional area of 1 cm2 (Lange, 2001). A test called the Charpy test is 
used for evaluation of impact toughness (CVN) of a variety of mass produced materials and 
is of great value for the selection of materials and for quality control (Tanguy et. al., 2005). 
To get precise data and to reduce the cost of the experiment, several modeling methods 
predicting the values of the dependent output variables (i.e. system behavior) have been 
used so far (Mondal & Maiti, 2002, Mohanty et. al., 2003, Özel & Karpat, 2005). Traditional 
methods often employed to solve complex real problems tend to inhibit elaborate 
explorations of the search space. They can be expensive and often results in sub-optimal 
solutions. In most traditional modeling methods, such as multiple regression analysis, a 
prediction model is determined in advance. Merely a set of coefficients has to be found by 
the deterministic procedure. Because of the pre-specified shape and size of the model, the 
latter is often not capable of capturing the complex relation among influencing parameters 
and the model would not be precise enough for industrial applicability.  
 
Evolutionary computation (EC) is generating considerable interest for solving real 
engineering problems. They are proving robust in delivering global optimal solutions and 
helping to resolve limitations encountered in traditional methods. EC harnesses the power 
of natural selection to turn computers into optimization tools. It is very applicable to 
different problems in manufacturing industry (Brezocnik et. al., 2005, Dimitriu et. al., 2009, 
Odugava et. al., 2005, Pierreval et. al., 2003, Sette et. al., 2001). One of the core methods of 
evolutionary computing is genetic programming (GP) method, which use the genetic 
algorithm paradigm to derive computer expressions to solve a given problem. The aim is 
often to build models capable of predicting output values from input values. It is very 
important that the influence of the independent input variables on the dependent output 
variables and, consequently, on the product quality can be examined in the early stage of 
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process planning. Genetic programming method is most often used for complex system 
modeling (Chang et. al., 2005, Fakhrazd et. al. 2009). But with proper selection of several 
genetic parameters, genetic programming can also be effectively used for modeling of 
relatively simple system, such as system described in our paper, since it has a great 
advantage of being more accurate than conventional methods (e.g. regression analysis).  
 
In addition, when the complexity of the environment is increasing (e.g., more system 
parameters, more experiments), the adaptation of genetic programming run on such new 
environment is relative easily. In genetic programming, prevention against quick fall in local 
optimum (i.e. genetic model, which does not provide a suitable system solution) can be 
assured by different measures: 
 

-  With sufficient number of input variables (i.e. terminal genes T), influencing the 
output variable of the genetic programming process. 
- With proper selection of function genes F for adequate description of the relation 
between system variables. 
- With adequate mutation probability (assures new genetic material in the 
population). 
 

In the chapter, an approach completely different from the conventional methods for 
determination of accurate models for the change of material properties, is presented. This 
approach is genetic programming method which is one of evolutionary computation 
methods and is based on imitation of natural evolution of living organisms. Genetic 
programming is a domain-independent method that genetically breeds a population of 
computer programs to solve a problem. Specifically, genetic programming iteratively 
transforms a population of computer programs into a new generation of programs by 
applying analogs of naturally occurring genetic operations.  
 
The main characteristic of genetic programming is its non-deterministic way of computing. 
No assumptions about the form and size of expressions were made in advance, but they 
were left to the self organization and intelligence of evolutionary process. Genetic 
programming method can automatically create, in a single run, a general (parameterized) 
solution to a problem in the form of a graphical structure whose nodes or edges represent 
components and where the parameter values of the components are specified by 
mathematical expressions containing free variables. That is, genetic programming can 
automatically create a general solution to a problem in the form of a parameterized 
topology.  
 
In this chapter an example of genetic programming modeling of impact toughness of 
formed material is described. First, copper alloy rods were cold drawn under different 
conditions and then impact toughness of cold drawn specimens was determined by Charpy 
tests. The values of independent variables (effective strain, coefficient of friction) influence 
the value of the dependent variable, impact toughness. On the basis of training data, 
different prediction models for impact toughness were developed by genetic programming. 
The study showed that a genetic programming approach is suitable for system modeling.  

 

During our research, several different models for impact toughness satisfying the criterion 
of the success were discovered. The obtained models differ in size, shape, complexity and 
precision of the solution. Only the best models, gained by genetic programming are 
presented in the paper. Accuracy of the best models was proved with the testing data set. 
The comparison between deviation of genetic model results and regression model results 
concerning the experimental results is presented in the chapter. Because the proposed 
genetic programming method is general, it can be successfully used for modeling of 
different   materials properties and phenomena where experimental data on the process are 
available.  
 
The book chapter is organized as follows. A description of genetic programming method is 
given in Section 2. A description of experimental work and experimental results is given in 
Section 3. Section 4 shows the fitness measure, genetic operations and values of genetic 
parameters used for genetic programming method. Results, discussion and comparison 
between the best genetically developed model results, regression model results and 
experimental results are given in Section 5. Finally, some concluding remarks are given in 
Section 6. 

 
2. Methods used   

One of the central challenges of computer science is to get a computer to do what needs to 
be done, without telling it how to do it. Genetic programming addresses this challenge by 
providing a method for automatically creating a working computer program from a high-
level problem statement of the problem. Genetic programming achieves this goal of 
automatic programming by genetically breeding a population of computer programs using 
the principles of Darwinian natural selection and biologically inspired operations (Koza et. 
al., 1999). The operations include reproduction, crossover (sexual recombination), mutation, 
and architecture-altering operations patterned after gene duplication and gene deletion in 
nature.  
Genetic programming starts from a high-level statement of the requirements of a problem 
and attempts to produce a computer program that solves the problem. The human user 
communicates the high-level statement of the problem to the genetic programming system 
by performing certain well-defined preparatory steps (Koza et. al., 2003). The five major 
preparatory steps for the basic version of genetic programming require the specification of: 
 

1. the set of terminals (e.g., the independent variables of the problem, zero-
argument functions, and random constants) for each branch of the to-be-
evolved program, 

2. the set of primitive functions for each branch of the to-be-evolved 
program,  

3. the fitness measure (for explicitly or implicitly measuring the fitness of 
individuals in the population), 

4. certain parameters for controlling the run, and 
5. the termination criterion and method for designating the result of the 

run. 
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probabilities of performing the genetic operations, the maximum size for programs, and 
other details of the run.  
Termination: 
The fifth preparatory step consists of specifying the termination criterion and the method of 
designating the result of the run. The termination criterion may include a maximum number 
of generations to be run as well as a problem - specific success predicate (Koza, 1992). In 
practice, one may manually monitor and manually terminate the run when the values of 
fitness for numerous successive best-of-generation individuals appear to have reached a 
plateau. The single best-so-far individual is then harvested and designated as the result of 
the run. After the human user has performed the preparatory steps for a problem, the run of 
genetic programming can be launched. Once the run is launched, a series of well-defined, 
problem-independent executional steps (that is, the flowchart of genetic programming) is 
executed. 
Genetic programming starts with an initial population of computer programs composed of 
functions and terminals appropriate to the problem. The individual programs in the initial 
population are typically generated by recursively generating a rooted point-labeled 
program tree composed of random choices of the primitive functions and terminals 
(provided by the human user as part of the first and second preparatory steps of a run of 
genetic programming). The initial individuals are usually generated subject to a pre-
established maximum size (specified by the user as a minor parameter as part of the fourth 
preparatory step). In general, the programs in the population are of different size (number 
of functions and terminals) and of different shape.  
Each individual program in the population is executed. Then, each individual program in 
the population is either measured or compared in terms of how well it performs the task at 
hand (using the fitness measure provided in the third preparatory step). For many 
problems, this measurement yields a single explicit numerical value, called fitness. The 
fitness of a program may be measured in many different ways, including, for example, in 
terms of the amount of error between its output and the desired output, the amount of time 
required to bring a system to a desired target state, etc.. The execution of the program 
sometimes returns one or more explicit values. Alternatively, the execution of a program 
may consist only of side effects on the state of a world (e.g., a robot’s actions).  
The creation of the initial random population is, in effect, a blind random search of the 
search space of the problem. It provides a baseline for judging future search efforts. 
Typically, the individual programs in generation 0 all have exceedingly poor fitness. 
Nonetheless, some individuals in the population are usually more fit than others. The 
differences in fitness are then exploited by genetic programming. Genetic programming 
applies Darwinian selection and the genetic operations to create a new population of 
offspring programs from the current population.  
The genetic operations include crossover, mutation, reproduction, and the architecture-
altering operations. These genetic operations are applied to individual(s) that are 
probabilistically selected from the population based on fitness. In this probabilistic selection 
process, better individuals are favored over inferior individuals. However, the best 
individual in the population is not necessarily selected and the worst individual in the 
population is not necessarily passed over (Koza et. al., 1999). 
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probabilities of performing the genetic operations, the maximum size for programs, and 
other details of the run.  
Termination: 
The fifth preparatory step consists of specifying the termination criterion and the method of 
designating the result of the run. The termination criterion may include a maximum number 
of generations to be run as well as a problem - specific success predicate (Koza, 1992). In 
practice, one may manually monitor and manually terminate the run when the values of 
fitness for numerous successive best-of-generation individuals appear to have reached a 
plateau. The single best-so-far individual is then harvested and designated as the result of 
the run. After the human user has performed the preparatory steps for a problem, the run of 
genetic programming can be launched. Once the run is launched, a series of well-defined, 
problem-independent executional steps (that is, the flowchart of genetic programming) is 
executed. 
Genetic programming starts with an initial population of computer programs composed of 
functions and terminals appropriate to the problem. The individual programs in the initial 
population are typically generated by recursively generating a rooted point-labeled 
program tree composed of random choices of the primitive functions and terminals 
(provided by the human user as part of the first and second preparatory steps of a run of 
genetic programming). The initial individuals are usually generated subject to a pre-
established maximum size (specified by the user as a minor parameter as part of the fourth 
preparatory step). In general, the programs in the population are of different size (number 
of functions and terminals) and of different shape.  
Each individual program in the population is executed. Then, each individual program in 
the population is either measured or compared in terms of how well it performs the task at 
hand (using the fitness measure provided in the third preparatory step). For many 
problems, this measurement yields a single explicit numerical value, called fitness. The 
fitness of a program may be measured in many different ways, including, for example, in 
terms of the amount of error between its output and the desired output, the amount of time 
required to bring a system to a desired target state, etc.. The execution of the program 
sometimes returns one or more explicit values. Alternatively, the execution of a program 
may consist only of side effects on the state of a world (e.g., a robot’s actions).  
The creation of the initial random population is, in effect, a blind random search of the 
search space of the problem. It provides a baseline for judging future search efforts. 
Typically, the individual programs in generation 0 all have exceedingly poor fitness. 
Nonetheless, some individuals in the population are usually more fit than others. The 
differences in fitness are then exploited by genetic programming. Genetic programming 
applies Darwinian selection and the genetic operations to create a new population of 
offspring programs from the current population.  
The genetic operations include crossover, mutation, reproduction, and the architecture-
altering operations. These genetic operations are applied to individual(s) that are 
probabilistically selected from the population based on fitness. In this probabilistic selection 
process, better individuals are favored over inferior individuals. However, the best 
individual in the population is not necessarily selected and the worst individual in the 
population is not necessarily passed over (Koza et. al., 1999). 
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In the crossover operation (Fig. 3), two parental programs are probabilistically selected from 
the population based on fitness. The two parents participating in crossover are usually of 
different sizes and shapes. A crossover point is randomly chosen in the first parent and a 
crossover point is randomly chosen in the second parent. Then the subtree rooted at the 
crossover point of the first, or receiving, parent is deleted and replaced by the subtree from 
the second, or contributing, parent. Crossover is the predominant operation in genetic 
programming (and genetic algorithm) work and is performed with a high probability.  

 
                                       a (cb+7)                                           ab/c 

    parent 1       offspring 1 
  

crossover 
      
                 

b/c – 4a                                        (cb+7) – 4a 
 parent 2                           offspring 2 

 
Fig. 3. Crossover operation  in genetic programming. 
 
In the mutation operation, a single parental program is probabilistically selected from the 
population based on fitness. A mutation point is randomly chosen, the subtree rooted at that 
point is deleted, and a new subtree is grown there using the same random growth process 
that was used to generate the initial population. Mutation operation is typically performed 
sparingly with a low probability during each generation of the run. 
The reproduction operation copies a single individual, probabilistically selected based on 
fitness, into the next generation of the population.  
After the genetic operations are performed on the current population, the population of 
offspring (i.e., the new generation) replaces the current population. This iterative process of 
measuring fitness and performing the genetic operations is repeated over many generations. 
The main generational loop of a run of genetic programming consists of the fitness 
evaluation, Darwinian selection, and the genetic operations. Each individual program in the 
population is evaluated to determine how fit it is at solving the problem at hand. Programs 
are then probabilistically selected from the population based on their fitness to participate in 
the various genetic operations, with reselection allowed. While a more fit program has a 
better chance of being selected, even individuals known to be unfit are allocated some trials 
in a mathematically principled way (Koza et. al., 2003). That is, genetic programming is not 
a purely greedy hill-climbing algorithm.  
After a certain number of generations the computer programs are usually much better 
adapted to the environment. The meaning of the environment depends on the problem dealt 
with. The evolution is terminated when a termination criterion is fulfilled. This can be a 
prescribed number of generations or sufficient quality of the solution. Since evolution is a 
non-deterministic process, it does not end with a successful solution in each run (i.e., 
civilization). In order to obtain a successful solution, the problem must be processed in 
several independent runs. The number of runs required for the satisfactory solution 
depends on the difficulty of the problem.  
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point is deleted, and a new subtree is grown there using the same random growth process 
that was used to generate the initial population. Mutation operation is typically performed 
sparingly with a low probability during each generation of the run. 
The reproduction operation copies a single individual, probabilistically selected based on 
fitness, into the next generation of the population.  
After the genetic operations are performed on the current population, the population of 
offspring (i.e., the new generation) replaces the current population. This iterative process of 
measuring fitness and performing the genetic operations is repeated over many generations. 
The main generational loop of a run of genetic programming consists of the fitness 
evaluation, Darwinian selection, and the genetic operations. Each individual program in the 
population is evaluated to determine how fit it is at solving the problem at hand. Programs 
are then probabilistically selected from the population based on their fitness to participate in 
the various genetic operations, with reselection allowed. While a more fit program has a 
better chance of being selected, even individuals known to be unfit are allocated some trials 
in a mathematically principled way (Koza et. al., 2003). That is, genetic programming is not 
a purely greedy hill-climbing algorithm.  
After a certain number of generations the computer programs are usually much better 
adapted to the environment. The meaning of the environment depends on the problem dealt 
with. The evolution is terminated when a termination criterion is fulfilled. This can be a 
prescribed number of generations or sufficient quality of the solution. Since evolution is a 
non-deterministic process, it does not end with a successful solution in each run (i.e., 
civilization). In order to obtain a successful solution, the problem must be processed in 
several independent runs. The number of runs required for the satisfactory solution 
depends on the difficulty of the problem.  
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LISP language is especially well suited for GP because there is no syntactic distinction 
between programs and data (Mitchell, 1997). However, any other programming language 
that can manipulate computer programs as data and that can then compile, link and execute 
the new programs can be successfully used for GP method. 
Regression analysis is deterministic method of modeling, which allows with small number of 
experimental points the greatest information about influence to mathematical model of the 
process (Barnes, 1994). First, it is necessary to determine one dependent variable and one or 
more independent variables. The independent variables {x1, x2, x3, ...} are under our control 
in the sense that we can set the values of x1, x2, x3,…to whatever we wish (within the 
physical limitations imposed by the process under study). The dependent variable, Y, is a 
variable that attains its realization, y, in response to the selected setting of {x1, x2, x3, .. }. For 
this reason, Y is also called the response variable (Montgomery et. al., 2001). 

 
3. Experimental work 

The aim of the experimental work was to determine the influence of the effective strain e 
and coefficient of friction  in cold drawing to the change of impact toughness (CVN) of 
cold drawn copper alloy CuCrZr. This is a copper–chrome–zirconium alloy with 0.71% Cr, 
0.05% Zr and Cu as a base. It has high electrical and thermal conductivity and excellent 
mechanical and physical properties also at elevated temperatures.  
Copper alloy rods were deformed by cold drawing under different conditions. The drawing 
speed was 20 m/min and the angle of drawing die was  = 28. Copper alloy rods were 
drawn from initial diameter D= 20 mm to six different diameters (i.e. six different effective 
strains). Three different lubricants with different coefficients of friction (=0.07, =0.11 and 
=0.16) were used for the drawing process. The coefficients of friction were determined by 
ring tests (Lange, 2001). In order to evaluate the impact toughness, standard Charpy V-notch 
specimens (with a central 45° V-notch of 2mm depth and a 0.25 mm notch root radius)   were 
prepared from the location in the middle of drawn rods. In this way we got 18 different 
experimental specimens.  
Then, the impact toughness (CVN) of all specimens was determined by the standard Charpy 
test (SIST EN 10 045-1, V- notch) at the 20°C temperature. Three Charpy tests for each 
specimen were carried out to provide reliable results. The results (average values) for 
impact toughness are presented in Table 1. Experimental data serve as an environment 
which, during simulated evolution, the models for the impact toughness have to be adapted 
to.  
The number of experimental data is sufficient for our problem, because the relation between 
two independent variables and impact toughness is relatively simple and the difference 
between the highest (165 J) and the lowest (143.3 J) value of impact toughness (output 
variable) is very small. Such problems can be solved also with smaller genetic environment. 
 
 
 
 
 
 

 

 
Nr. 

Effective strain 
e 

Coef. of friction 
 

Impact toughness 
CVN [ J ] 

initial spec.  / / 169.3 
1 0.10 0.07 165 
2 0.21 0.07 161 
3 0.32 0.07 159 
4 0.44 0.07 155 
5 0.57 0.07 151 
6 0.71 0.07 148.3 
7 0.10 0.11 163 
8 0.32 0.11 155.3 
9 0.71 0.11 145 
10 0.10 0.16 160 
11 0.44 0.16 152 
12 0.71 0.16 143.3 
13 0.21 0.11 159 
14 0.44 0.11 153.3 
15 0.57 0.11 149.3 
16 0.21 0.16 158.3 
17 0.32 0.16 154 
18 0.57 0.16 147 

 

Table 1. Experimental results 

 
4. Modeling of impact toughness by genetic programming  

In the GP method the initial random population P(t) consists of randomly generated 
organisms which are in fact mathematical models. The variable t represents the generation 
time. Each organism in the initial population consists of the available function genes F and 
terminal genes T. Terminal genes are in fact independent variables: strain and coefficient of 
friction. The random floating-point numbers from the range [-10, 10] are added to the set of 
terminals to increase genetic diversity of the organisms. Function genes F are basic 
arithmetical functions, exponential function and cosine function. 

 
4.1 Fitness measure, genetic operations and evolutionary parameters 
The absolute deviation R (i, t) of individual model i (organism) in generation time t for the 
GP approach, was introduced as the standard raw fitness measure (Koza, 1992): 
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Where E(j) is the experimental value for measurement j, P(i, j) is the predicted value 
returned by the individual model i for measurement j, and n is the maximum number of 
measurements. The aim of the optimisation task is to find such models that equation (1) 
would give as low absolute deviation as possible.  
However, because it is not necessary that the smallest values of the above equation also 
means the smallest percentage deviation of this model, the average absolute percentage 
deviation of all measurements for individual model i was defined as (Koza, 1992): 
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Equation (2) was not used as the fitness measure for evaluation of population, but only to 
find the best organism in population after completing the run. 
In the GP method, reproduction, crossover, and mutation operations were used for altering 
the population P(t). Evaluation and altering of the population P(t) were repeated until 
termination condition has been fulfilled. In this paper, the termination condition was the 
prescribed maximum number of generation to be run. 
The evolutionary processes were controlled by following evolutionary parameters: 
population size 1000, maximum number of generations to be run 30 (50), probability of 
reproduction 0.1, probability of crossover 0.7, probability of mutation 0.2, maximum depth 
for initial random organisms 6, maximum depth of mutation fragment 6, and maximum 
permissible depth of organisms after crossover 14. Higher mutation probability as usual was 
used for increasing the population variety, because mutation operation generates entire new 
sub-trees, which cause a larger population variety. Large population variety is one of the 
most important conditions for efficient GP modeling. The generative method for the initial 
random population was ramped half-and-half (Koza et. al., 1999). The method of selection 
for reproduction, crossover and mutation was tournament selection with a group size of 6. 

 
4.2 Execution of the evolutionary process 
Modeling of the impact toughness was carried out by the special GP system (computer 
program), which comprises 49 program units (modules), and was programmed in our 
laboratory. Four personal computers were used for processing. The GP system ensures 
repeated development of the individual civilization (if necessary). This is very useful when 
it is necessary to repeat evolution of the civilization with a greater number of generations or 
when evolution is interrupted for any reason.  
Each individual GP run started with the training phase by the training data set shown in 
Table 1 (Nr.1 to Nr.12). The testing data set (Table 1: Nr.13 to Nr. 18) was not included within 
the training range. Each run lasted up to the generation 30 when it was temporarily 
interrupted. If the average percentage deviation Δ(i) of at least one prediction model 
(organism) in the population was smaller than 5%, the evolution of the population 
continued up to generation 50, otherwise it was terminated. After each training phase, the 

 

accuracy of the prediction of the best models was tested with the testing data set. For 
modeling of impact toughness by GP method 400 independent runs were executed. The GP 
models in our research were originally developed as prefix LISP expression. In LISP the 
program code as well as the data structure are in the form of symbolic expressions (s-
expressions), which are constructed in prefix notation. A special program interface then 
converted them into an infix notation.  

 
5. Results and discussion 

5.1 GP models 
All successful GP solutions in our research, which have fulfilled the fitness criterion, can be 
classified into two characteristic groups: 
      (1) Solutions in which the evolutionary process gradually eliminates the independent 
variable  out of the developing models. The final solution does not contain the variable . 
Such models are in the rule very simple but not as precise as more complex models which 
contain variable . The best GP model, which does not contains the variable , was 
generated with the set of function genes F = {+, -, *, /} and is presented as: 
 
      162.139 – 19.05e      (3) 
 
It has the average percentage deviation of the training data  (i) = 1.73%,  and that of the 
testing data  (i) = 1.10 %. Percentage deviation is in fact the percentage error between a 
single experimental value and the value predicted by the genetic model.  
      (2) Solutions in which the evolutionary process gradually locates the independent 
variable  in the organisms (models). Such models are very precise but also very complex. 
The best GP model was obtained in generation 49 and is presented as LISP expression: 
 









After simplification, the above expression is equivalent to:  
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Where E(j) is the experimental value for measurement j, P(i, j) is the predicted value 
returned by the individual model i for measurement j, and n is the maximum number of 
measurements. The aim of the optimisation task is to find such models that equation (1) 
would give as low absolute deviation as possible.  
However, because it is not necessary that the smallest values of the above equation also 
means the smallest percentage deviation of this model, the average absolute percentage 
deviation of all measurements for individual model i was defined as (Koza, 1992): 
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Equation (2) was not used as the fitness measure for evaluation of population, but only to 
find the best organism in population after completing the run. 
In the GP method, reproduction, crossover, and mutation operations were used for altering 
the population P(t). Evaluation and altering of the population P(t) were repeated until 
termination condition has been fulfilled. In this paper, the termination condition was the 
prescribed maximum number of generation to be run. 
The evolutionary processes were controlled by following evolutionary parameters: 
population size 1000, maximum number of generations to be run 30 (50), probability of 
reproduction 0.1, probability of crossover 0.7, probability of mutation 0.2, maximum depth 
for initial random organisms 6, maximum depth of mutation fragment 6, and maximum 
permissible depth of organisms after crossover 14. Higher mutation probability as usual was 
used for increasing the population variety, because mutation operation generates entire new 
sub-trees, which cause a larger population variety. Large population variety is one of the 
most important conditions for efficient GP modeling. The generative method for the initial 
random population was ramped half-and-half (Koza et. al., 1999). The method of selection 
for reproduction, crossover and mutation was tournament selection with a group size of 6. 

 
4.2 Execution of the evolutionary process 
Modeling of the impact toughness was carried out by the special GP system (computer 
program), which comprises 49 program units (modules), and was programmed in our 
laboratory. Four personal computers were used for processing. The GP system ensures 
repeated development of the individual civilization (if necessary). This is very useful when 
it is necessary to repeat evolution of the civilization with a greater number of generations or 
when evolution is interrupted for any reason.  
Each individual GP run started with the training phase by the training data set shown in 
Table 1 (Nr.1 to Nr.12). The testing data set (Table 1: Nr.13 to Nr. 18) was not included within 
the training range. Each run lasted up to the generation 30 when it was temporarily 
interrupted. If the average percentage deviation Δ(i) of at least one prediction model 
(organism) in the population was smaller than 5%, the evolution of the population 
continued up to generation 50, otherwise it was terminated. After each training phase, the 

 

accuracy of the prediction of the best models was tested with the testing data set. For 
modeling of impact toughness by GP method 400 independent runs were executed. The GP 
models in our research were originally developed as prefix LISP expression. In LISP the 
program code as well as the data structure are in the form of symbolic expressions (s-
expressions), which are constructed in prefix notation. A special program interface then 
converted them into an infix notation.  
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contain variable . The best GP model, which does not contains the variable , was 
generated with the set of function genes F = {+, -, *, /} and is presented as: 
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It has the average percentage deviation of the training data  (i) = 1.73%,  and that of the 
testing data  (i) = 1.10 %. Percentage deviation is in fact the percentage error between a 
single experimental value and the value predicted by the genetic model.  
      (2) Solutions in which the evolutionary process gradually locates the independent 
variable  in the organisms (models). Such models are very precise but also very complex. 
The best GP model was obtained in generation 49 and is presented as LISP expression: 
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





After simplification, the above expression is equivalent to:  
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The model (4) was generated with the set of function genes F = {+, -, *, /} and has the 
average percentage deviation of the training data  (i) = 0.22%, and that of the testing data  
(i) = 0.20%.  
Figure 4 shows the percentage deviation curve  between the best model of individual generation 
and experimental results when the set of function genes F = {+, -, *, /} was used. It is obviously 
that in early generations the best models are not as precise as the models generated in late 
generations. The relatively slow improvement of the best models in late generations is due to 
unification trends of the population leading to shortage of new genetic ideas. 
 

 
Fig. 4. Percentage deviation curve between the best model of each generation and 
experimental results (F=+, -,*, /). 
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Fig. 5.  Curve of all genes of the best GP model in each generation (F=+, -,*, /). 
 
Figure  5 shows the complexity curve of the best models (generated with function genes F = 
{+, -, *, /}) in each generation. In generation 0 created randomly, the best models consists of 
129 genes (i.e. complexity is 129). Then, at generations 2 and 3 complexity decreases and 
reaches the value of only 8. In the next generations complexity increases significantly and 
the best model (4), obtained in generation 49 contains 167 genes. Higher number of genes 
means higher complexity of the genetic model. 

 
5.2. Regression model 
A mathematical model for regression method was chosen according to (Montgomery et. al., 
2001): 
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Where y is dependent variable, xi, xij are independent variables, while b0, bi, bij are 
coefficients to be determined by using regression analysis. In our case dependent variable 
was impact toughness (CVN), while effective strain e and coefficient of friction  were 
independent variables. Coefficients b0, bi and bij were determined by using regression 
analysis program SPSS. By inserting the computed values of coefficients into the equation 
(5), the regression model for impact toughness can be presented as: 
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The model (4) was generated with the set of function genes F = {+, -, *, /} and has the 
average percentage deviation of the training data  (i) = 0.22%, and that of the testing data  
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Fig. 5.  Curve of all genes of the best GP model in each generation (F=+, -,*, /). 
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reaches the value of only 8. In the next generations complexity increases significantly and 
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Where y is dependent variable, xi, xij are independent variables, while b0, bi, bij are 
coefficients to be determined by using regression analysis. In our case dependent variable 
was impact toughness (CVN), while effective strain e and coefficient of friction  were 
independent variables. Coefficients b0, bi and bij were determined by using regression 
analysis program SPSS. By inserting the computed values of coefficients into the equation 
(5), the regression model for impact toughness can be presented as: 
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Equation (6) represents a mathematical model of the influence of effective strain and 
coefficient of friction on impact toughness for chosen material in experimental area. It has 
the average percentage deviation of the training data set ∆(i) = 0.44 % and that of the testing 
data set ∆(i) = 0.38 %.  

 
5.3. Comparison between GP and regression models 
The main characteristics of the best GP and regression models are collected in Table 2. For 
both the training and testing data sets the descriptions of columns are as follows: the first 
column indicates the average percentage deviation of all sample data Δ(i), the second 
column indicates the greatest deviation of single sample data Δ(i,j)max. The valuation of the 
model complexity, based on the number of numerical constants and variables of the 
individual model, is indicated in the last column.  
 
The GP model (4) has a very complex form and also the smallest average percentage 
deviation of all sample data and the smallest maximum deviation Δ(i,j)max of single sample 
data. For the training data set the prediction precision of the model GP (4) is 1.0 times 
greater and for the testing data set 1.9 times greater then the prediction precision of 
regression model. On the other hand, the structure form of regression model (6) and 
especially that of the GP model (3) is very simple. These models are very adequate for 
practical use in the case that there are no extremely high demands about accuracy.  
 

 Training data set Testing data set 

Model Δ(i) [%] Δ(i,j)max [%] Δ(i) [%] Δ(i,j)max [%] Complexity 

GP model (4) 0.22 0.38 0.20 0.33 complex 

GP model (3) 1.73 2.80 1.10 0.33 very simple 

REG model (6) 0.44 1.12 0.38 0.71 simple 
 

Table 2. Comparison between best GP and regression models: Δ(i) - the average percentage 
deviation of all sample data, Δ(i,j)max - the greatest deviation of single sample data. 
 
Figure 6 represents the percentage error between a single experimental value and the value 
predicted by the two GP models and regression model for the training and testing data set. 
The x-axis represents numbers of measurements (see Table 1) and the y-axis the relevant 
percentage deviations of single sample data ∆ (i) produced by each model. The GP model (4) 
has very small deviation amplitude. All deviations of predicted impact toughness are 
smaller than 0.5%. The greatest deviation value is 0.38% in measurement point 2. There are 
also no significant differences in deviation amplitude between training and testing data sets. 
Obtained GP model is suitable for accurate prediction of the impact toughness of copper 
alloy not only for data, which were included in the testing, but for every value of the 
effective strain in the range from e = 0.1 to e = 0.71 and for every value of the coefficient of 
friction in the range from  = 0.07 to  = 0.16. For regression model (6) and especially for 
simple GP model (3) deviations are much higher. Most deviations for regression model are 
in the range from 0.3% to 1% and for the simple GP model (3) in the range from 1% to 2.5%. 

 

 
Fig. 6. Absolute deviation of model results from the experimental results in a singular 
measurement point. 

 
6. Conclusion 

The presented genetic programming approach for modeling of material properties (in our 
case impact toughness) strongly differs from the conventional methods since it does not use 
strict mathematical rules and does not derive equations in a rational human way of 
thinking. The evolutionary process is non-deterministic and involves asynchronous, 
uncoordinated, and self-organizing activities that are not centrally controlled. During our 
research, several different models for impact toughness satisfying the criterion of the success 
were discovered. The obtained models differ in size, shape, complexity and precision of the 
solution.  
 
The study showed that a GP approach is suitable for system modeling. A comparison was 
made between GP and regression models. In modeling with the regression method, the form 
of the prediction models was pre-specified. On the contrary, in modeling with the GP, the 
form, size, and complexity of the models were left to simulated evolution. The resulting 
models were tested by the testing data set and compared with respect to different criteria. It 
is a disadvantage of the GP approach that the modeling lasts longer than in regression 
approach and that the models are much more complicated.  
 
This is due to the fact that evolution is a stochastic process, and therefore parsimony in the 
development of the models is rare. But in many metal forming processes it is not the model 
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complexity but the accuracy of prediction that is of vital importance. However, the best 
model developed by GP gives a more accurate prediction than the pre-specified model 
optimised by regression method, due to the fact that in GP a much wider solution space can 
be analysed since the structure of the models is not prescribed in advance but is left to the 
evolutionary process.  
 
Accuracy of solutions obtained by GP depends on applied evolutionary parameters and also 
on the number of measurements and the accuracy of measuring. In general, more 
measurements supply more information to the evolution which improves the structure of 
models. At the same time, the greater number of measurements causes the time-consuming 
computer processing and the execution of experiments is very expensive and requires much 
time. Because of the high precision of the models developed by the GP approach, an 
excessive number of experiments and computations can be avoided, which leads to 
reduction of the costs of product development. Because the proposed GP method is general, 
it can be successfully used for modeling of different   materials properties and phenomena 
where experimental data on the process are available.  
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complexity but the accuracy of prediction that is of vital importance. However, the best 
model developed by GP gives a more accurate prediction than the pre-specified model 
optimised by regression method, due to the fact that in GP a much wider solution space can 
be analysed since the structure of the models is not prescribed in advance but is left to the 
evolutionary process.  
 
Accuracy of solutions obtained by GP depends on applied evolutionary parameters and also 
on the number of measurements and the accuracy of measuring. In general, more 
measurements supply more information to the evolution which improves the structure of 
models. At the same time, the greater number of measurements causes the time-consuming 
computer processing and the execution of experiments is very expensive and requires much 
time. Because of the high precision of the models developed by the GP approach, an 
excessive number of experiments and computations can be avoided, which leads to 
reduction of the costs of product development. Because the proposed GP method is general, 
it can be successfully used for modeling of different   materials properties and phenomena 
where experimental data on the process are available.  
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