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1. Introduction    

The current market is in a phase of accelerated process of change, that leads companies to 
innovate in new techniques or technologies to respond as quickly as possible to the ever-
changing aspects of the global environment. The economy of a country is heavily dependent 
on new and innovative products with very short development time. 
Companies, currently, have considerable success, only if they develop the ability to respond 
quickly to changing of customer needs and to use new innovative technologies. In this 
context, the companies that can offer a greater variety of new products with higher 
performance resulting in advantage over the other. 
At the heart of this environment there is a new generation of customers, who forced 
organizations to research new technologies and techniques to improve business processes 
and accelerate product development cycle. As a direct result, factories are forced to apply a 
new philosophy of engineering as the Rapid Response to Manufacturing (RRM). The 
concept of the RRM uses products previously designed to support the development of new 
products. 
The RRM environment was developed by integrating the various technologies, such as 
CAD-based modelling, the knowledge-based engineering for integrated product and 
process management and the direct production concepts. Direct production uses 
prototyping, tooling and rapid manufacturing technologies to quickly test the design and 
build the part (Cherng et al., 1998). 
Among RRM technologies, Rapid (RP) and Virtual (VP) Prototyping are revolutionizing the 
way in which artefacts are designed. 
Rapid Prototyping (RP) technologies embraces a wide range of processes for producing 
parts directly from CAD models, with little need for human intervention; so, designers can 
produce real prototypes, even very complex, in a simple and efficient way, allowing them to 
check the assembly and functionality of the design,  minimizing errors, product 
development costs and lead times (Waterman & Dickens, 1994). 
The SLS technology was developed, like other RP technologies, to provide a prototyping 
technique to decrease the time and cost of the product cycle design. It consists of building a 
three dimensional object layer by layer selectively sintering or partial melting a powder bed 
by laser radiation. 
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The SLS objects appear as rigid and porous, in fact, the density of the material depends on 

the temperature evolution. The molten layer, when the temperature decreases, solidifies and 

binds to the underlying layer, but the presence of the liquid phase, although happens for a 

few time, leads to a shrinkage of the powder–liquid mixture. Thus, the porosity cannot be 

completely eliminated, but the density of the manufactured part is usually higher than the 

powder density. Moreover, due to temperature variation, mechanical stresses are induced. 

As a consequence, the final state of the part (dimensions, density, residual stress levels, etc.) 

strongly depends on the process evolution (Kolossov et al., 2004). 

The success of SLS as a rapid prototyping and rapid manufacturing technology results 

mainly to the possibility to process almost any type of materials (polymers, glass-filled 

nylon, metal and composites) to accommodate multiple applications throughout the 

manufacturing process, but high density is desired for the production of functional metallic 

parts.  

The Selective laser sintering process can be indirect or direct:  
1. The indirect SLS uses a polymer coating of about 5 µm in thickness for metal powders 

and ceramics. The metal powder particles are coated with the polymer and the action of 
the laser melts the polymer, bonding the metal particles together to produce a green 
part. It is necessary, therefore, a post-treatment in the oven at high temperature, so 
remove the polymer and sintering particles by creating a metal-metal link. 

2. In Direct SLS (DMLS) a low melting point component is melted and employed as a 
matrix in which the higher melting point components sit. In this process are used or a 
single powder with two different grain sizes (a slight and a coarse grains) or binary 
systems. Typical binary phase systems investigated include Ni-Cu, Fe-Cu and Cu-
Pb/Sn (Kruth et al. 2008; Lu et al., 2001). The disadvantage of the above processing 
routes is that the components produced exhibit the mechanical properties and 
characteristics of their weakest composite phase, thus lacking the full mechanical 
functionality required for heavy-duty tasks (Dewidar et al., 2008). 

To obtain high density, for functional metallic prototypes, parts or tools, different powder 
binding mechanisms is necessary, so, Selective Laser Melting (SLM) was developed. 
The SLM represents a variation from the classical SLS. The substantial differences compared 
to the latter are: 

• using an integral powder metal without adding low melting point elements;  

• the need to provide a much higher energy density, to bring fusion the powder. 
In SLM near full density parts can be produced without the need for post-processing steps, 
while the same materials can be used as in serial production.  
The advantage is to get an element a massively dense, close to 100%, with metallurgical 

characteristics similar to the objects achievable with conventional production processes and 

without need of post-treatments. 

The laser must have a greater power than the SLS and at the end of the process the 

manufactured objects is quite similar to series production, in fact, it does not require special 

surface finishes and may be subjected quietly at conventional machining. 

In addition, with Selective Laser Melting process there is the theoretical possibility of 

produce any complex geometry. This result is attributable to Layer Manufacturing, each 

individual point of the component can be reached by the laser beam at any time during the 

process. In contrast, the process isn't competitive for large lots or for slight complex parts, 

because the technique is rather slow and, therefore, very expensive. 
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In order to reach a high density, the metallic powder particles are fully molten, laser melting 
process is accompanied by the development of residual stresses, that derive from high 
thermal gradients in the material. These stresses can cause distortion of the part, cracks or 
delaminations (Fischer et al., 2003; Pohl et al., 2001; Nickel et al., 2001).  
Another undesirable phenomenon is the vaporization, that occurs when the bed of powder 
is irradiated with high energy intensity. During the laser melting process, the temperature of 
the powder particles exposed to the laser beam exceed the melting temperature of the 
material. A further increase in temperature (about twice the material melting temperature) 
causes the evaporation of the powder, so, there are a fast-moving expansion of evaporated 
particles, which generate a overpressure on the melted zone and the material is ejected from 
its bed (Hauser et al., 2003). 
Another problem that may occur during the SLM process is the "balling" or spheroidization 
phenomenon, i.e. the formation of isolated spheres with a diameter equal to the laser beam 
focus, which inhibits deposition and decreases the density of produced part. It occurs when 
the molten material is unable to fully wet the substrate because of surface tension. 
The phenomenon is caused by an excessive amount of energy, which gives to the melted 
powder a too low value in viscosity (Nickel et al., 2001; Kannatey-Asibu, 2009; Niu & 
Chang, 1999). 
The aim of this chapter will be to describe capabilities and performances of the SLM process. 
First, the capacity of the system in realizing micro-components with both high dimensional 
accuracy and maximum density, with mechanical properties similar to those assured by 
traditional technologies, will be investigated. Later on it, the chapter will describe some 
applications of the SLM process, such as the manufacture of moulds with conformal 
channels, of customised jigs for welding and the design and fabrication of reticular 
structures, to be used in automotive and aerospace field or in the medical one for custom 
prosthesis fabrication. 

2. The process 

Selective Laser Melting Equipment technology provide a laser system, a set of optical laser 
beam focusing, a powder feeding system (loader and roller or coater) and a control center 
(Fig. 1). 
The piece to be achieved should be drawn using a three dimensional solid or surface 
modeler, then the mathematical model is developed in a CAD format compatible with the 
management software of the RP machine.  
The currently accepted graphic standard by all manufacturers is the STL (solid to layer), 
introduced by 3D Systems, which provides the mesh of internal and external surfaces of the 
workpiece through triangular elements. 
The STL file is then processed for the orientation and slicing phases. The first step allows to 
select the best growth direction of the piece, which greatly influences the dimensional 
accuracy and production time. 
The slicing step, instead, is a critical because it determines the accuracy of the product; in 
fact, it provides a breakdown of the object with orthogonal planes to the direction of growth, 
obtaining the contour of each section, which describes the path of scanning beam laser, and 
the thickness of the layers. 
The process takes place inside an enclosed chamber, filled with nitrogen gas, to minimize 
oxidation and degradation of the powdered material. 
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Fig. 1. SLM equipment 
 

 

Fig. 2. Phases of the  SLM process 

In some technological solutions, to minimize distortions and residual stresses, the powder in 
the build platform is maintained at an elevated temperature (below the melting point of the 
powdered material); in other technological solution the preheating phase is used to 
minimize porosity on the built piece (Slocombe et al., 2001) 
The most common solutions include: 

• infrared heaters, that are placed about the building platform to maintain an elevated 
temperature around the part that being formed;  

• feed cartridges, to pre-heat the powder prior to spreading over the build area.  

• resistive heaters, around the building platform.  
This powder pre-heating and the next maintenance of an elevated and uniform temperature, 
within the build platform, is necessary, also, to minimize the power laser requirements of 
the process, to improve absorption of the laser beam, to prevent warping of the part during 
the build due to non-uniform thermal expansion and contraction (curling), to reduce the 
temperature gradients and improve the wetting properties. 
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Preheating of the powder is used to improve absorption of the laser to reduce the 

temperature gradients and improve the wetting properties. 

The Control Centre commands the RP machine power system: the powder room is raised by 

an amount such that the deposited powder by roller or coater, on the surface of the building 

chamber, deposits a layer of a thickness equal to that given during slicing, while the 

working chamber decreases the thickness of a layer (Fig.2a). 

The coater deposits, in uniform way, the powder on the building chamber (Fig.2b).  

The laser beam selectively scans the surface of the powder, that is, then, sintered (Fig.2c).  

When the first two-dimensional layer is created, the process is repeated until the object is 

built, with a lowering, equal to the thickness of the layer, of the building chamber (Fig. 2.d) 

and the subsequent distribution of the powder with the coater and the selective scanning by 

the laser beam. Surrounding powder remains loose and serves as support for subsequent 

layers, thus eliminating the need for the secondary supports which are necessary for 

photopolymer vat processes. 

For pre-heated solution, a cooling period is required. If the high temperature parts and 

powders are prematurely exposed to external atmosphere, they may degrade for the 

presence of oxygen and the powder cannot be recovered and used for further processing; 

also,  the built  objects may warp due to uneven thermal contraction. So, to allow the parts to 

uniformly come to a low-enough temperature that they can be handled and exposed to 

ambient temperature and atmosphere. 

Finally, the parts are removed from the powder bed, loose powder is cleaned off the parts, 

and further finishing operations, if necessary, are performed. 

3. Materials 

In order to develop a process that can produce functional high strength parts, in a first time, 

successful results, with DMLS, have been obtained with high-strength powder mixtures, 

that containing only two metal powders, such as Fe-Cu, WC-Co, TiC-Ni/Co/Mo, TiCN-Ni, 

TiB2-Ni, ZrB2-Cu and Fe3C-Fe, melting only the powder having the lower melting point 

(Kruth et al., 1997; Kruth et al., 1996; Laoui et al., 1998).  

However, a substantial amount of work has been carried out in the field of laser sintering of 

metal parts, some of which are as follows. Niu and Chang (Niu and Chang, 1998;  Niu and 

Chang, 1999;  Niu and Chang, 1999; Niu and Chang, 2000) have studied the SLS process on 

HSS powder with a carbon di-oxide laser of 25 W, while Fischer (Fischer et al., 2003) has 

studied the behaviour of commercial titanium. Song (Song, 1997) have performed 

experiments on direct sintering of pre-alloyed bronze as a low melting metallic powder on a 

laboratory test facility. Abe (Abe et al., 2001) has studied the behavior of nickel base alloys 

and has reported that the process does not exhibit balling phenomenon but only part 

deflections and cracking.  

At this day, few studies have been performed on SLM process. Badrossamay (Badrossamay 

& Childs, 2007) has performed a further studies on M2 tool steel, 316L and 314S-HC 

stainless steel, while Abe (Abe et al., 2001) has investigated the effects of a single scanning 

test on several kinds of materials: aluminium, copper, iron, stainless steels (SUS 316L), 

chromium, titanium and nickel-based alloy. Kruth (Kruth et al., 2004) has studied a mixture 

of different types of particles (Fe, Ni, Cu and Fe3P) specially developed for SLM. 
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4. Experimental tests and analysis of results 

4.1 Experimental plan  
Experimental tests have been performed in this work to understand the capabilities of the 
SLM process in terms of density, roughness, dimensional accuracy and mechanical 
properties. 
Several process parameters can be modified in order to obtain optimum quality of laser 
sintered samples. Some of these parameters are related to the process (single layer thickness, 
scan velocity, hatch spacing, scan strategy), others depend on the laser (laser power, spot 
diameter, wavelengths, the energy of the pulse laser), the type of material and other 
characteristics of the used powder (such as particle size, distribution, shape, material type, 
the percentage composition of materials), others by the final component which is to be 
realized (shape, size, etc...). 
The energy density Ed of a single track can be calculated by the relation between laser power 
(P), scan speed (v) and spot diameter (d) (Eq. 1) (Lu, 2009): 

 
2d

P J
E

v d mm

⎡ ⎤= ⎢ ⎥⋅ ⎣ ⎦
 (1) 

where: 
• P is the laser power used to scan a part; 
• v is the scan speed or the velocity by which the laser beam moves over the powder 

surface. 
• d is the spot diameter, equal to 0.2 [mm]. 
A full factorial plan (32 plan) was used to project experiments. A contemporary variation of 
the two parameters, scanning speed (measured in mm/s) of the laser power (measured in 
Watt) was considered, in order to find out the parameters combination leading to the 
maximum mechanical properties. The combination of these two parameters is responsible 
for the melting mechanism and influence the quality of built parts. 
Nine samples were built, with three levels of scanning speed (180, 200, 220) and three levels 
of laser power (57, 86, 100). Moreover, five replications for each combination of the 
parameters were realized.  

4.2 Machine set up 
The machine used to perform experiments was equipped with a Rofin Nd:YAG laser source 
characterized by a wavelength of 1.064 μm, a spot diameter of 200 μm and a maximum 
output power of 100 W. The laser beam was moved over the powder surface by means of 
scanning mirrors in order to draw selectively every layer of the powder.  
The powder deposition system consisted in a building chamber, a powder chamber and a 
coater. Powder layers were deposited in one direction using a coater and the layer thickness 
was set to 30 µm. Moreover, the chamber was filled, in slight overpressure, with nitrogen to 
prevent oxidation of the parts and to reduce the initial oxygen level at 0.8%. 

4.3 Material   
A material with the typical composition of maraging steels, reinforced with cobalt, was used 
for the present study. Specifically, the composition was very close to the 18 Ni Marage 300 
steel and the powder had spherical particles with average size below 40μm. The chemical 
composition of the used powder, determined by Energy Dispersive X-ray (EDX) analysis, 
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consisted in 4.2 wt.% Mo, 0.88 wt.% Ti, 65.9 wt.% Fe, 10.2 wt.% Co, 18.8 wt.% Ni and 0.02 
wt.% C. 
Maraging steels are a special class of low-carbon ultra-high-strength steels, which derive 
their strength not from carbon, but from precipitation of inter-metallic compounds; they 
were developed for high performance applications, especially those in which high strength 
and good toughness are required. 
18 Ni Marage 300 steel presents excellent mechanical properties, high value of yield and 
tensile strength, toughness, ductility and impact strength, high fatigue limit, high 
compressive strength, hardness and wear resistance suitable for many machining tools.  
This type of steel is conventionally used for produce tools suitable for complex machining, 
to achieve high-performance industrial parts (aerospace applications), for manufacturing of 
dies for hot injection moulding, for inserts for moulds of all standard thermoplastic 
materials, for casting and for the direct realization of objects for engineering applications. 

4.4 Mechanical characterisation of built samples 
Small square samples of 15 x 15 x 10 mm were built to measure density, hardness and to 
study microstructure.  
First, density was measured with the ‘Archimedes-method’ by weighting the samples in air 
and subsequently in ethanol after coating them with a lacquer. The coating prevented 
absorption of ethanol by the specimen during measurements.  
 

 

Fig. 3. Density versus Energy Density 

Fig. 3 shows the tendency of Density versus the Energy Density Ed. Values of Ed were 
calculated by means of Eq. 1. 
 It is evident that density increases with the increase of Ed and it is maximal for the 
maximum Ed, which means scan speed and laser power set respectively to the minimum 
(180 mm/s) and the maximum value (100W) of the considered range. A maximum value of 
8.0 g/m3 was found for density; thus the porosity was approximately 0.01%. This means 
that it was possible to produce nearly full dense parts with properties comparable to those 
of the bulk material.  
Hardness and tensile tests were performed on specimens built with the maximum density, 
setting the scan speed to 180 mm/s and laser power to 100W. 
Rockwell C test was used for determining hardness. Experimental results gave an average 
value of 34 HRC.  
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Tensile tests were performed using an Instron 4467 machine equipped by an extensometer 
(with a 12.5 mm gage length and maximum elongation of 5 mm). Results of tensile test 
brought to a value of 985 MPa for Yield Strenght, 1145 MPa for Tensile Strength and 7.6 % 
for Elongation to break.   
Fig.4(a) and Fig.4(b), respectively, show micrographs at magnifications 200X and 1000X 
obtained with an optical microscope. It is evident that the metal powder is completely fused 
and constituted by molten/re-solidified zones with curved edges (approximately parabolic). 
The laser tracks overlap in order to produce a non-porous part. This means that each part is 
welded onto the layers surrounding it. The presence of pores is very limited as it is possible 
to see from black spots in the pictures. 
 

200 µm 20 µm
a) b)

200 µm200 µm200 µm200 µm 20 µm20 µm20 µm
a) b)  

Fig. 4. 200x  magnification (a) and  1000x magnification (b) of the sample obtained with 
P=100W and v=180mm/s 

4.5 Dimensional accuracy 
A specific part test was developed in order to test the dimensional accuracy of SLM parts 
with the maximum density achieved. The proposed geometry with maximum dimensions 
70 x 70 x 25 mm is shown in (Fig. 5). It was thought to determine capabilities of the process 
in terms of: 
- minimum feasible feature size; 
- dimensional achievable accuracy. 

 

Fig. 5. Benchmark geometry 
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The feasible precision and resolution of the process were tested by: 
- cylindrical holes (CH), ranging from 0.2 to 6 mm diameter (CH1. CH2, CH3, CH4, CH5, 

CH6, CH7 ); 
- cylindrical extrusions (CE), ranging from 0.2 to 6 mm diameter (CE1, CE2, CE3, CE4, 

CE5, CE6, CE7); 
- parallelepiped extrusions (PE), ranging from 0.2 to 6 mm thickness (PE1, PE2, PE3, PE4, 

PE5, PE6, PE7); 
- parallelepiped cavities (PC), ranging from 0.2 to 6 mm width (PC1, PC2, PC3, PC4, PC5, 

PC6, PC7); 
- vertical holes (VH) ranging from 0.2 to 6 mm diameter (VH1, VH2, VH3, VH4, VH5, 

VH6, VH7); 
- thin walls (TW) ranging from 0.2 to 6 mm thickness (TW1, TW2, TW3, TW4, TW5, TW6, 

TW7); 
The built benchmark (Fig. 6) was measured using a coordinate measuring machine (DEMeet 
400) together with an optical microscope.  
Fig. 6 shows a picture of the built benchmark. It is evident how all designed features could 
be realized, except for cylindrical extrusions CE1, CE2, CE3. They were probably built, but 
they were removed by the coater during the deposition of the powder. 
The dimensional error E% was introduced in order to perform an analytical study of the 
accuracy (Eq. 2). In this equation Nd and Md represent respectively the nominal and the 
measured dimension. 

 100
dN

dMdN
E ⋅

−
=°

°  (2) 

Results of measurements (Table 3) showed that it was possible to build: 
- thin walls with a maximum error of 15% for a thickness of 0.2 mm and with a minimum 

error of 1.17% for a thickness of 6 mm; 
- parallelepiped cavities with a maximum error of 20% for a width of 0.2 mm and with a 

minimum error of 4% for a width of 6 mm; 
- parallelepiped extrusions with a maximum error of 20% for a thickness of 0.2 mm and 

with a minimum error of 1.33% for a thickness of 6 mm; 
 

 

 

Fig. 6. Built benchmark 
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Element 
Measurable 

size 

Nominal dimension

[mm] 

Measured Dimension

[mm] 
E% 

CE1 diameter 0.2 - - 
CE2 diameter 0.3 - - 
CE3 diameter 0.4 - - 
CE4 diameter 0.8 0.87 -8.75 
CE5 diameter 1.5 1.6 -6.67 
CE6 diameter 3 2.99 0.33 
CE7 diameter 6 5.99 0.17 
CH1 diameter 0.2 0.23 -15.00 
CH2 diameter 0.3 0.34 -13.33 
CH3 diameter 0.4 0.41 -2.50 

CH4 diameter 0.8 0.82 -2.50 

CH5 diameter 1.5 1.53 -2.00 

CH6 diameter 3 2.91 1.67 

CH7 diameter 6 5.94 1.00 

PE1 thickness 0.2 0.16 20.00 

PE2 thickness 0.3 0.32 -6.67 

PE3 thickness 0.4 0.36 10.00 

PE4 thickness 0.8 0.88 -10.00 

PE5 thickness 1.5 1.64 -9.33 

PE6 thickness 3 3.24 -8.00 

PE7 thickness 6 6.08 -1.33 

PC1 width 0.2 0.24 -20.00 

PC2 width 0.3 0.33 -10.00 

PC3 width 0.4 0.44 -10.00 

PC4 width 0.8 0.84 -5.00 

PC5 width 1.5 1.37 8.67 

PC6 width 3 2.84 5.33 

PC7 width 6 5.43 9.50 

VH1 diameter 0.2 0.25 -25.00 

VH2 diameter 0.3 0.36 -20.00 

VH3 diameter 0.4 0.43 -7.50 

VH4 diameter 0.8 0.85 -6.25 

VH5 diameter 1.5 1.55 -3.33 

VH6 diameter 3 2.73 9.00 

VH7 diameter 6 5.46 9.00 

TW1 thickness 0.2 0.17 15.00 

TW2 thickness 0.3 0.33 -10.00 

TW3 thickness 0.4 0.37 7.50 

TW4 thickness 0.8 0.75 6.25 

TW5 thickness 1.5 1.44 4.00 

TW6 thickness 3 3.06 -2.00 

TW7 thickness 6 6.07 -1.17 

Table 3. Results of measurements  
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- cylindrical extrusions with a maximum error of 8.75% for a diameter of 0.8 mm and 
with a minimum error of 0.17% for a diameter of 6 mm; 

- cylindrical holes with a maximum error of 15% for a diameter of 0.2 mm and with a 
minimum error of 1% for a diameter of 6 mm; 

- vertical holes with a maximum error of 25% for a thickness of 0.2 mm and with a 
minimum error of 3.33% for a thickness of 1.5 mm. 

The following considerations can be drawn: 
The process has a good accuracy for nominal dimensions over 0.4 mm; E% increases for 
values lower than 0.4 mm because the nominal dimension is gradually approaching to the 
laser spot diameter.  

5. SLM Applications 

5.1 Cellular structures 
The cellular metal structures have been used in various industrial applications such as heat 

exchangers, in reconstructive surgery, in chemistry, in automotive and aerospace industries. 

They possess valuable characteristics as low density, high strength, good energy absorption, 

good thermal and acoustic properties (Dotcheva et al., 2008). 

Periodic cellular structures are highly porous structures, with only 20% or less of their 

internal volume occupied by solid material (Evans et al., 2001). These advantageous 

characteristics make them very desirable, but difficulties in their production limits their 

application. Layer manufacturing technologies such as Direct Metal Additive 

Manufacturing, the Electron Beam Melting, the Direct Metal Laser Sintering and Selective 

Laser Melting (SLM), allow the manufacture of solid parts of any geometry, using laser 

technology and layers of metal powder. 

The SLM technology offers the possibility to produce parts with complex engineering 
materials (stainless steel, tool steel, titanium alloy and cobalt-chromium alloys) relatively 
quickly, directly from a 3D CAD data. 
This gives designers the freedom to use the cellular materials where there is the need to 
create a better functionality of a product without sacrificing its mechanical properties. 
The SLM technology, used as a process for the production of cellular structures, can be 
beneficial as it has:  

• The complete freedom in defining the geometry of the part (Kruf et al., 2006);  

• The reduction of the production cycle (Santos et al., 2006). 
In this field, few works have been performed.  
Rehme (Rehme,2010) have been investigated the manufacturability and scaling laws for 

mechanical properties of periodic lattice structures built with SLM technology. In his work 

has built eight different unit cell types, that possess low relative density and response well 

to compressive load. Dotcheva et al. (Dotcheva et al., 2008) have been used cellular truss 

structures as a core material for injection moulding tools. They investigated the capabilities 

of SLM technology for fast building of 3D complex geometry and to improve the thermal 

management of the injection moulding process. 

At DIMeG of the Polytechnic of Bari, has been tested the ability of the SLM to build lattice 
structures (Contuzzi, 2010). 
To test the process, it was chosen, for its versatility, a lattice structure reinforced vertically 
and with 45° truss columns (Fig. 7). 
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Fig. 7. Single cell and its dimension 

The studied configurations are: 
A. cell of 2 mm (L) with side of the truss of 500 μm (l) (Fig. 8); 
B. cell of 3 mm (L) with side of the truss of 700 μm (l) (Fig. 9). 
Overall, the configuration A (2 mm cells, 500 μm side truss) has the dimensions of 16x16x16 
mm, while the B configuration (3 mm cells, 700 μm side truss) has the dimensions of 
21x21x15 mm. 
Between multi-functional applications of periodic cellular structures one of the most 
interesting is one that uses they as heat sinks (resistors). 
 

 

Fig. 8. CAD model of sample A 
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Fig. 9. CAD model of sample B 

Its function is to extend the physical dimensions of the device, allowing, thus, a better heat 
dissipation, because it deprives heat, for Joule effect, and transfers it to the surroundings 
ambient, preventing the excess of the temperature limit. The presence of the heat sink leads 
to a reduction in overall thermal resistance, allowing, thus, the reduction of the temperature 
reached of the device, or, wanting exploit the maximum operating temperature, have a 
higher power dissipated. 
The studied lattice structure have a good behavior as resistors, allowing a disposal, in both 
configurations, well over 100 watts (Fig. 10) at room temperature of 0°C and over 60 W at 
room temperature of 220°C. 
The structures show, also, good mechanical properties. A compressive test was performed 
(Fig. 11) 
The sintered AISI  MARAGE 300 has an elastic behavior almost to the breaking point, this 
means that, according to Timoshenko & Gere (Gere & Timoshenko ,1984), the lattice 
structure, at a certain point, begins to deform plastically, but continues to support the stress 
because of the hardening of the trusses, the beams themselves then collapsing for plastic 
instability. 
For this reason the tests were not performed until the complete collapse of structures, but 
were stopped when the load is stable for a specified time interval. In this interval the trusses 
begin to destabilized, but the load is supported by the intact trusses. 
 

 

Fig. 10. Maximum power dissipated 

www.intechopen.com



 New Trends in Technologies: Devices, Computer, Communication and Industrial Systems 

 

246 

 
 

  
 
 

Fig. 11. Load-Displacement curve 

5.2 Tools with three-dimensional conformal channels 
In recent years, SLM have found widespread use in the field of rapid tooling, especially in 
the injection mould. The basic principle of injection moulding is that a solid polymer is 
molten and injected into a cavity inside a mould, which is then cooled and the part ejected 
from the machine. Therefore, the main phases in an injection moulding process involve 
filling, cooling and ejection. The cost-efficiency of the process is dependent on the time spent 
in the moulding cycle. Correspondingly, since the cooling phase is the most lenghty step 
among the three, it determines the rate at which the parts are produced. A reduction in the 
time spent on cooling the part before it is ejected would drastically increase the production 
rate, hence reduce costs (Dimla et al., 2005). Historically, this result has been achieved by 
creating several channels inside the mould and forcing a cooler liquid to circulate and 
conduct the excess heat away. The channels are constituted by holes as close as possible to 
the actual moulding area of the die. Up to now, the methods used for producing these holes 
rely on the conventional machining process such as drilling or boring. However, this simple 
technology can only create straight holes which, besides having to intersect each other and 
requiring the closure of entry points of the tool with a plug, cannot remain at a constant 
distance from the moulding area to cool it uniformly. Uneven cooling will result in an 
increase of the mould defects, like warpages or residual stresses, and of the cooling time. A 
more acceptable cooling method, the conformal cooling, is performed by the coolant flows 
in a pattern that closely matches the geometry of the part being moulded (Au & Yu, 2007). 
The term conformal means that the geometry of the cooling channel follows the mould 
surface geometry. The aim is to maintain a steady and uniform cooling performance for the 
moulding part.  
Ring et al. investigated the effectiveness of conformal channels by through the construction 
of three different moulds with and without conformal cooling. They showed that the 
conformal cooling channels technique led to significant improvements and a general 
reduction of the cycle time while increasing heat transfer (Ring et al., 2002). 
A comparison between conformal channels and drilled cooling channels has also been 
conducted by Sachs et al. Their analysis shows that the conformal channel mould reaches 
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operational temperature faster than the conventional one, attaining a more uniform 
temperature distribution with efficient heat transfer capacity (Sachs et al., 2000). 
While the use of conformal cooling channels on the one hand greatly enhances the injection 
molding process, on the other hand it is much more complicated fabricate them on respect 
of the straight ones. 
The advancement of Solid Freeform Fabrication gives rise to the production of injection 
mould with intricate cooling channel geometry. Rapid tooling based on SFF technology 
includes SLM.  Much research has focused on improving the geometric design of the cooling 
channel via SFF technologies. In 2001, Xu studied injection mould with complex cooling 
channels based on SFF processes. He described the conformal cooling layout that can be 
realized with substantial improvements in part quality and productivity (Xu et al., 2001). 
At DIMeG of the Polytechnic of Bari, in collaboration with Elfim srl company of Gravina in 
Puglia (Ba), SLM was used to create a jig for welding of constituent parts of a titanium alloy 
intramedullary nail. The realization of this jig had two basic problems: 

• cooling of the jig; 

• conveyance of shielding gas on the welding area. 
The cooling circuit of each component of the jig was designed with conformal channels in 
order to follow the welding areas and the nail seat, as the conformal cooling channels follow 
the geometry of the cavity in the dies for injection moulding. However, in this case, the 
situation was more complicated because of the need to provide even the conveyance of 
shielding gas.  
The use of the shielding gas was necessary due to the high chemical reactivity of titanium, at 

high temperature, in presence of the oxygen. So, for a good quality joints and to prevent the 

oxides formation, the shielding of an inert gas was indispensable both during welding and 

during the cooling of the seam. Therefore, with the same concept usually adopted for the 

conformal cooling, was created a system of cylindrical channels, whit a diameter down to 1 

mm, in order to direct the shielding gas on weld areas.  

Fig.12a and 13a show respectively the 3D CAD geometry of the upper and the lower 
component of the jig; Fig 12b and Fig 13b show the cooling (blue) and shielding gas (yellow) 
channels that were designed for the jig. Fig. 14 and Fig. 15 show respectively the fabricated 
upper and lower part of the jig, while Fig. 16 shows the coupling of the jig components.  
 
 

   
 

Fig. 12. 3D-CAD model of (a) the upper component of the jig; (b) cooling (blue) and 
shielding gas (yellow) channels in it 

(a) (b) 
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Fig. 13. 3D-CAD model of (a) the lower component of the jig; (b) cooling (blue) and 
shielding gas (yellow) channels in it 
 

 

Fig. 14. Laser sintered upper component of the jig 
 

 

Fig. 15. Laser sintered lower component of the jig 

(a) (b) 
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Fig. 16.  Coupling of the jig components 

6. Conclusions  

The aim of this chapter was to describe capabilities and performances of the SLM process. 
First, experimental tests were performed in order to investigate characteristics of SLM parts. 
It was found that SLM parts could be produced with almost full density and with 
mechanical properties similar to those assured by traditional technologies. Later on it, a 
benchmark was built to study the accuracy of the process. It was found that the process has 
a good accuracy for nominal dimensions over 0.4 mm; the dimensional error increases for 
values lower than 0.4 mm because the nominal size is gradually approaching to the laser 
spot diameter.  
Finally, the capacity of the process in producing customized jigs for welding and reticular 
structures was illustrated.  
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