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Theoretical Issues in Modeling of  
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Singapore 

1. Introduction 

In large-scale WSNs (wireless sensor networks), packets of a source node are often 

transmitted via multi-hop relays to reach their sink nodes. The hop-count, h, of a sink node 

is related to a particular hop-count originator (namely the source node) and it is defined as 

the least number of multi-hop relays required to send one packet from the source to the sink 

in this chapter. A source node can use a simple controlled flooding to set up the hop-counts 

relative to itself for all other nodes [1]. Let d denote the Euclidean distance between a source 

and its sink (the source-to-sink distance is denoted as SS-distance in the sequel), various 

statistical models that characterize the relationships between h and d are some of the 

fundamental problems in modeling large-scale WSNs. These results can be applied to 

address many other WSN research issues such as range-free localization, communication 

protocol design and evaluation, throughput optimization, transmission power control and 

etc. 

Given a WSN whose nodes are distributed randomly according to a two-dimensional 

homogeneous Poisson point process of density λ, we investigate two statistical relationships 

between hop-count h and SS-distance d in this chapter. First of all, we propose a method 

termed CSP (Convolution of Successive Progress) to compute the K-hop connection 

probability for a two-dimensional network. The K-hop connection probability is defined as 

the conditional probability that a sink has a hop-count h = K with respect to a source given 

that the SS-distance is d. Mathematically, the K-hop connection probability is defined as the 

conditional probability1 P(h = K|d). The CSP method is also extended into three-

dimensional networks. 

Secondly, based on the results of K-hop connection probability, we also present a method to 

compute the PDF (probability density function) of the SS-distance d conditioned on hop-

count h = K, namely the PDF of SS-distance d of all nodes with a hop-count h = K. 

Mathematically, this conditional PDF2 is denoted as f(d|h = K). Simulation studies show that 

the proposed methods are able to achieve significant error reduction in computing these 

hop-distance statistics (i.e. the conditional probability/PDF) compared with existing 

methods. 

                                                 
1
 Unless otherwise specified, the conditional probability is referred to P(h = K|d) in this paper. 

2
 Unless otherwise specified, the conditional PDF is referred to f(d|h = K) in this paper. 
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The rest of the chapter is organized as follows. Section 2 reviews some related works. 
Section 3 described the system models used in the analysis. The CSP algorithms for both 
two-dimensional and three-dimensional networks are presented in Section 4. A method of 
computing the conditional PDF f(d|h = K) is then discussed in Section 5. Section 6 presents 
simulation results and discussions. Finally, Section 7 concludes the chapter. 

2. Related works 

Evaluation of various statistical models that characterize the relationships between hop-
count h and SS-distance d are some of the fundamental problems in modeling large-scale 
WSNs. In [2], the solution of the conditional PDF f(d|h = K) for one-dimensional networks is 
presented. The authors of [3] and [4] derived the conditional probability P(h = K|d) based on 
the results of [2] for one-dimensional networks. However, only models are provided to the 
solution of P(h = K|d) in two-dimensional networks. In [5], the exact analytical solution of 
the conditional probability P(h = K|d) is derived for K = 1 and K = 2 in two-dimensional 
networks. However, probabilities P(h = K|d) for K > 2 were studied by analytical bounds 
and extensive simulations. The author of [6] proposed an iterative formulation of P(h = K|d). 
Though not stated explicitly in his paper, its derivation is based on an “independent 
assumption”. This independent assumption is then highlighted in [7]. The analytical 
solutions proposed in [6] and [7] are the analytical approximations of P(h = K|d) and only 
converges to the true statistics when the node density λ in the network tends to infinity. Due 
to the complexity of two-dimensional multi-hop percolation process, the authors of [8] 
proposed a simulation-based attenuated Gaussian approximation to model the conditional 
PDF f(d|H = K). All previously mentioned results are based on the deployment model that 
nodes are distributed according to a one-dimensional or two-dimensional Poisson process. 
The author of [9] provided an analytical approximation for the probability of 2-hop 
connection between two randomly selected nodes in network whose nodes are distributed 
according to a Gaussian distribution. 
Another interesting relationship between hop-count and distance is known as progress per 
hop. Works related to this are reported in [10] - [13]. The authors of [10] derived a solution 
for the expected per hop progress in two-dimensional networks. The expected per hop 
progress problem was also studied in [11] and [12] with different applications in protocol 
evaluation and localization. The authors of [13] presented an analytic approach to capture 
statistical bounds on hop-count for a given SS-distance in a greedy routing approach. 
The statistical relationships between hop-count and SS-distance can be applied to address 
many WSN research problems. For example, many range-free WSN localization algorithms 
employ the principle of hop-count-to-distance transformation to localize nodes. The DV-hop 
WSN localization algorithm of [14] employs a heuristics approach known as correction 
factor to estimate the distance between two nodes based on the hop-count between them. 
Similar methods are also reported in [15] and [16]. The network throughput problem and 
optimal transmission radii were also studied in [10] based on the analytical expression of 
expected per hop progress. 

3. System model 

In this section, we discuss radio channel model, node deployment model and network 
topology model used in this chapter. 
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A. Channel model 

As in many WSN literatures, we adopt an unit disk channel model (in some literatures, it is 
also known as lossless model) in this chapter. A source can communicate directly with all 
nodes within a disk centered at itself with a communication range r, but cannot 
communicate with nodes beyond the disk. The link between a pair of nodes is also assumed 
to be symmetric, namely, if node A can receive packets from node B directly, then node B 
also can receive packets from node A directly. The disk model is often used in the theoretical 
analysis of WSNs. There are other realistic channel models available (such as log-normal 
shadowing model [17]). These realistic channel models take the random effect of noise, 
attenuation, shadowing and etc. into consideration. The communication between a pair of 
nodes is thus characterized by PRR (packet reception rate) or LP (link probability) rather 
than the absolute SS-distance. In this chapter, since our study is a general analysis of the 
statistical relationship between hop-count and SS-distance, we adopt the unit disk channel 
model so that the radio channel can be regarded as lossless, invariant and homogeneous. 

B. Deployment model 

We assume all nodes with the same communication range r are randomly deployed in a 
plane according to a two-dimensional homogeneous Poisson point process of density λ. 
Furthermore, we require that all nodes deployed can form a fully-connected network. We 
make use of the WSN connectivity results presented in [18] to determine suitable values of λ 
so that all nodes deployed can form a connected network almost surely (probability greater 
than 0.99). 

C. Topology model 

Based on the channel and deployment model, we can model the WSN as an undirect graph 

G. A graph G(V,E) consists a set of vertices (nodes) and edges (links), the set of vertices and 

edges are denoted by V and E respectively. The shortest network path between vertices  

i (i ∈ V) and vertices j (j ∈ V) is defined as the path that travels through the minimum 

number of edges from i to j. Therefore, the number of edges traveled is actually the hop-

count between i and j. There are many algorithms proposed in the literature to set up the 

shortest network path in a WSN. These algorithms are out of the scope of this work. In this 

chapter, we assume that the network paths and the hop-counts between all node pairs have 

already been set up in advance. 

4. Convolution of Successive Progress 

In this section, we propose a method termed CSP (Convolution of Successive Progress) to 
compute the K-hop connection probability in two-dimensional WSNs, i.e. P(h = K|d). We 
then extend the CSP method to compute the K-hop connection probability in three-
dimensional networks. 

A. Problem statement 

A formal definition of the K-hop connection probability is given in this subsection. Let h and 
d denote the hop-count and distance between a pair of source and sink. The K-hop 
connection probability is an important hop-distance statistic and it is defined as the 
probability that the source can reach the sink in K number of multi-hop relays given that the  
 

www.intechopen.com



 New Trends in Technologies: Control, Management, Computational Intelligence and Network Systems 

 

338 

 

Fig. 1. Maximum progress from the source to the sink. Note that the source node can be a 
relay node as well. The dotted arc is the intersecting arc. 

distance between the source and the sink is d, i.e. P(h = K|d). In order to solve for P(h = K|d), 

we construct a multi-hop network path from the source to the sink and computes the 

distribution of the length of the network path. First of all, we discuss how to compute the 

PDF of the length for a single hop. 

B. Probability density function of maximum progress towards sink 

We first introduce a random variable X (small letter x denotes an instance of X) known as 

maximum progress [10] per communication hop. It is a measure of the maximum progress 

in Euclidean distance from the source to the sink in one hop relay. Let A(d12, r1, r2) represent 

the intersectional area of two disks given the radii of the disks are r1 and r2 respectively and 

the distance between the centers of the two disks is d12. The analytical form of A(d12, r1, r2) is 

given as follows: 

 

2 2 2 2 2 2
2 1 2 112 1 2 12 2 1

12 1 2 1 2
12 1 12 2

12 1 2 12 1 2 12 1 2 12 1 2

( , , ) ( ) ( )
2 2

1
                      ( )( )( )( )

2

d r r d r r
A d r r r cos r cos

d r d r

d r r d r r d r r d r r

− −+ − + −
= +

− − + + + − − + + +

 (1) 

As depicted in Fig. 1, the distance between the source and the sink is d. A circle with a 

radius d − x centered at the sink intersects with the coverage disk of the source and creates 

an intersectional region (shaded area). Therefore, nodes falling on the intersecting arc have 

the same distance d − x to the sink. Furthermore, a node falling on the intersecting arc is 

selected as the relay node if there are no nodes in the shaded intersection region (the source 

has no neighboring nodes which has a shorter distance to the sink then the relay node 

falling on the intersecting arc). The CDF (Cumulative Distribution Function) of X, F(x), can 
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be computed as the probability that there are no nodes in the shaded intersectional region. 

The CDF and PDF of X are computed as follows: 

 ( ) ( ) exp( ( , , ))F x P X x A d r d xλ= ≤ = − ⋅ −  (2) 

 
( )

( ) exp( ( , , )) ( , , ) ( , , , )
dF x d

f x A d r d x A d r d x ψ d r x
dx dx

λ λ λ= = − − ⋅ − − =  (3) 

 where,   ( , , , ) exp( ( , , ))( 1 2 3 4)ψ d r x A d r d x C C C Cλ λ λ= − − ⋅ − + + +  (4) 
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2 2( )( 2 )

4
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C
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=
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It can be seen from Eq. (3) that the PDF of X, f(x), is parameterized on the node density λ, the 

source-tosink distance d and the communication range r. Therefore, we use the function ψ(λ, 
d, r, x) given by Eq. (4) to simplify the representation of f(x). Let r = 10, the PDF of X for 

different SS-distance d given that λ = 0.03537 and λ = 0.08842 are plotted in Fig. 2 and Fig. 3 

respectively. Given a fixed communication range, it can be seen that the shape of the 

function ψ is largely controlled by its first parameter node density λ and weakly depends on 

its second parameter SS-distance d. In the later discussion, we shall make use of this 

property to simplify some computations. 

The PDF of maximum progress from the source to the sink is given by ψ(λ, d, r, x). The 

function ψ can also be used for the PDF of maximum progress from a relay node to the sink. 

Suppose the distance between a relay node and the sink is drs, the PDF of maximum 

progress from the relay node to the sink is then given by ψ(λ, drs, r, x). In the later discussion, 

we use Xi (i = 0, 1, ...) to represent the random variable of maximum progress from the hop i 

relay node (i = 0 for the source) to the sink. 

C. K = 1 and K = 2 

For K = 1, P(h = 1|d) = 1 if d ≤ r and P(h = 1|d) = 0 otherwise. For K = 2, P(h = 2|d) = P(d−X0 

< r) if r < d ≤ 2r and P(H = 2|d) = 0 otherwise. Since X0 is the maximum progress from the 

source to the sink, d−X0 is the remaining distance to be covered/progressed. Therefore,   
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Fig. 2. Probability density function of maximum progress given different SS-distance, λ = 
0.03537 and r = 10. 

 

Fig. 3. Probability density function of maximum progress given different SS-distance, λ = 
0.08842 and r = 10. 
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P(d−X0 < r) is the probability that a hop-1 relay node at the maximum progress from the 

source to the sink is within the coverage of the sink node. We can show that this approach of 

formulating P(h = 2|d) yields exactly the same form as the K-hop connection probability 

given in [7]. In particular, for r < d ≤ 2r, P(H = 2|d) is given as follow:  

 0 0( 2| ) ( ) 1 ( )

                  1 exp( ( , , ( ))) 1 exp( ( , , ))

P h d P d X r P X d r

A d r d d r A d r rλ λ
= = − < = − ≤ −

= − − ⋅ − − = − − ⋅
 (5) 

D. K > 2 

For K > 2, the conditional probability P(h = K|d) is computed recursively based on the 
method of convolution of successive progress. We shall discuss how to compute P(h = 3|d) 
first. 
Starting from the source, after one hop of maximum progress X0 from the source to the sink, 

the remaining distance to be progressed is d − X0 and a hop-1 node at the maximum 

progress becomes the relaying node. From this hop-1 relay node, the maximum progress 

towards the sink is X1. Therefore, P(h = 3|d) can be formulated as the product of the 

probability that a hop-2 relay node at the maximum progress is within the coverage disk of 

the sink node, and the probability that the sink node’s hop-count is neither h = 1 nor h = 2. 

Mathematically, it is given as follows: 

 
2

0 1
1

( 3| ) ( )(1 ( | ))
i

P h d P d X X r P h i d
=

= = − − < − =∑  (6) 

Similar to the meaning of P(d − X0 < r), P(d − X0 − X1 < r) is the probability that the hop-2 

relay node at the maximum progress is within the coverage disk of the sink node. The PDF 

of X0 and X1 are given by ψ(λ, d, r, x0) and ψ(λ, d−X0, r, x1) respectively, noting that d−X0 is 

the RS-distance (distance between the hop-1 relay node and the sink). It can be seen that the 

PDF of X1 depends on the random variable X0. Recall the property that the shape of function  

ψ is largely controlled by its first parameter λ rather than the second parameter SS-

distance/RS-distance, therefore, we assume that X1 is independent of X0. Define a new 

random variable Z1 as the sum of X0 and X1, the PDF of Z1 can be calculated as follows: 

 1 0 1 0 1 0 0 0 0 1 0 0
0 0

( ) ( ) ( ) ( ) ( ) ( , , , ) ( , , , )
r r

f z f x f x f x f z x dx ψ d r x ψ d X r z x dxλ λ= ⊗ = − = − −∫ ∫  (7) 

 

where ⊗ is the convolution operator. Now, P(d−X0 −X1 < r) = P(d−Z1 < r) = 1−P(Z1 ≤ d−r). 
The conditional probability P(h = 3|d) is then computed as follows: 

 

2

1
1

2

1 1
10

2

0 0 1 0 0 1
10 0

( 3| ) (1 ( ))(1 ( | ))

      (1 ( ) )(1 ( | ))

      (1 ( , , , ) ( , , , ) )(1 ( | ))

i

d r

i

d r r

i

P h d P Z d r P h i d

f z dz P h i d

ψ d r x ψ d X r z x dx dz P h i dλ λ

=
−

=

−

=

= = − ≤ − − =

= − − =

= − − − − =

∑

∑∫

∑∫ ∫

 (8) 
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Similarly, for P(h = 4|d), it can be computed as 
3

0 1 2
1

( )(1 ( | )).
i

P d X X X r P h i d
=

− − − < − =∑  In 

general, for K > 2, the conditional probability is given as follow: 

 

1

0 1 2
1

1

2
1

1

2 20
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                  ( )(1 ( | ))
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 (9) 
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It can be seen that the random variable ZK−2 is the progress of the multi-hop network path 
from the source to the hop K −1 relay node and its PDF can be computed by convolving the 
PDFs of successive maximum progresses. Therefore, the name CSP which reflects the 
algorithm’s computation methodology is phrased. 

E. Extension to three-dimensional networks 

The CSP algorithm can be extended to three-dimensional network based on the same 
intuition of its two-dimensional counterpart. In this case, we assume that nodes with 
communication range r3D are deployed in a space according to a three-dimensional 
homogeneous Poisson point process of density λ3D. 
1) Probability Density Function of Maximum Progress: We have derived the analytical form of 
the PDF of maximum progress in two-dimensional networks. In three dimensional 
networks, the radio coverage of a node is a sphere rather than a disk. Therefore, the 
intersectional area as shown in Fig. 1 becomes an intersection volume between two spheres. 
Similarly, let X (small letter x denotes an instance of X) represent the maximum progress 
from a source to a sink in three-dimensional networks. Let V (d12, r1, r2) represent the 
intersectional volume of two spheres given the radii of the spheres are r1 and r2 respectively 
and the distance between the centers of the two spheres is d12. The analytical form of V (d12, 
r1, r2) is given as follows: 

 
2 2

1 2 1 2
12 1 2

( ) ( 2 ( ))
( , , ) .

12

r r d d d r r
V d r r

d

π + − + +
=  (10) 

Visualize the Fig. 1 in three-dimensional space, the distance between the source and the sink 
is still d. A sphere with a radius d − x centered at the sink intersects with the radio coverage 
sphere of the source and creates an intersectional volume (visualize the shaded part as a 
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volume). Therefore, nodes falling on the intersecting surface (visualize the dotted 
intersecting arc as a surface) have the same distance d−x to the sink. Furthermore, a node 
falling on the intersecting surface is selected as the relay node if there are no nodes in the 
shaded intersectional volume. The CDF of X, F(x), can be computed as the probability that 
there are no nodes in the shaded intersectional volume. The CDF and PDF of X are 
computed as follows: 

       3 3( ) ( ) exp( ( , , ))D DF x P X x V d r d xλ= ≤ = − ⋅ −  (11) 

 3 3 3 3 3 3 3

( )
( ) exp( · ( , , )) ( , , ) ( , , , )D D D D D D D

dF x d
f x V d r d x V d r d x ψ d r x

dx dx
λ λ λ= = − − − − =  (12) 

        3 3 3 3 3 3( , , , ) exp( · ( , , ))( 1 2)D D D D D Dψ d r x V d r d x D Dλ λ λ= − − − +  (13) 

           
2 2 2

3 3 3 3( )( 2 3 2 ( ) 6 ( ) 3( ) )
1

6
D D D Dr x d dr r d d x r d x d x

D
d

π − + − + − + − − −
= −  

           
2

3 3( ) (4 6 6 )
2

12
D Dr x d r x

D
d

π − − −
=  

 

Similarly, we use the function ψ3D(λ3D, d, r3D, x) given by Eq. (13) to simplify the 
representation of the PDF of maximum progress X in three dimensional space. In the 
following discussion, we use Xi (i = 0, 1, ...) to represent the random variable of maximum 
progress from the hop i relay node (i = 0 for the source) to the sink in three-dimensional 
networks. 
2) K = 1, 2: Similarly, P(h = 1|d) = 1 if 0 < d ≤ r3D and P(h = 1|d) = 0 otherwise. For P(h = 2|d), 
it is given as follows: 

3 3 3 3 31 exp( ( , , )), 2 ;
( 2| )

0,  otherwise.                                            
D D D D DV d r r r d r

P h d
λ− − ⋅ < ≤⎧

= = ⎨
⎩

 
(14) 
(15) 

where 
2 2

3 3
3 3

(2 ) ( 4 )

12
( , , ) .D D

D D
r d d dr

d
V d r r

π − +=  

3) K > 2: For K > 2, the CSP method for computing P(h = K|d) in three-dimensional network 
is exactly the same as Eq. (9) except that the PDF of maximum progress is changed from 
function   to function ψ3D given in Eq. (13). 

V. Probability density function of SS-distance conditioned on hop-count 

We have proposed a method of computing the K-hop connection probability P(h = K|d). In 
this section, we derive the solution of the PDF of SS-distance d given that hop-count h = K 
based on the result of K-hop connection probability. Mathematically, this conditional PDF is 
denoted as f(d|h = K).  
We have assumed that nodes are deployed according to a Poisson process in the previous 
sections, therefore, the sensor node deployment region and the SS-distances of all nodes are 
unbounded. To simplify the analysis in this case, we define a disk shape deployment region 
of radius R (R 4  r). Without loss of generality, we assume that the source node is located at 
the center of the deployment disk. All other nodes falling inside the deployment disk can be 
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approximated as uniformly distributed in the deployment disk3. Since all nodes are 
distributed in a disk of radius R, the SS-distance d of all nodes satisfy 0 < d ≤R. 

A. Standard approach: computing f(d |h = K) using Bayes Theorem 

Since we have computed the conditional probability P(h = K|d), we can derive the PDF f(d|h 

= K) using Bayes Theorem as follows: 

 

0

( |d) (d) ( |d) (d)
(d| )

( ) ( |d) (d) d
R

P h K f P h K f
f h K

P h K P h K f d

= =
= = =

= =∫
 (16) 

Given that all nodes are distributed uniformly in a disk of radius R and the source node is 

located at the center of the disk, the PDF of the SS-distance d of all nodes is given as  

f(d) = 
2

2d

R
. The PDF f(d|h = K) can be computed by substituting f(d) and P(h = K|d) into Eq. 

(16). However, computation of f(d|h = K) using Bayes Theorem requires that the value of P(h 

= K|d) is known priorly. Furthermore, the conditional probability P(h = K|d) is recursively 

formulated and it depends on the results of P(h = K’|d) (K’ < K). Therefore, computing  

f(d|h = K) using Bayes Theorem is heavy from a computational point of view. We propose 

an alternative approximation method to compute f(d|h = K) without evaluating P(h = K|d) 

in the first place. 

B. Alternative approach: random truncation 

Since the SS-distances of all hop-1 nodes are less than r, f(d|h = 1) can be derived as a 

truncated distribution of f(d) as follows: 

 

2

2 2 2

0
2d

1 2 1 2 2
( | 1) ( | )

( ) d
r

R

d d d
f d h f d d r

F r R R rd
= = ≤ = ⋅ = ⋅ =

∫
 (17) 

where F(r) = P(d ≤ r) = 
2

2d
0

d.
r

R
d∫  Similarly, the PDF f (d|h = 2) can also be derived as a 

truncated distribution of f(d) as f(d|h = 2) = f(d|r < d ≤ X0 + r). Since P(h = 2|d) = P(d < X0 + r) 

if r < d ≤ 2r. The upper bound on d, X0 + r, is simply the maximum SS-distance of all hop-2 

nodes. 
Unlike the case of f(d|h = 1), the upper truncation X0 + r itself is random in this case. Define 

a new random variable Y as Y = X0 + r and r ≤ Y ≤ 2r. Since the PDF of X0 is given as ψ(λ, d, r, 

x0), the PDF of Y is the shifted version of the PDF of X0 and is given by f(y) = ψ(λ, d, r, y − r). 

Therefore, the PDF f(d|h = 2) is computed as follows: 
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∫

∫
 

                                                 
3 The number of nodes falling inside a region of fixed area can be approximated as a Poisson random 

variable given that all nodes are distributed uniformly in a bounded deployment region. 
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where rect(d, r, y) = 1 if r < d ≤ y and rect(d, r, y) = 0 otherwise. In Eq. (18), we approximate 

F(X0 + r) as F(E[X0] + r) in order to simplify the computation. 
We can use the same approach to derive the PDF f(d|h = 3). The lower truncation of  
f(d|h = 3) is simply the upper truncation of f(d|h = 2). The upper truncation of f(d|h = 3) is 
the maximum SS-distance of all hop-3 nodes and is given by X0+X1+r. Define a random 
variable Y1 as Y1 = X0+X1+r and r ≤ Y1 ≤ 3r. As we have computed the PDF of Z1 = X0 + X1 in 
Eq. (7), the PDF of of Y1 is the shifted version of the PDF of Z1: 

 1 0 0 1 0 00
( ) ( , , , ) ( , , , )

r
f y ψ d r x ψ d X r y r x dxλ λ= − − −∫  (19) 

 

Therefore, we compute f(d|h = 3) as follows: 
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where f(y) and f(y1) are the PDF of Y and Y1 respectively. In general, the PDF f(d|h = K) for K 
> 3 can be computed as follows: 
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where, 
3 3
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6. Simulation studies 

In this section, we study the accuracy of the proposed method in computing P(h = K|d) and 
f(d|h =K) through simulation studies. Firstly, we compare the accuracy of the two different 
methods in computing the conditional probability P(h = K|d), namely the method proposed 
in [7] (this method is termed as Independent Assumption Method (IAM) in the sequel) and 
the CSP algorithm proposed in this chapter. Secondly, we study the accuracy of the 
proposed method in computing the conditional PDF f(d|h = K). 

A. Simulation settings 
For two-dimensional networks, the communication range r is set to 10. We vary the density 
λ of the network and carry out 1000 independent simulations. The simulated statistics of  
P(h = K|d) and f(d|h = K) are then derived from the simulation data. For the three-
dimensional network, all settings are the same except the communication range r3D = 15. 

B. K-hop connection probability P(h = K |d) 
1) Mean Absolute Error: We adopt the accuracy metric known as MAE (Mean Absolute Error) 
introduced in [7] as the performance measure. For comparison purpose, we partition the 
domain of d into M bins. MAEK is then defined as follows: 

 
1

1
| ( | ) ( | )|

M

K a i s i
i

MAE P h K d P h K d
M =

= = − =∑  (22) 

where Pa(h = K|di) and Ps(h = K|di) are the analytical and the corresponding simulation 
results of the conditional probability respectively. The index K on MAE indicates the 
particular value of K-hop considered. Fig. 4 shows the simulation results and the analytical 
results (computed using IAM) of the conditional probability P(h = K|d) (K = 2 to 5) for 
networks with density λ = 0.03537. We observe that the analytical result of P(h = 2|d) closely 
matches the simulation result of P(h = 2|d). This is expected since the analytical solution of 
P(h = 2|d) given in Eq. (5) is exact. However, the analytical results deviate from the 
simulation results as K increases. It can be observed that the discrepancy becomes 
significantly large for P(h = 5|d). On the other hand, Fig. 5 shows the simulation results and 
the analytical results (computed using the CSP method) of the conditional probability P(h = 
K|d) (K = 2 to 5) for networks with density λ = 0.03537. It is observed that the analytical 
results closely match the simulation results for all values of K. In fact, even without the MAE 
metric, it is not difficult to conclude from the observation that computation of P(h = K|d) 
based on the CSP method is more accurate than the method of IAM. 
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Fig. 4. Simulation results and analytical results (IAM method) of P(h = K|d) for K = 2 to 5. 
Network density λ = 0.03537. 

 

Fig. 5. Simulation results and analytical results (CSP method) of P(h = K|d) for K = 2 to 5. 
Network density λ = 0.03537. 
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Fig. 6. Simulation results and analytical results (IAM method) of P(h = K|d) for K = 2 to 5. 
Network density λ = 0.08842. 

 

Fig. 7. Simulation results and analytical results (CSP method) of P(h = K|d) for K = 2 to 5. 
Network density λ = 0.08842. 
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We also plot the analytical results of P(h = K|d) for networks with density λ = 0.08842 based 

on the method of IAM and the CSP in Fig. 6 and 7 respectively. Simulation results of P(h = 

K|d) are also plotted in each figure. In Fig. 6, we observe that the discrepancy between the 

analytical results of the method of IAM and the simulation results reduces as compared to 

the previous case where density λ = 0.03537. The reason is that the independent assumption 

of the IAM method only holds when λ tends to infinity. As a consequence, computation of 

P(h = K|d) based on the IAM method becomes more accurate as λ increases. Although the 

discrepancy is reduced as compared to Fig. 4, the error observed in Fig. 6 is still non-

negligible. On the other hand, it can be observed in Fig. 7 that the analytical results of the 

CSP method concur with the simulation results. 

To compare the performance of the IAM and the CSP methods quantitatively, we plot the 
MAE of both methods against the node density λ in Fig. 8, 9 and 10. Since the analytical 
solution of P(h = 2|d) is exact, error in computing P(h = 2|d) is due to computer simulation 
(such as finite steps taken in the numerical integration) rather than methodology. Therefore, 
we plot MAEK=2 in all figures as a benchmark indicator. In Fig. 8, we plot MAEK=3 of the IAM 
and the CSP methods. It is observed that the MAEK=3 of the IAM method is much larger than 
the MAEK=3 of the CSP method. Although the MAEK=3 of the CSP method is larger than the 
benchmark indicator MAEK=2, it is observed that the MAEK=3 approaches the benchmark 
MAEK=2 as the number of nodes increases. Fig. 9 and 10 shows the MAEK=4 and MAEK=5 of 
both methods. It is observed that the MAEK of the CSP method are smaller than the MAEK of 
the IAM method for all values of K. For instance, the MAEK=5 of the CSP method is about 10 
times smaller than the MAEK=5 of the IAM method. 

 

Fig. 8. The MAEK=3 of the IAM method and the CSP method against the node density λ. The 
MAEK=2 is plotted as a benchmark indicator. 
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Fig. 9. The MAEK=4 of the IAM method and the CSP method against the node density λ. The 
MAEK=2 is plotted as a benchmark indicator. 

 

Fig. 10. The MAEK=5 of the IAM method and the CSP method against the node density λ. The 
MAEK=2 is plotted as a benchmark indicator. 
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2) Snowball Effect: Since both IAM and CSP methods are formulated recursively, errors in 

computing P(h = K|d) will propagate to/accumulate in the computation of P(h = K’|d) (K’ > 

K). We compare this snowball effect of both methods. In Fig. 11, we plot the MAE of both 

methods against hop-count K for three network densities, namely λ = 0.03537, 0.08842 and 

0.1326. As shown in the figure, the snowball effect of the IAM method is prominent since the 

MAE of the IAM method increases rapidly as K increases. For the CSP method, although the 

formulation of the conditional probability is also recursive, the snowball effect is negligible. 

3) K-hop Outage Probability: The analytical result of the K-hop connection probability  

P(h = K|d) can be easily extended to the solution of a problem known as K-hop outage 

probability. The K-hop outage probability is defined as the probability that a sink can be 

connected to a source in less than or equal to K number of multi-hop relays, given that the 

SS-distance is d. The K-hop outage probability can be evaluated as the sum of individual K-

hop connection probability, i.e. 
1

K

i=∑  P(h = i|d). Fig. 12 shows the K-hop outage probability 

plots based on the simulation results and the analytical results for networks of density  

λ = 0.05305. It can be seen that the analytical result concur with the simulation results. 
4) Three-dimensional Network: We have extended the CSP method into three-dimensional 

networks. To validate the method, we plot the analytical results and simulation results of 

P(h = K|d) for three-dimensional network of density λ = 0.001658 and λ = 0.002210 in Fig. 13 

and 14 respectively. It can be observed from the figures that the analytical results concur 

with the simulation results. 

 

Fig. 11. Illustration of the snowball effect. The MAE of the IAM method increases rapidly as 
hop-count increases. On the other hand, the MAE of the CSP method does not increase 
much as hop-count K increases. 
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Fig. 12. Illustration of the K-hop outage Probability for K = 2 to 5, λ = 0.05305 

 

Fig. 13. Comparison of the conditional probability P(h = K|d) in three-dimensional network 
based on the simulation results and the analytical results, λ = 0.001658. 
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Fig. 14. Comparison of the conditional probability P(h = K|d) in three-dimensional network 
based on the simulation results and the analytical results, λ = 0.002210. 

C. Conditional probability density function f(d |H = K) 

In this sub-section, we compare the simulation results and the analytical results of the 

conditional PDF f(d|h = K). The simulation results and the analytical results of f(d|h = K)  

(K = 2 to 5) are plotted in Fig. 16, 17, 18 and 19 respectively. The density of the network is set 

to λ = 0.03537. It is observed that the analytical results match the simulation results very 

well. Some literatures ([3] and [8]) study the Guassianity of the conditional PDF f(d|h = K) 

by using Skewness and Kurtosis as a measure, and then use Gaussian PDF to fit the 

simulation data to approximate the conditional PDF f(d|h = K). These 

heuristic approaches of approximating f(d|h = K) require statistical fitting. The method 

proposed in this chapter, on the other hand, is a general formulation of the conditional PDF 

f(d|h = K). We also plot the simulation results and the analytical results of the PDF  

f(d|h = K) (K = 2 to 5) for networks with density λ = 0.08842 in Fig. 20, 21, 22 and 23 

respectively. We observe that the analytical results also match the simulation results very 

well. Quantitatively, we plot the MAEK error against the density λ of network in Fig. 15. In 

this case, MAEK is defined as follows: 

 
1

1
| ( | ) ( | )|

M

K a i s i
i

MAE f d h K f d h K
M =

= = − =∑  (23) 

where fa(d|h = K) and fs(d|h = K) are the analytical and simulation result respectively. As 

shown in Fig. 15, the MAE is of the order of 10−3. The error is indeed very small. 

www.intechopen.com



 New Trends in Technologies: Control, Management, Computational Intelligence and Network Systems 

 

354 

 

Fig. 15. Mean Absolute Error of the analytical result f(d|h = K) against the number of node 
deployed. 

 

Fig. 16. The conditional pdf f(d|h = 2) based on the simulation data (histogram plot) and the 
analytical result, λ = 0.03537. 
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Fig. 17. The conditional pdf f(d|h = 3) based on the simulation data (histogram plot) and the 
analytical result, λ = 0.03537. 

 

Fig. 18. The conditional pdf f(d|h = 4) based on the simulation data (histogram plot) and the 
analytical result, λ = 0.03537. 
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Fig. 19. The conditional pdf f(d|h = 5) based on the simulation data (histogram plot) and the 
analytical result, λ = 0.03537. 

 

Fig. 20. The conditional pdf f(d|h = 2) based on the simulation data (histogram plot) and the 
analytical result, λ = 0.08842. 
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Fig. 21. The conditional pdf f(d|h = 3) based on the simulation data (histogram plot) and the 
analytical result, λ = 0.08842. 

 

Fig. 22. The conditional pdf f(d|h = 4) based on the simulation data (histogram plot) and the 
analytical result, λ = 0.08842. 
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Fig. 23. The conditional pdf f(d|h = 5) based on the simulation data (histogram plot) and the 
analytical result, λ = 0.08842. 

7. Conclusions 

Evaluation of various statistical relationships between hop-count and source-to-sink 
distance are some of the fundamental research problems in large-scale WSNs. In this 
chapter, we investigate two statistical relationships between hop-count and SS-distance, 
namely the conditional probability P(h = K|d) and the conditional PDF f(d|h = K). We 
propose a method termed CSP to compute P(h = K|d) in both two and three-dimensional 
networks. This method is also extended to compute the conditional PDF f(d|h = K). 
Simulation results show that significant error reduction in computing the conditional 
probability and the conditional PDF can be achieved compared with the existing methods. 
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