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1. Introduction     
 

Rotor instability due to the oil film is one of the most serious problems of high-speed rotors 
supported in journal bearings. With constantly increasing parameters of new machines, 
problems with rotor instability are encountered more and more often. To study possibilities 
of affecting rotor behavior by controlled movement of bearing bushings, a test stand was 
designed, manufactured and assembled. Even though there are many solution based on 
passive improvements of the bearing geometry to enlarge the operational RPM range of the 
journal bearing as a lemon bore, pressure dam, tilting pad, etc., the approach to preventing 
the journal bearing instability, presented in the paper, is based on the use of the active 
vibration control. 

 
2. Design of Journal Bearing for Active Vibration Control 
 

Many authors pay attention to the active control of magnetic bearings, but use of 
piezoactuators is rarely studied. Worth mentioning are articles (Carmignani et al., 2001) and 
(Rho et al., 2002). Because of the lack of information, it was decided to start research of 
methods suppressing sliding journal bearing instability by the active vibration control. The 
research work was granted by the Czech Grant Agency as a part of the research project No. 
101/07/1345 “Active control of journal bearings aimed at suppressing the rotor instability”. 
The control system adds an electronic feedback to the rotor-bearing system actuating the 
position of a movable bushing. The current passive damper changes into an active 
component of the system with controllable properties. Objectives of the research work were 
focused onto the experimental verification of theoretical knowledge about conditions of the 
onset of rotor instability, building up an experimental device used for tests of active control 
of the journal bearings, with the aim of suppressing rotor instability and designing the 
algorithm of stabilization of shaft movements inside the journal bearing, verified 
experimentally. The project was finished in 2009. This book chapter informs about results of 
the mentioned project. The laboratory test facilities including the journal bearing equipped 
with the movable bushing was designed by the TECHLAB Ltd., Prague. The research group 
of Technical University of Ostrava developed the control system, which is based on 
piezoactuators, and put the system into operation (Šimek et al., 2010) and (Tůma et al., 
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2010). The sketch of a controllable journal bearing arrangement, which is implemented for 
the active vibration control, is shown in Fig. 1. The test rig for testing of the control system 
will be described later. 
 

 
Fig. 1. Arrangement of the controllable journal bearing 

 
3. Mathematical Model of Controlled System 
 

There are many ways how to model journal bearings, but this paper prefers an approach, 
which is based on the concept developed by (Muszynska, 1986) supported by Bently Rotor 
Dynamics Research Corporation (Bently et al., 1989). The reason for this is that this concept 
offers an effective way to understand the rotor instability problem and to model a journal 
vibration active control by manipulating the sleeve position by actuators, which are a part of 
the closed loop system composed of proximity probes and a controller. Another approach 
can be based on the lubricant flow prediction using a FE method for Reynolds equation 
solution. These more sophisticated methods do not allow analyzing behavior of the 
vibration active control to design and tune the controller.  
 
Let the rotor angular velocity is designated by   in radians per a second. It is assumed that 
the bushing is a movable part in two perpendicular directions while rotor is rotating. This 
mathematical model proposes to use complex variables to describe motion of the rotor and 
bushing in the plane, which is perpendicular to the rotor axis. The coordinate system is tied 
to stationary bearing housing with a cylindrical hole, inside of which is inserted the movable 
bearing bushing. The positions of the journal centre and bushing mean the intersection of 
both the movable component axis with the mentioned complex plane. The origin of the 
complex plane is situated in the centre of the mentioned cylindrical hole as it is shown in 
Fig. 2. The position of the journal centre in the complex plane is designated by a position 
vector r while the position of the bushing is designated by a position vector u. 
 
(0, 0)  – coordinates of the cylindrical hole center 
r = (x(t), y(t))  – coordinates of the journal (rotor) center  
u = (ux(t), uy(t))   – coordinates of the bushing center  
 

 

 
Fig. 2. Coordinate system 

 
3.1 Lumped Parameter Model of the Journal Bearing 
The internal spring, damping and tangential forces are acting on the rotor. The external 
forces refer to forces that are applied to the rotor, such as unbalance, impacts and preloads 
in the form of constant radial forces. All these external forces are considered as an input for 
the mathematical model. The fluid pressure wedge is the actual source of the fluid film 
stiffness in a journal bearing and maintains the rotor in equilibrium. As Muszynska has 
stated these bearing forces can be modeled by a spring and damper system, which is 
rotating at the angular velocity   (see figure 3), where   is a dimensionless parameter, 
which is slightly less than 0.5.  
 

 
Fig. 3. Model of oil film 
 
The parameter   is denominated by Muszynska as the fluid averaged circumferential 
velocity ratio. It is assumed that the rotating journal drags the fluid in a space between two 
cylinders into motion and acts as a pump. It is easy to understand that the fluid circular 
velocity is varying across the gap as a consequence of the fluid viscosity. The validity of 
Muszynska’s assumption can be verified experimentally. It is known that an oscillation (an 
onset of instability) of the rotor starts when the rotor rotational speed exceeds a certain 
value and stops when RPM decreases under the other one. It can be shown by experiment, 
that when the rotor system is excited by a non-synchronous perturbation force with respect 
to the rotor rotational speed, the resonance appears at the frequency, which is 
approximately equal to  . The simulation is prepared to prove the same properties of the 
mathematical model, which is based on Muszynska’s theory. 
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2010). The sketch of a controllable journal bearing arrangement, which is implemented for 
the active vibration control, is shown in Fig. 1. The test rig for testing of the control system 
will be described later. 
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can be based on the lubricant flow prediction using a FE method for Reynolds equation 
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Let the rotor angular velocity is designated by   in radians per a second. It is assumed that 
the bushing is a movable part in two perpendicular directions while rotor is rotating. This 
mathematical model proposes to use complex variables to describe motion of the rotor and 
bushing in the plane, which is perpendicular to the rotor axis. The coordinate system is tied 
to stationary bearing housing with a cylindrical hole, inside of which is inserted the movable 
bearing bushing. The positions of the journal centre and bushing mean the intersection of 
both the movable component axis with the mentioned complex plane. The origin of the 
complex plane is situated in the centre of the mentioned cylindrical hole as it is shown in 
Fig. 2. The position of the journal centre in the complex plane is designated by a position 
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(0, 0)  – coordinates of the cylindrical hole center 
r = (x(t), y(t))  – coordinates of the journal (rotor) center  
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rotating at the angular velocity   (see figure 3), where   is a dimensionless parameter, 
which is slightly less than 0.5.  
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The parameter   is denominated by Muszynska as the fluid averaged circumferential 
velocity ratio. It is assumed that the rotating journal drags the fluid in a space between two 
cylinders into motion and acts as a pump. It is easy to understand that the fluid circular 
velocity is varying across the gap as a consequence of the fluid viscosity. The validity of 
Muszynska’s assumption can be verified experimentally. It is known that an oscillation (an 
onset of instability) of the rotor starts when the rotor rotational speed exceeds a certain 
value and stops when RPM decreases under the other one. It can be shown by experiment, 
that when the rotor system is excited by a non-synchronous perturbation force with respect 
to the rotor rotational speed, the resonance appears at the frequency, which is 
approximately equal to  . The simulation is prepared to prove the same properties of the 
mathematical model, which is based on Muszynska’s theory. 
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Fluid forces acting on the rotor in coordinates rotating at the same angular frequency as the 
spring and damper system are determined by the position of the journal centre relating to 
the bushing centre and therefore are given by the formula (Tondl, 1991) 
 
    rotrotrotrotrot DK ururF   , (1) 
 
where parameters, K  and D , are specifying proportionality of stiffness and damping to the 
relative position of the journal centre displacement vector rotrot ur   and velocity vector 

rotrot ur   , respectively.  
 
To model the rotor system, the fluid forces have to be expressed in the stationary coordinate 
system, in which the rotor centre-line displacement and velocity vectors are designated by r   
and r , respectively. Conversion the complex rotating vector rotr   to the stationary coordinate 
system can be done by multiplication this vector by  tj exp , which is the same as 
multiplying the vector in the stationary coordinates by  tj exp , see Fig. 4. 
 

 
 

Fig. 4. Transform rotating coordinate to stationary coordinate 
 
The relationship between the mentioned vectors in rotating and stationary coordinates are 
given by the formulas 
 

 
   

       tjjtjj
tjtj

rotrot

rotrot



expexp

expexp
uuurrr

uurr


 (2) 

 
Substitution (2) into the fluid force equation (1) results in the following formula 
 
      urururF  jDDK   (3) 
 
where the complex term rjD  has the meaning of the force acting tangentially to the 
direction of the vector r . As the rotor angular velocity increases, this force can become very 
big and can cause rotor instability . 
 
As was mentioned, the rotor is under influence of the external forces, for instance produced 
by unbalance or simply by gravity. To obtain general solution this external perturbation 
force, resulting from unbalance, is assumed to be rotating at the angular velocity  , which 
is considered to be completely independent of the rotor angular velocity  . The unbalance 
force, which is produced by unbalance mass m  located at a radius ur , acts in the radial 
direction and has a phase   at time 0t  

Stationary

Rotatingr 

 

   

 

t   

 

    tjmruonPerturbati exp2F  (4) 
 
The equation of motion for a rigid rotor operating in a small, localized region in the journal 
bearing, is as follows 
 
          tjmrjDKDM u exp2ururr  , (5) 

 
where M  is the total rotor mass. The trajectory of the rotor centerline is called an orbit.  

 
3.2 Equation of motion as a servomechanism  
For the stability analysis of the journal bearing it is assumed, that the bushing is not moving 
u = 0. According Muszynska the rotor/fluid wedge bearing/system can be demonstrated as 
a servomechanism working in the closed loop, which is shown in Fig. 5. The direct and 
quadrature dynamic stiffness is introduced according to the acting force direction. To obtain 
the Laplace transform of the motion equation, the imaginary variable j  is replaced by a 
complex variable s  
 
   2MsDsKsKDirect   (6) 
   DjsKQuadrature   (7) 
 
and the equation of motion (6) takes the form 
 
     sKsK DirectQuadratureonPerturbati rFr   (8) 

 
The transfer function  sKDirect1  (direct dynamic compliance) is stable. The feedback path in 
the closed-loop system acts as a positive feedback and introduces instability for the closed-
loop system. The gain of the positive feedback depends on the rotor angular velocity  . 
The closed-loop system is stable for the low rotor rotational speed. But there is a margin for 
the stable behavior. If the gain of the positive feedback crosses over some limit value then 
the closed-loop becomes unstable.  
 
The stability of the closed-loop dynamic system is depending on the open-loop frequency 
transfer function for  js  
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As it is known the closed-loop dynamic system is stable according to the Nyquist stability 
criterion if, and only if, the locus  jG0  of the function in the complex plane does not 
enclose the point (-1,0) as   is varied from zero to infinity (Burns, 2001), see Fig. 6. 
Enclosing the point (-1,0) is interpreted as passing to the left of the mentioned point. The 

 jG0  locus for three different values of the rotor angular velocity   is shown in Nyquist 
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Fluid forces acting on the rotor in coordinates rotating at the same angular frequency as the 
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As it is known the closed-loop dynamic system is stable according to the Nyquist stability 
criterion if, and only if, the locus  jG0  of the function in the complex plane does not 
enclose the point (-1,0) as   is varied from zero to infinity (Burns, 2001), see Fig. 6. 
Enclosing the point (-1,0) is interpreted as passing to the left of the mentioned point. The 

 jG0  locus for three different values of the rotor angular velocity   is shown in Nyquist 
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diagram in figure 5, which is plotted as an illustrating example for DK  = 100 rad/s. All the 
contour plots are of the same shape. They are differing only in a scale and correspond to the 
stable, steady-state and unstable vibration. When the steady-state vibration occurs, the 
stability margin is achieved. In this case the locus of the  jG0  function meets the point  
(-1,0), therefore 
 
   10 CRITjG . (10) 
 

 

  
 

Fig. 5. Shaft/fluid wedge bearing/ 
system as a servomechanism 

Fig. 6. Nyquist diagram showing stable, margin 
and unstable locus 

 
An angular frequency, at which a system can oscillate without damping, is designated by 

CRIT . Substitution (10) into (9) results in two formulas for the vibration frequency 
 
 MKCRIT 2  and CRIT  (11) 

 
It can be concluded that the frequency of the rotor subharmonic oscillation is the same as the 
fluid average circumferential angular velocity. The measurement shows that the value of the 
parameter   is equal to 0.475. The stability margin corresponds to the mechanical 
resonances of the rigid rotor mass supported by the oil spring. It can be noted that the 
frequency CRIT  is not equal to the rotor critical speed as a result of the rotor bending when 
the vibration is excited by the rotor unbalance.  
 
If the system was linear then the unstable rotor vibration would spiral out to infinity when 
the rotor angular frequency crosses so-called Bently-Muszynska threshold. The Bently-
Muszinska threshold is inversely proportional to the ratio  . The anti-swirl technique is 
focused at decreasing  . 
 
  MKCRIT  (12) 
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As can be experimentally verified, the frequency spectrum of the fluid-induced vibration 
contains the single dominating component, which would be a solution of the second order 
linear differential equation without damping. 
 
The journal lateral vibration is limited by the inner bearing surface. Stiffness and damping 
coefficients are non-linear functions of the eccentricity ratio, especially when the rotor is 
approaching the journal wall. If the magnitude of vibration is increasing, the oil-film 
stiffness and damping increase as well and the relationship (11) is maintained adapting 
stiffness to the value of 2M . A new balance forms a steady-state limit cycle of the rotor 
orbital motion. 

 
3.3 Simulink model of the rotor system  
The equation of motion (5) contains complex vectors r, r , u and u . The complex vectors r 
and r  are the output of the simulation model, while the vectors u and u  are the input of 
this model. Except of the mentioned complex vectors, some of the model parameters are 
complex quantities as well. The complex function can be replaced by the real and imaginary 
functions and solved as many similar models. In this paper, the connecting blocks by 
complex signals are preferred. The Simulink block diagram for the motion equation is 
shown in Fig. 7. The lines connecting blocks performing complex evaluation, are 
highlighted. Except of the integration function, all the blocks employed in the Simulink 
model for the motion equation can work with the complex parameters and functions. The 
complex signal at the input of the integration block is decomposed into the real and 
imaginary parts for individual integration operation and then they are combined to the 
complex signal again. 
 
The system is excited by an unbalance force rotating at the same angular velocity   
(OMEGA) as the rotor and by the non-synchronous perturbation force rotating by the 
angular velocity   (omega), amplitude of which is proportional to the square of the angular 
velocity. The parameters K and D, specifying oil film stiffness and damping respectively, are 
a function of the journal centerline position vector, namely the oil film thickness. It was 
proved, that the closer the position of the journal to the bearing wall and simultaneously the 
thinner the oil film, the greater are values of both these parameters. Some authors, such as 
(Muszynska, 2005), assume that it is possible to approximate these functions by formulas  
 

          512
0

22
0

32
0 1,1,1 eeDDeKK rrr   (13) 

 
where e is a journal bearing radial clearance. The dependence of the factors, which are 
multiplying the parameter K, D,   (Lambda), on the position vector relative magnitude, is 
shown in Fig. 8. The authors of this paper analyzed the other formula structure as well 
(Tůma et al., 2009).  
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diagram in figure 5, which is plotted as an illustrating example for DK  = 100 rad/s. All the 
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the rotor angular frequency crosses so-called Bently-Muszynska threshold. The Bently-
Muszinska threshold is inversely proportional to the ratio  . The anti-swirl technique is 
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As can be experimentally verified, the frequency spectrum of the fluid-induced vibration 
contains the single dominating component, which would be a solution of the second order 
linear differential equation without damping. 
 
The journal lateral vibration is limited by the inner bearing surface. Stiffness and damping 
coefficients are non-linear functions of the eccentricity ratio, especially when the rotor is 
approaching the journal wall. If the magnitude of vibration is increasing, the oil-film 
stiffness and damping increase as well and the relationship (11) is maintained adapting 
stiffness to the value of 2M . A new balance forms a steady-state limit cycle of the rotor 
orbital motion. 

 
3.3 Simulink model of the rotor system  
The equation of motion (5) contains complex vectors r, r , u and u . The complex vectors r 
and r  are the output of the simulation model, while the vectors u and u  are the input of 
this model. Except of the mentioned complex vectors, some of the model parameters are 
complex quantities as well. The complex function can be replaced by the real and imaginary 
functions and solved as many similar models. In this paper, the connecting blocks by 
complex signals are preferred. The Simulink block diagram for the motion equation is 
shown in Fig. 7. The lines connecting blocks performing complex evaluation, are 
highlighted. Except of the integration function, all the blocks employed in the Simulink 
model for the motion equation can work with the complex parameters and functions. The 
complex signal at the input of the integration block is decomposed into the real and 
imaginary parts for individual integration operation and then they are combined to the 
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The system is excited by an unbalance force rotating at the same angular velocity   
(OMEGA) as the rotor and by the non-synchronous perturbation force rotating by the 
angular velocity   (omega), amplitude of which is proportional to the square of the angular 
velocity. The parameters K and D, specifying oil film stiffness and damping respectively, are 
a function of the journal centerline position vector, namely the oil film thickness. It was 
proved, that the closer the position of the journal to the bearing wall and simultaneously the 
thinner the oil film, the greater are values of both these parameters. Some authors, such as 
(Muszynska, 2005), assume that it is possible to approximate these functions by formulas  
 

          512
0

22
0

32
0 1,1,1 eeDDeKK rrr   (13) 

 
where e is a journal bearing radial clearance. The dependence of the factors, which are 
multiplying the parameter K, D,   (Lambda), on the position vector relative magnitude, is 
shown in Fig. 8. The authors of this paper analyzed the other formula structure as well 
(Tůma et al., 2009).  
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Fig. 7. Matlab-Simulink model of a rotor motion in a plane perpendicular to its axis 
 

 
Fig. 8. Effect of the position vector magnitude related to the bearing clearance on the relative 
value K, D,   (Lambda) related to the initial value (   0abs r ) 
 
As was stated before the numeric solution of the journal equation of motion is obtained by 
using Matlab-Simulink. As the rotor system stability margin depends on the oil film stiffness 
and rotor mass, the first step is to estimate stiffness K . This task is not an easy problem due 
to the rotor static load by the gravity force and the dependence of the oil film stiffness on the 
rotor eccentricity. The second problem is estimation of damping D , which predefines the 
rotor system vibration mode at the angular frequency, which is approximately equal to the 
half of the rotor angular frequency. The way, how to analyze effect of oil stiffness on the 
rotor behavior, is to test the rotor response to the RPM run-up. The arrangement of the 
Simulink model is shown in Fig. 7. The agreement between the mentioned experiment and 
the simulation model is reached for the following values of the parameters  
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lam0 = 0.475;   fluid averaged circumferential velocity ratio (lambda) 
K0 = 4000 N/m;   oil film stiffness 
D0 = 1000 Ns/m;  oil film damping coefficient  
e = 0.0002 m;  clearance in the journal bearing 
MMR = 0.00001 kgm product of the unbalance mass MM mounted at a radius R. 
 

 
Fig. 9. Arrangement of the subsystem in Fig. 7 for run-up tests  
 
The value of the product MM*R corresponds to the ISO balancing class between G 1 and G 
2.5 at 2500 RPM. The simulation starts at the zero value of the rotor speed. The initial journal 
position is situated in the point, where the real part of the position vector is as follows 

  0Re r , while the imaginary part of the position vector is a value satisfying to the solution 
of the equation   MgK rIm . The experiments show, that if the rotor is in an unstable 
state (vibration are limited only by the bearing wall), then the frequency of vibration is 
slightly less than half the rotor rotational frequency  . The effect of the damping parameter 
D0 for K0 = 4000 N/m on the shape of the journal centerline orbit plot during run-up is 
shown in Fig. 10. The orbit for D0 = 2000 Ns/m is the most resembling measurement results. 
It can be concluded that the behavior of the simulation model is almost the same as the true 
rotor system (Tůma et al., 2008). All the simulations are done by using Matlab-Simuling 
with the variable integration step and the ODE45 integration method setting.  

    
Fig. 10. Orbit plot for the oil stiffness K0 = 4000 N/m and various values of damping  
 
The simulation experiment, demonstrating the journal resonance, is based on using an 
auxiliary unbalanced disc, which is rotating at the angular frequency  . The excitation 
frequency   is independent on the steady-state rotor angular frequency  . The 
perturbation force is given by unbalance mass mounted at a certain radius. Simulation, 
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which is described in this chapter, is focused on the kinematic non-synchronous rotor 
excitation to prove the effect of the movement of the bushing on the movement of the rotor 
shaft. Instead of the periodic force, the periodic displacement of bushing is assumed. 
Unbalance mass produces a perturbation force, which amplitude is proportional to the 
square of the angular frequency. The simulation of the kinematic perturbation will suppose 
constant amplitude of the bushing displacement. The arrangement of the Simulink model is 
shown in Fig. 11. 
 

 
Fig. 11. Arrangement of the subsystem in figure 4 for kinematic perturbation tests  
 

 
Fig. 12. Time histories of the rotor and kinematic perturbation RPM and the response of the 
supporting ring kinematic perturbation to the rotor displacement  
 
Simulation of the kinematic perturbation is divided into two stages. At first the rotor 
rotational speed reaches the steady state rotation at the 1200 RPM and then the perturbation 
displacement of the supporting ring starts to run-up from the zero frequency zero to 
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which is described in this chapter, is focused on the kinematic non-synchronous rotor 
excitation to prove the effect of the movement of the bushing on the movement of the rotor 
shaft. Instead of the periodic force, the periodic displacement of bushing is assumed. 
Unbalance mass produces a perturbation force, which amplitude is proportional to the 
square of the angular frequency. The simulation of the kinematic perturbation will suppose 
constant amplitude of the bushing displacement. The arrangement of the Simulink model is 
shown in Fig. 11. 
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perfect decoupling of the test shaft from driving motor, another flexible coupling was 
installed between original coupling and the shaft. The rotation uniformity is not as smooth 
as when a DC motor is used. The interference between signals causes an error below 1 μm in 
measurements. Inspection of shaft geometrical deviations as is a non-circularity showed that 
this deviation is less than 1 μm as well. Finally it was proved, that the non-homogeneity of 
the rotor material magnetic and electric conductivity properties is the main source of the 
proximity probe periodical error. The error signal is repeated synchronously with rotor 
rotation. The same material is passing-by below the tip of the second proximity probe after 
one quarter of the rotor revolution; therefore a phase shift of the period quarter may be 
discovered. The peak-to-peak value of the regular periodic error reaches 11 μm. The 
spectrum of the measurement periodic error is composed from harmonics of the rotor 
rotational frequency. Periodic error for two different shafts is shown in Fig. 15.  
 

  
Original hollow shaft (1 sensor) Rigid shaft (2 sensors) 

 

Fig. 15. Regular error of proximity probe as a function of rotation angle 
 
The dependence of the proximity probe regular error on the rotation angle can be 
approximated by a sum of trigonometric functions differing in the number of waves. The 
reduction of the proximity probe error by subtraction of the error signal requires a tacho 
pulses measurement and prediction of the rotational angle.  

 
Fig. 16. Frequency spectrum of the filtered and unfiltered output signal of the sensor based 
on electrical capacity (capaNCDT CS05) 
  
As was mentioned before, it is better to use sensors, which are based on measurements of 
electrical capacity. The output signal does not contain any low harmonic of the rotational 
frequency but some high frequency components due to demodulation of electric signals 
corrupt the measured signal. The analog RC-filter is required. The effect of the RC-filter on 
the frequency spectrum of the measured signal is shown in Fig. 16. 
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perfect decoupling of the test shaft from driving motor, another flexible coupling was 
installed between original coupling and the shaft. The rotation uniformity is not as smooth 
as when a DC motor is used. The interference between signals causes an error below 1 μm in 
measurements. Inspection of shaft geometrical deviations as is a non-circularity showed that 
this deviation is less than 1 μm as well. Finally it was proved, that the non-homogeneity of 
the rotor material magnetic and electric conductivity properties is the main source of the 
proximity probe periodical error. The error signal is repeated synchronously with rotor 
rotation. The same material is passing-by below the tip of the second proximity probe after 
one quarter of the rotor revolution; therefore a phase shift of the period quarter may be 
discovered. The peak-to-peak value of the regular periodic error reaches 11 μm. The 
spectrum of the measurement periodic error is composed from harmonics of the rotor 
rotational frequency. Periodic error for two different shafts is shown in Fig. 15.  
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The measurement of the shaft displacement with the use of the eddy-current sensor in the 
horizontal direction (X) is shown in Fig. 17 on the right side. The rotor increased the 
rotational speed at the rate of 7000 RPM per minute. The sampling frequency was set to 2048 
Hz. The measurement with the use of the capacitive sensor is shown in the same Fig. 17 on 
the left side. It should be mentioned that the output signal of the sensor of the capacitive 
type was filtered with the use of the Butterworth filter, order 4, cut-off frequency 200 Hz.  
 

 
Fig. 17.  Measurement of the shaft horizontal displacement using the sensor a sensor based 
on electrical capacity (capaNCDT CS05) and the sensor based on the eddy current (IN-085)  
 
The measurements of the shaft displacement during run up proceeded with extremely low 
viscous oil VG10 without preheating. It is technically impossible to increase the rotor 
rotational speed smoothly from 0 RPM. Rotor starts at the speed of 230 RPM and then 
continuously increases up to the  onset of  instability. The journal movement begins at the 
bottom of the bearing sleeve and with increasing speed it moves up in direction of rotation. 
At the level of the sleeve centre the journal starts to move towards the bearing centre. With 
infinite speed or zero load the journal centre coincidences with bearing centre, which is 
generally unstable position in circular bearing. The instability onset is at about 4 300 RPM.  
 
5.3 Mounting of Piezoactuators 
Choice of the piezoactuator type was verified by measurement of the dependence of acting 
force on the open-loop piezoactuator travel. Force of 500 N is sufficient to overcome 
flexibility of the sealing “O” rings. Flexible tip was used to attach the piezoactuator to the 
bushing rod and the frame structure for compensation of misalignment and possible 
bending load. 
 
The test stand instrumentation allows active vibration control only in the journal bearing at 
the opposite side to the driving motor. Before beginning the operational tests, the initial 
position of the piezoactuators has to be adjusted in the middle position of the operating 
travel range. This position corresponds to half the output voltage of the controller, the full 
range of which is equal to 12V. A screw at a holder is tightened in this position. The range of 
the shaft displacement for the full scale of the controller output voltage is shown in Fig. 18 
for the horizontal (Axis X) and vertical (Axis Y) directions of the shaft displacement. 

 

 
Fig. 18.  Effect of the amplifier input voltage on the shaft position change in the horizontal 
and vertical direction 

 
6. Control System 

As was mentioned earlier, the signal from the proximity probes is connected to the dSpace 
signal processor. The output of the signal processor is connected to the input of the amplifier 
that powers the piezoactuator. The electronic feedback (see Fig. 19) in the below presented 
experiments was of the proportional controller type. Although improved dynamic 
properties of the control loop require adding a derivative component, the noisy signal 
produced by the proximity probes is the reason why the derivative feedback was not used 
(Víteček, et al., 2009). Even if the sensors based on the electrical capacity principle have a 
smaller error than the eddy current sensors, the active vibration control has been tested with 
sensors based on eddy currents. 
 

 
Fig. 19. Active vibration control system 
 
The time history of the shaft rotational speed in RPM for the tests under active control (ON) 
and without active control (OFF) is shown in Fig. 20. For the oil of the VG10 type the onset 
of instability starts at 4 300 RPM. Because the piezoactuator travel range cannot cover the 
change of the shaft position from the very beginning up to the level of the bushing centre 
position, the active vibration control is switched ON when the shaft lifts up into the 
stabilized position, which corresponds approximately to 3 000 RPM. Due to the 
measurement error the controller out voltage starts to oscillate with a limited magnitude. As 
is clear from Fig. 21, if the active control is switched ON during the RPM run-up the onset of 
instability is changed to 7 300 RPM. The result of measurements at half the open-loop gain 
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(50%) is shown in the middle part of Fig. 21. The onset of instability occurs at about 6 200 
RPM. The active vibration control is naturally immediately switched OFF after starting the 
unstable vibration at the subharmonic frequency of the shaft rotation frequency.  
The output of the signal processor is saturated on the full voltage range from 0 to 12 V.  
 

 
Fig. 20. Time history of the rotor rotation speed when the active vibration control is ON and OFF 
 

 
Fig. 21. Time history of the rotor displacements in horizontal and vertical direction and 
control signals for piezoactuators when the active vibration control is ON and OFF 
 
As it is demonstrated in Fig. 21 the active vibration control significantly extends the range of 
operating rotational speed by about 3 000 RPM in comparison with the operating range 

 

without the active vibration control. The electronic feedback is clearly seen as a 
complementary way to the traditional journal bearing design modifications and other tools, 
which prevent instability or shift the rotor instability onset to higher rotational speed. 
 
Provided that the perturbation force is zero the Laplace transfer function relating the 
displacement of the bushing to the displacement of the shaft is given by  
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Assuming that the proportional controller set point is equal to zero and its gain equals to  

PK
 
the open-loop transfer function is as follows 
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For the stability margin the open-loop frequency transfer function is equal to   10 G . 
The frequency of the steady-state vibration at the stability margin is given by  . If the 
feedback gain PK  is positive then the maximal rotational speed MAX  of the rotor is greater 
than the critical rotational speed without any control (12). Increasing is given by the formula 
 
 .1 PCRITMAX K  (17) 
 
The control system does not stabilize the behavior of the journal bearing by changing the 
position of the bearing bushing, but by changing force that acts on this bushing. 
Displacement of the bushing depends on the stiffness of its connection with the bearing 
body through rubber seal rings. The range of the rotor stable speed range is limited by the 
travel range of piezoactuators and measurement errors of the proximity probes. 

 
7. Conclusion 
 

The lumped parameter model of the journal motion inside the hydrodynamic bearing is 
based on the concept developed by Muszynska. According to Muszynska approximation, 
the bearing forces can be modeled by a spring and damper system. This system is rotating at 
the angular velocity, which is a constant fraction of the rotor rotational speed. The equation 
of motion contains the complex vector and parameters. The main goal of the simulation 
study was to verify the model principle by comparing simulation results with results of 
experiments, which are described in many papers, namely the instability of motion and the 
vibration mode at the non-synchronous perturbation. The simulation of the rotor system 
using Simulink confirms the agreement between Muszynska’s model and experiments. 
Test stand for experimental investigation of possibilities to affect behavior of the rotor 
supported in sliding bearings by external excitation was designed and manufactured.  
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using Simulink confirms the agreement between Muszynska’s model and experiments. 
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supported in sliding bearings by external excitation was designed and manufactured.  
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The tests carried out showed some features, which had to be cleared before experiments 
with bearing bushing control could be started. Standard behavior of the rotor was achieved 
with low viscosity oil, with which the oil film had insufficient load capacity to shift journal 
centre into unstable position at the bearing centre. The proposed goal of the project was 
achieved by substantially increasing the onset of instability through controlled movement of 
only one bearing bushing. It seems, that there is a large potential for further improvements, 
which could lead to active control of behavior of high-speed rotors in real operating 
conditions.  
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