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1. Introduction   

Most elliptic solvers developed by researchers need long processing time to be solved. This 
is due to the complexity of the methods. The objective of this paper is to present new finite 
difference and finite element methods to overcome the problem. 
Solving scientific problems mathematically always involved partial differential equations. 

Two recommended common numerical methods are mesh-free solutions (Belytschko et al, 

1996; Zhu 1999; Yagawa & Furukawa, 2000) and mesh-based solutions. The mesh-based 

solutions can be further classified as finite difference method, finite element method, 

boundary element method, and finite volume method. These methods have been widely 

used to construct approximation equations for scientific problems. 

The developments of numerical algorithms have been actively done by researchers. Evans 

and Biggins (1982) have proposed an iterative four points Explicit Group (EG) for solving 

elliptic problem. This method employed blocking strategy to the coefficient matrix of the 

linear system of equations. By implementing this strategy, four approximate equations are 

evaluated simultaneously. This scenario speed up the computation time of solving the 

problem compared to using point based algorithms. 

At the same time, Evans and Abdullah (1982) utilized the same concepts to solve parabolic 

problem. Four years later, the concept has been further extended to develop two, nine, 

sixteen and twenty five points EG (Yousif & Evans, 1986a). These EG schemes have been 

compared to one and two lines methods. As the results of comparison, the EG solve the 

problem efficiently compared to the lines methods. 

Utilizing higher order finite difference approximation, a method called Higher Order 

Difference Group Explicit (HODGE) was developed (Yousif & Evans, 1986b). This method 

have higher accuracy than the EG method. Abdullah (1991) modified the EG method by 

using rotated approximation scheme. The rotated scheme is actually rotate the ordinary 

computational molecule by 45° to the left. By rearranging the new computational molecule 

on the solution domain, only half of the total nodes are solved iteratively. The other half can 

be solved directly using the ordinary computational molecule. This method was named 
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Explicit Decoupled Group (EDG). He use this new method to solve the two dimensional 

Poisson problem and was proven to be faster solver than the EG method by 50%. The 

performance of the EDG method was further tested by Ibrahim. He implements the method 

to solve boundary value problem (Ibrahim, 1993) and two dimensional diffusion problem 

(Ibrahim & Abdullah, 1995). The EDG method was then extended to six and nine points 

(Yousif & Evans, 1995). 

This fast Poisson solver have been challenged by a method called four points Modified 
Explicit Group (MEG) method (Othman & Abdullah, 2000). The concept utilised in MEG 
method was created from modification of concept used in EDG method. In the MEG 
method, only a quarter of node points are solved iteratively, and the remaining points are 
solved directly using the standard and rotated algorithm (Othman & Abdullah, 2000). MEG 
method has successfully saving about 50% of EDG computational time and 75% of EG 
computational time. An additional advantage is the MEG method also has higher accuracy 
compared to EDG method. 
In this chapter, we will demonstrate newly develop finite difference and finite element 
method based on the concept mentioned above for the solution of elliptic problem. 

2. Finite difference method with red black ordering 

We developed two practical finite difference techniques utilising the concept proposed by 
Abdullah (1991) and Othman & Abdullah (2000) for solving elliptic problem. 
Consider the 2D Hemholtz  equation as follows. 

 
2 2

2 2
( , ), ( , ) [ , ] [ , ],

U U
U f x y x y a b a b

x y

∂ ∂
+ −℘ = ∈ ×

∂ ∂
 (1) 

Subject to Dirichlet boundary conditions 

1

2

3

4

( , ) ( ), ,

( , ) ( ), ,

( , ) ( ), ,

( , ) ( ), .

U x a g x a x b

U x b g x a x b

U a y g y a x b

U b y g y a x b

= ≤ ≤
= ≤ ≤
= ≤ ≤
= ≤ ≤

 

In this article, we will only consider uniform nodes. Utilising the concept from MEG (Othman 
& Abdullah, 2000), we develop a method called Quarter Sweep Successive Over-Relaxation 
using red black ordering strategy(QSSOR-RB). Utilising the concept in EDG (Abdullah, 1991) 
and the red black ordering strategy, we develop a method called Half Sweep Successive Over 
Relaxation (HSSOR-RB). Employing the Successive Over-Relaxation (SOR) method using the 
same concept in MEG, QSSOR-RB method only solve quarter node point  iteratively and 
utilising the concept in EDG, HSSOR method only solve half of the node points iteratively by 
SOR method. Beside that the nodes are arranged in a Red-Black ordering manner (Figure 3).  
There are so many approached can be used to approximate problem (1). For instance, Rosser 
(1975) and Gupta et al. (1997) have proposed low and high order schemes.  Both schemes 
can be rewritten in the forms of systems of linear equations. However, both system of 
equations will have distinct properties of coefficient matrix from each other. 
Based on second order schemes, the full and quarter sweeps approximation equations can 
be generally stated as 
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 2 2
, , , , , ,(4 ( ) ) ( ) .i p j i p j i j p i j p i j i jU U U U ph U ph f− + − ++ + + − +℘ =  (2) 

Value of p=1 represent the full sweep scheme and is used to solve all black nodes in discrete 
solution domain given in Figure 1a iteratively. While p=2 represent the quarter sweep 
schemes and is used to solve all black nodes in discrete solution domain given in Figure 1b  
iteratively. 
 

  
(a)                                                             (b) 

          

Fig. 1. Discrete solution domain for (a) full sweep and (b) quarter sweep schemes 

By employing the concept used in EDG (Abdullah, 1991), the five points rotated finite 

difference approximation equation can be formed. The transformation processes are as 

follows. 

2 2

, 1 1, 1,

1, 1, 1,

, ( ) ( ) 2 ,

i j i j

i j i j

x y x y h x y h

± → ± ±
± → ±

Δ Δ → Δ + Δ = Δ = Δ =

∓  

Applying this transformation, approximation equation (2) can be rewritten as 

 2 2
1, 1 1, 1 1, 1 1, 1 , ,(4 2 ) 2 .i j i j i j i j i j i jU U U U h U h f− − + − − + + ++ + + − + ℘ =  (3) 

The approximation equation (3) is applied on solution domain displayed in Figure 2 to solve 

all black nodes iteratively. The white box nodes in Figure 1b are solved via  

2 2
1, 1 1, 1 1, 1 1, 1 , ,(4 2 ) 2 .i j i j i j i j i j i jU U U U h U h f− − + − − + + ++ + + − + ℘ =  

directly and the white bullet nodes in Figures 1b and 2 by 

2 2
1, 1, , 1 , 1 , ,(4 ( ) ) ( )i j i j i j i j i j i jU U U U ph U ph f− + − ++ + + − +℘ = , 

directly. 
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Fig. 2. Discrete solution domain for half sweep scheme 

Red-Black ordering strategies have been shown to accelerate the convergence of many 
numerical algorithm (Parter, 1998; Evans & Yousif, 1990; Zhang, 1996). Hence, we apply this 
ordering strategy to further increase the speed of our computation. The Implemention of the 
Red-Black ordering strategy are shown in Figure 3. 
 

  
(a) (b) (c) 

Fig. 3. Implementation of the RB ordering strategy for (a) full-sweep, (b) half-sweep, and 
(c)quarter-sweep cases. 

The efficiency of the FSSOR-RB, HSSOR-RB and QSSOR-RB are analysed via the following 
two dimensional Helmholtz equation. 

2 2
2 2

2 2
6 (2 ), ( , ) [0,1] [0,1],

U U
U x y x y

x y
ρ α∂ ∂

+ − = − + ∈ ×
∂ ∂

 

with the boundaries and exact solution are defined by 

2 2( , ) 2 , 0 , 1.U x y x y x y= + ≤ ≤  

The convergence criteria considered in these experiments is 1010ε −= . All results of 

numerical experiments are displayed in Figures 4 to 8. 
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(a) 

 

 
(b) 

 

 
(c) 

Fig. 4. Comparison of (a) iteration number, (b) computational time, and (c) accuracy for 

FSSOR-RB, HSSOR-RB and QSSOR-RB (α=0) 
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(a) 

 

 
(b) 

 

 
(c) 

Fig. 5. Comparison of (a) iteration number, (b) computational time, and (c) accuracy for 

FSSOR-RB, HSSOR-RB and QSSOR-RB (α=25) 

www.intechopen.com



Recent Development of Fast Numerical Solver for Elliptic Problem   

 

409 

 
(a) 

 

 
(b) 

 

 
(c) 

Fig. 6. Comparison of (a) iteration number, (b) computational time, and (c) accuracy for 

FSSOR-RB, HSSOR-RB and QSSOR-RB (α=50) 
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(a) 

 

 
(b) 

 

 
(c) 

Fig. 7. Comparison of (a) iteration number, (b) computational time, and (c) accuracy for 

FSSOR-RB, HSSOR-RB and QSSOR-RB (α=200) 
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(a) 

 

 
(b) 

 

 
(c) 

Fig. 8. Comparison of (a) iteration number, (b) computational time, and (c) accuracy for 

FSSOR-RB, HSSOR-RB and QSSOR-RB (α=400) 
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Figures 4 to 8 have shown that the results of experiments for FSSOR-RB, HSSOR-RB and 
QSSOR-RB  methods. The results not only compares between these three methods, but also 
the impact of solving more node points on the iteration, computational time and accuracy of 
all three methods. 

Results display in Figures 4(a) to 8(a) show that the numbers of iterations are impacted by 

the number of node points solved. The number of iterations and node points solved are the 

measure of complexity of methods since it refers to the number of function evaluation for 

each methods and problems. The number of node points solved in all experiments are 4096, 

16384, 65536 and 262144. The ratio is 1: 4: 16: 64. However the ratio of number of iteration is 

about 1: 2: 4: 8. It means that increasing the problem sized considered by 

4 , 0,1,2,3i i = increase the iterations by 2 , 0,1,2,3i i = . It is the power of two relationships. 

By making the QSSOR-RB as the basis of comparison, the FSSOR-RB needs around 1.89 to 

2.33 times and HSSOR-RB needs around 1.37 to 1.48 times number of iterations compared to 

QSSOR-RB. This means that FSSOR-RB is two times more complex than QSSOR-RB and 

HSSOR-RB is 1.5 times more complex than QSSOR-RB. This is equivalent to what we are 

expected since QSSOR-RB only solve a quarter of the node points in solution domain 

iteratively and HSSOR-RB only solve half of the node points in the solution iteratively, 

while FSSOR-RB have to solve every node in the solution domain iteratively. 
Results displayed in Figures 4(b) to 8(b) support our description in the above paragraph. 
From the theoretical form of view, higher complexity method needs more computational 
time to solve problem. These scenarios are shown in Figures 4(b) to 8(b). However the effect 

of the complexity is different following the α value used. Figure 4(b) shows that FSSOR-RB 
needs 5 to 6.86 times more computational time compared to QSSOR-RB while HSSOR-RB 

only needs 2.69 to 3.5 times for α = 0. However, for α=25, FSSOR-RB needs 3 to 6.9 times 
more computational time to solve the problem compared to QSSOR-RB, while HSSOR-RB 
only need 2 to 3 times more computational time compared to QSSOR-RB (Refer Figure 5(b)).  

For α=50, the FSSOR-RB needs 2.5 to 7.23 times more computational time compared to 
QSSOR-RB and HSSOR-RB only need 1.5 to 3.09 times more computational time. As for 

bigger α value, the interval of computational time ratio of HSSOR-RB as compared to 
QSSOR-RB is narrowing and for FSSOR-RB becoming wider. 
Figures 4(c) to 8(c) compares the accuracy of FSSOR-RB, HSSOR-RB and QSSOR-RB. These 

figures show that the accuracy of all methods are almost similar except for α=25 (refer 
Figure 5(c)). The figure shows that the QSSOR-RB has the highest accuracy, followed by 
FSSOR-RB and the last one is the HSSOR-RB.  

3. Finite element method with red black ordering 

In this subtopic, we will explain the development of our finite element class of method 
based on Galerkin scheme using triangle element discretization. Other finite element 
schemes are subdomain, collocation, least-square and moment.  
Consider the two dimensional Poisson equation as follows. 

 [ ] [ ]
2 2

2 2
( , ), ( , ) , , .

U U
f x y x y a b a b

x y

∂ ∂
+ = ∈ ×

∂ ∂
 (4) 

The Dirichlet boundary conditions are given by 
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1

2

3

4

( , ) ( ), ,

( , ) ( ), ,

( , ) ( ), ,

( , ) ( ), .

U x a g x a x b

U x b g x a x b

U a y g y a x b

U b y g y a x b

= ≤ ≤
= ≤ ≤
= ≤ ≤
= ≤ ≤

 

A networks of triangle elements need to be build in order to derived the triangle element 

approximation equations for problem (4). The general approximation of the function, U(x,y) 

in the form of interpolation function is given by  

 [ ]
1 1 2 2 3 3( , ) ( , ) ( , ) ( , ) .eU x y N x y U N x y U N x y U= + +  (5) 

The shape function can be stated as 

 ( )1
( , ) , 1,2,3

| |
k k k kN x y a b x c y k

A
= + + =  (6) 

where, 

1 2 3 2 3 1 3 1 2| | ( ) ( ) ( ),A x y y x y y x y y= − + − + −  

1 2 3 3 2 2 3 1 1 3 3 1 2 2 1, , ,a x y x y a x y x y a x y x y= − = − = −  

1 2 3 2 3 1 3 1 2, , ,b y y b y y b y y= − = − = −  

1 3 2 2 1 2 3 2 1, , .c x x c x x c x x= − = − = −  

The first order partial derivatives for the shape functions are given as follows. 

 ( )( , ) , 1,2,3
| |

k
k

b
N x y k

x A

∂
= =

∂
 (7) 

in x direction and   

 ( )( , ) , 1,2,3
| |

k
k

c
N x y k

y A

∂
= =

∂
 (8) 

in y direction. 

Based on the definition of hat function, the approximation functions for problem (4) are 

given as follows. 

 , ,
0 0

( , ) ( , )
m m

r s r s
r s

U x y R x y U
= =

=∑∑  (9) 

for full sweep case, 

 
1 1

, , , ,
0(2) 0(2) 1(2) 1(2)

( , ) ( , ) ( , )
m m m m

r s r s r s r s
r s r s

U x y R x y U R x y U
− −

= = = =
= +∑ ∑ ∑ ∑  (10) 
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for half sweep case, and 

 , ,
0(2) 0(2)

( , ) ( , )
m m

r s r s
r s

U x y R x y U
= =

= ∑ ∑  (11) 

for quarter sweep case. 

Next, let consider the Galerkin residual method as follows. 

 , ( , ) ( , ) 0, , 0,1,2, ,i jD
R x y E x y dxdy i j m= =∫∫ A  (12) 

 

With, 
2 2

2 2
( , ) ( , )

U U
E x y f x y

x y

∂ ∂
= + −
∂ ∂

 is the residual function. Applying the Green theorem to 

equation (9) yields 

 
, ,

, , ,( , ) ( , )
b b

i j i j
i j i j i j

a a

R RU U U U
R x y dx R x y dy dxdy F

y x x x y yλ

∂ ∂⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂
− + − + =⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

∫ ∫ ∫¶  (13) 

 

with , , ( , ) ( , ) .
b b

i j i j

a a

F R x y f x y dxdy= ∫ ∫  

By replacing equation (7), (8) and the boundary conditions into problem (4), can be shown 

that equation (13) will generate a linear system for any cases. The linear system can be stated 

as 

 * *
, , , , , , , ,i j r s r s i j r s r sK U C f− =∑∑ ∑∑  (14) 

with 

, ,, ,*
, , ,

b b b b
i j i jr s r s

i j r s

a a a a

R RR R
K dxdy dxdy

x x y y

∂ ∂⎛ ⎞ ⎛ ⎞∂ ∂
= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
∫ ∫ ∫ ∫  

and 

( )*
, , , , ,( , ) ( , ) .

b b

i j r s i j r s

a a

C R x y R x y dxdy= ∫ ∫  

In stencil form, the full, half, and quarter sweep can be stated as follows. 

• Full sweep stencil 

2

, ,

1 1 1

1 4 1 1 6 1 .
12

1 1 1
i j i j

h
U f

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

 

This stencil is applied on solution domain with triangle element displayed in Figure 9. 
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Fig. 9. Solution domain with triangle element discretization for full sweep scheme 

• Half sweep stencil 

2

, ,

1 1 1 1

4 0 5 1 , 1
6

1 1 1 1
i j i j

h
U f i

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− = =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

2

, ,

1 1 1 1

0 4 0 1 6 1 , 1,
6

1 1 1 1
i j i j

h
U f i n

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− = ≠⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

2

, ,

1 1 1 1

0 4 1 5 ,
6

1 1 1 1
i j i j

h
U f i n

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− = =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

This stencil is applied on solution domain with triangle element displayed in Figure 10. 
 

 

Fig. 10. Solution domain with triangle element discretization for half sweep scheme 
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• Quarter Sweep stencil 

2

, ,

1 0 1 1

0 0

1 0 4 0 1 1 0 6 0 1
3

0 0

1 1 1 0

i j i j

h
U f

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

This stencil is applied on solution domain with triangle element displayed in Figure 11. 

 

 

Fig. 11. Solution domain with triangle element discretization for quarter sweep scheme 
 

All full sweep, half sweep and quarter sweep methods utilised the same red black ordering 

as the previous finite difference method in section 2 applied (refer Figure 3). The 

performance of the full sweep, half sweep and quarter sweep Gauss Seidel schemes using 

triangle element discritization based on Galerkin scheme are analysed for the following two 

dimensional Poisson equation (Abdullah, 1991). 

( )
2 2

2 2
2 2

, ( , ) [0,1] [0,1].xyU U
x y e x y

x y

∂ ∂
+ = + ∈ ×

∂ ∂
 

 

The boundaries and the exact solution are given as follows. 

( , ) , 0 , 1.xyU x y e x y= ≤ ≤  

The convergence criteria considered in these experiments is 1010ε −= . All results of 

numerical experiments are displayed in Figure 12, 13 and 14. 
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Fig. 12. Number of iterations for all compared methods. 

Figures 12 to 14 have shown that the full sweep, half sweep, and quarter sweep triangle 
element approximation equations based on the Galerkin scheme are fast and accurate 
algorithms. The findings in Figure 12 shows that numbers of iteration needed by FSGS-RB 
are almost four times compared to QSGS-RB, while HSGS-RB is almost two times compared 
to QSGS-RB. The impact of increasing the number of node points to number of iterations 
seems too significant. In this experiment the ratio of number of points studied is 1: 4: 16: 64. 
However, the increment of numbers of point solves also increase the number of iterations 
with the ratio of 1: 4: 14: 50. This means that increasing the number of points does increase 
the complexity or increase the number of function evaluation. This behavior is as expected 
since its follows the theoretical explanation. 
 

 

Fig. 13. Computational time in seconds for all compared methods. 

Figure 13 clearly shows that QSGS-RB compute faster than the other two methods (HSGS-
RB and FSGS-RB). The FSGS-RB needs 6.5 to 13.2 times more computational time compared 
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to QSGS-RB, while HSGS-RB only need 1.5 to 3.9 times more computational time compared 
to QSGS-RB. This is because QSGS-RB only solved a quarter of node points iteratively, while 
HSGS-RB only solved half of the node points iteratively. However, the accuracy of both 
QSGS-RB and HSGS-RB are lower than FSGS-RB. 
 

 

Fig. 14. Accuracy comparison for the full sweep, half sweep and quarter sweep schemes 

7. Conclusion 

In this chapter, we have demonstrated the development of three finite difference methods 
and three finite element methods. All methods utilised the red black ordering strategy and 
implementing the concept used in the Explicit Decoupled Group (EDG) and the Modified 
Explicit Group (MEG). By implementing the EDG, we developed a method called Half 
Sweep Successive Over-Relaxation utilising the Red Black ordering Strategy (HSSOR-RB) 
for finite difference scheme and Half Sweep Gauss-Seidel utilising the Red Black Strategy 
(HSGS-RB) for finite element scheme. Applying the concept used in MEG, we develop a 
method called Quarter Sweep Successive Over-Relaxation utilising the Red Black ordering 
strategy (QSSOR-RB) for finite difference scheme, while Quarter Sweep Gauss-Seidel 
utilising the Red Black ordering strategy (QSGS-RB) for finite element scheme. Both finite 
element schemes are developed using triangle element discretization. 
The performance of both finite difference and finite element schemes are examined by 
comparing their number of iteration, computational time and accuracy to full sweep 
schemes, i.e. Full Sweep Successive Over-Relaxation utilising the Red Black Ordering 
Strategy (FSSOR-RB) for finite difference scheme and Full Sweep Gauss-Seidel utilising the 
Red Black Ordering Strategy (FSGS-RB) for finite element scheme. Helmholtz equation was 
used for testing the new finite difference scheme, while Poisson equation was used for 
testing the new finite element scheme. 
From the numerical experiment, both HSSOR-RB and QSSOR-RB have shown the integrity 
to solve the Helmholtz equation faster than the FSSOR-RB. This is because The FSSOR-RB 
has the higher complexity and needs higher numbers of iteration than HSSOR-RB and 
QSSOR-RB methods. Having higher complexity and higher numbers of iteration makes the 
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method required the highest number of arithmetic operation compared to HSSOR-RB and 
QSSOR-RB. Furthermore, solving Helmholtz equation via QSSOR-RB only needs to solve a 
quarter of node points in the solution domain iteratively, while solving via HSSOR-RB only 
required to solve half of the node points in the solution domain. This is another reason why 
QSSOR-RB is faster than HSSOR-RB. The best part is HSSOR-RB and QSSOR-RB not only 
computes the Helmholtz problem faster than FSSOR-RB but also have similar accuracy to 
FSSOR-RB method. 
Poisson equation has been used to examine the performance of the new finite element 
method, i.e. QSGS-RB and HSGS-RB. The numerical experiments show that HSGS-RB needs 
almost two times iteration number compared to QSGS-RB, while FSGS-RB needs almost 
four times iteration number compared to QSGS-RB. Besides, HSGS-RB only solve half of the 
solution domain iteratively, while QSGS-RB solve only quarter of the solution domain 
iteratively. Both are the reason why QSGS-RB are faster than HSGS-RB and FSGS-RB. 
As the conclusion, applying the concept used in EDG and MEG with red black strategy 
produces fast solvers either using finite difference or finite element approaches. 
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