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1. Introduction 

In any data acquisition system (DAS) many error effects, both of systematic nature (e.g. 

nonlinearity) and of random nature (e.g. electronic noise) are simultaneously present. While 

systematic errors are a comparatively stable characteristic of a DAS, random errors may be 

smaller or larger in different situations, and it is important to understand how they degrade 

the overall performance of the system. It is even more important to understand that random 

errors can be actually used to improve the fidelity of the acquisition, i.e. the technique of 

dithering. This possibility is due to the inherent presence in any DAS of a particular kind of 

error: the quantization error. 

Quantization is a basically simple operation and it is easily understood at an elementary 

level.  However, evaluating its effects on signals, with or without the simultaneous presence 

of other errors, requires quite complex mathematics, usually not mastered by engineers and 

even by researchers without a specific interest in the topic. Due to the complexity of the 

subject (an excellent reference book is [WK08]), misunderstandings and mistakes are 

common when dealing with noise in DAS. For example, it is true that averaging a particular 

number of samples is convenient to reduce the noise, but it is easy to disregard the fact that 

it is useless to increase the number of samples beyond a certain limit (contrary to what 

happens in analogue measurements). In the same way, even if introducing noise in a DAS 

may be desirable and effective, and is expressly a feature in commercial DAS (e.g. [Nat97], 

[Nat07]), few users are aware of how the appropriate level of noise (and other parameters) 

can be chosen. 

The present chapter deals with the topic of performance degradation/ improvement in a 

DAS, deriving by the presence (wanted or unwanted) of noise, and by averaging or filtering 

the output samples. The aim is making the theory understandable and usable by a wide 

audience, using ideas and mathematics as simple as possible. Proper reference, when 

needed, is made to works with rigorous mathematical demonstration of the derived results. 

The chapter covers only the case of perfectly linear DAS, with no (or negligible) nonlinearity 

errors. The more general case of nonlinear DAS with noise is a subject for a possible future 

expanded version of the chapter. 

                                                 
1 corresponding author: http:/ / dee.poliba.it/ DEE/ Giaquinto.html 
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2. Effective number of bits 

If x(t) is the analogue input of a DAS and yn are the output samples, the evaluation of the 

overall acquisition fidelity takes into account, customarily, only transformations involving 

the shape of x(t). Therefore, the fidelity evaluation excludes: 

• linear transformations in the amplitude of the signal (due to fixed gain and offset 

errors); 

• linear transformations in the time of the signal (due to a fixed trigger delay and a fixed 

error in sampling frequency). 

Formally, this means that one has to identify four constants , , ,a b c d  so that, if nt  are the 

nominal (ideal) sampling instants, the scaled input samples 

 ( )s
n nx a b x c d t= + ⋅ + ⋅  (1) 

have minimum distance, in the least squares (LS) sense, from the output samples ny  

( 2( ) mins
n nn

y x− =∑ .) 

In practical DAS testing, ( )x t  is often a large sinusoidal signal, i.e. a sinusoid stimulating at 

least 90% of the full-scale range (FSR) of the acquisition channel (as specified in [IEE94], 

Clause 3.1.29). Identifying the four constants , , ,a b c d  means to determine with the LS 

method the four parameters , , ,x xC V ω ϕ  in the expression 

 cos( )s
n x n xx C V tω ϕ= + + . (2) 

After determining s
nx , a logical fidelity measure is the mean squared error (MSE) 

 2 2 2( )s
e n n ny x eσ = − = . (3) 

The MSE, however, is an absolute number lacking an immediately clear meaning. It is 

preferred, therefore, to express the value of MSE in terms of effective number of bits (ENOB), 

defined by the formula 

 
2

2 2

1
log

2
e

e

q

b b
σ
σ

= −   (4) 

where 

 2 2 / 12q Qσ =   (5) 

is the MSE of an ideal sampler/ quantizer with the same resolution of the DAS. It is obvious 

that in an actual DAS, which has additional errors besides quantization, it is always true that 
2 2
e qσ σ>  and therefore eb b< . 

The meaning of the ENOB definition (4) is better understood by considering a conventional 

input signal with uniform distribution in the whole FSR of the converter, e.g. a triangular 

signal (or a ramp, a sawtooth, etc.). The FSR has amplitude 

 2b
fsx Q= ⋅   (6) 
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and therefore the full-scale triangular signal has power (without considering a possible dc 

component) 

 
2

2

12

fs

x

x
σ =   (7) 

For an ideal quantizer, the resolution b  may be expressed in terms of the logarithm of the 

ratio between the power of the full-scale triangular signal 2
xσ  and the power of the ideal 

quantization error 2
qσ , i.e. 

 

22
2

2 2 22 2

1 1 1
log log log 2

2 2 2

fs bx

q

x
b

Q

σ
σ

= = =   (8) 

For an actual DAS, the same ratio, with the actual MSE 2
eσ  instead of the ideal one 2

qσ , 

yields the ENOB: 

 
2 2 2 2

2 2 2 22 2 2 2

1 1 1 1
log log log log

2 2 2 2
x x e e

e

e q q q

b b
σ σ σ σ
σ σ σ σ

= − = − =   (9) 

Therefore, expression (4) of the ENOB gives the resolution of an ideal quantizer with the 

same MSE of the actual DAS (although the result is in general a non-integer number of bits). 

It is worth to highlight that, if 1010log  is substituted to 2(1/ 2)log  in (8), the ideal dynamic 

range 6.02DR b= ⋅  of the DAS is obtained, and in the same way the quantity 6.02 eb⋅  may 

be considered a measure of actual dynamic range (although this is not a standardized 

definition). 

The given definition of ENOB, like the MSE 2
eσ , depends on the actual signal ( )x t  used to 

stimulate the input of the DAS. The normal practical choice, which has become a standard, 

is a sinusoidal signal smaller than the FSR, but larger than 90% of the FSR itself (“ large 

sinusoid”). The main reason for choosing the sinusoid is that the difference between the 

actually generated signal and its ideal mathematical expression must be a negligible 

quantity with respect to the error introduced by the DAS itself. This is technologically much 

more feasible for the sinusoid then for any other waveform. The large sinusoid, on the other 

hand, has its drawbacks, in practice and in theory. 

1. Under a practical point of view, the large sinusoid does not cover exactly the whole 

range of the DAS, nor it stimulates uniformly the covered range. Therefore, nonlinearity 

errors near the border of the scale weigh less then errors near the centre, and the errors 

outside the range of the signal are not accounted for at all [GT97]. 

2. Under a theoretical point of view, in an ideal quantizer the sinusoid does not produce a 

MSE exactly equal to 2 2 / 12q Qσ =  [WK08]. Besides, there is a logical inconsistency in 

evaluating the MSE produced by a sinusoidal signal, and comparing it with the power 

of a uniformly distributed signal, as the ENOB definition (8) requires. 

Because of the aforementioned problems, a perfectly linear ramp or a triangular signal are 

also used when possible. When the sinusoidal signal is the only feasible choice, a good 

suggestion (first given and developed in [GT97], and confirmed in [KB05]) is to stimulate the 

DAS with some overdrive, since in this way the signal laying in the FSR is almost uniformly 
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distributed. As a matter of fact, in this way the ENOB evaluation is practically insensitive to 

small variations in the amplitude and offset of the stimulus sinusoid (contrary to what 

happens without overdrive), and the evaluation is much more consistent with the results 

obtained by different tests (e.g. the histogram test of nonlinearity, which uses a sinusoid 

with overdrive [IEE00]). The issue of practical ENOB testing, however, is not further 

addressed here. 

In this chapter, mainly to avoid theoretical inconsistencies (point 2 above), the stimulus 

signal x(t) is always assumed to be uniformly distributed in the FSR of the DAS. Since 

dynamic effects (like e.g. dynamic nonlinearity, sampling jitter, etc.) are not examined in the 

chapter and not included in the mathematical analysis and in the simulations, the frequency 

of the input is inessential. If one wants to obtain practical measurements in good accordance 

with the theory developed in the chapter, a sinusoidal signal with some overdrive must be 

used. Using a large sinusoidal signal leads to similar results, but with meaningful 

differences. 

Another convention followed in this chapter is that the quantization step is assumed to be 

1Q = . This is equivalent to express in LSB units all the quantities with the same physical 

dimension of Q  (voltages), and simplifies many equations and notations. For example, 

since / 12 1/ 12q Qσ = = , ENOB may be expressed by 

 2
2

1
log 12

2
e eb b σ= −   (10) 

provided that Q=1, or, equivalenty, that eσ  is expressed in LSB units. Under this condition, all 

the equations in the chapter can be used without modifications. 

3. Perfectly linear DAS with noise and no averaging 

The case of perfectly linear DAS with noise and no averaging is elementary but is also 
preliminary to the analysis of more complete and complex cases. 

In an actual DAS there are many sources of noise, but the overall effect can be seen (and is 

quantified by manufacturers) as a single noise generator with power 2
nσ  at the input of the 

system. If the DAS has negligible nonlinearity, it can be represented by the very simple 

equivalent model in Fig. 1.  

 

n

x

( ')quant x

y

2

n
σ

'x

 

Fig. 1. Equivalent model of linear DAS with noise. 

The ideal quantizer adds, of course, a quantization error ( ')qe x , which is a function of the 

input 'x x n= + . For a fixed input signal, and in particular for a full-scale triangular signal, 
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the quantization error has a fixed power. Consequently, the model in Fig. 1 can be 

substituted by the fully additive model of Fig. 2 (a typical operation in quantization theory).  

Under broad conditions on the quantized signal 'x , quantization theory assures that 

quantization error is: (i) uniformly distributed in [ / 2, / 2]Q Q−  and therefore zero-mean 

with power equal to 2 2 / 12q Qσ = ; (ii) white; (iii) uncorrelated with the input. It can be 

proven (the more general proof is probably the one given in [SO05]) that n  and qe  are 

uncorrelated, too, and therefore the overall MSE of the DAS is: 
 

 

n

x

qe

y

2

n
σ 2

q
σ

 

Fig. 2. Additive model equivalent to that in Fig.1. 

 2 2 2
e n qσ σ σ= + .  (10) 

Taking into account the normalization convention ( 1Q = ), the term in (10) becomes 
2 212 1 12e nσ σ= + , and therefore in this elementary case the ENOB of the DAS is: 

 ( )2
2

1
log 1 12

2
e nb b σ= − +   (11) 

A simple numerical simulation (performed for b  in the range 8÷16 bits) confirms the 

formula (Fig. 3). It is interesting to note the formal similarity of the law of the performance 

degradation 2
2(1/ 2)log (1 12 )nb σΔ = − +  with that of a first-order low-pass filter, with a cut-

off frequency equal to the pure root mean square (rms) quantization error, 

/ 12 0.289 LSBq Qσ = ≅ . At the cut-off ( n qσ σ= ) the ENOB is half a bit below the nominal 

resolution b . After the cut-off, the ENOB decreases with a rate of 1 bit/ octave, or 

3.32 bit/ decade, equivalent to a decrease in the dynamic range of 6.02 dB/ octave or 

20 dB/ decade.  

4. Perfectly linear DAS with noise and averaging: an important case of non-
subtractive dithering 

4.1 Oversampling and averaging 
When the performance of a measurement system is degraded by noise, the obvious method 
to increase accuracy is some form of averaging. 

The simple non-weighted averaging is the well-known optimal method to estimate an 

unknown constant signal buried in white Gaussian noise (WGN). When the signal is not 

constant, averaging is advantageously substituted by other filtering techniques, ranging 

from simple low-pass or band-pass filtering to adaptive filtering, etc. The basic principle is, 

however, the same: to obtain each output sample by a (weighted) average of many samples 

of the input, in order to reduce the acquisition error. This is the principle of oversampling, i.e. 

trading bandwidth (and possibly sampling frequency) for accuracy, e.g. in terms of ENOB. 
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As a side note, it must be highlighted that oversampling is implemented by design in a wide 

class of analog-to-digital converters (sigma-delta converters, etc.), used in commercial DAS 

[Nat05]. This chapter does not deal with this “hard”  oversampling which involves built-in 

hardware to improve performance, e.g. in the form of embedded feedback loops. The 

chapter deals, instead, with the “soft”  oversampling implemented by the user in the form of 

output processing when there is unwanted noise, and an abundance of acquired samples 

with respect to the signal bandwidth. Soft oversampling does not include the 

implementation of feedback loops, or similar techniques. 

 

Fig. 3. ENOB of perfectly linear DAS (with resolution in the range 8÷16 bits) affected by 

input noise (with rms value in the range 0÷10 LSB). Numerical simulations are compared 

with theoretical equations. The “cut-off”  at / 12 0.289 LSBn Qσ = =  is highlighted. 

In the rest of the chapter, attention will be focused on the case of simple (non-weighted) 

averaging of many output samples of a DAS, when the input is an unknown constant with 

additive WGN.  

Like for the hypothesis of uniformly distributed signal for ENOB evaluation, the choice of 

the case is primarily justified by theoretical convenience. In this way the problem is 

mathematically treatable and accurate closed-form equations are derivable. Besides, the 

analysis and the results provide a good understanding, useful for more general cases, of the 

interaction between the signal-dependent errors introduced by quantization, and the signal-

independent errors introduced by noise.  
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In practice, the case of WGN is by far the most common, and it is easy to repeat the analysis 

for other kinds of noise (non-Gaussian and/ or non-white). Also the hypothesis of constant 

signal is verified in many practical cases, e.g. when the sampling frequency is very high 

with respect to the variations of the input, when a sample-and-hold is used to acquire many 

samples with “ frozen” signal, or when there is a repetitive sampling of many periods of a 

periodic signal. It is also not too difficult to extend the analysis to specific cases of linear 

filtering applied to a non-constant signal. 

4.2 Dithering 
Besides being present as an unwanted disturbing signal, WGN can be purposely added to 

the input of a DAS in order to improve the final accuracy. This is a particular case of the 

well-known technique of dithering, which is a main error-correction method among those 

available for DAS [BDR05]. The basic idea is that, since there is no way to remove or reduce 

the error introduced by quantization when the input is perfectly constant, random 

variations in the input are beneficial for error-correction. Indeed, the addition of a random 

signal to the input randomizes the quantization error which, in turn, can be removed (or 

reduced) by averaging. 

Subtractive dithering in DAS consists in adding a dither signal to the input, and subtracting 

it from the output before possible further processing [Sch64]. Subtractive dithering 

inherently requires accurate knowledge of the signal added to the input (or specific 

hardware to measure it) and is therefore more difficult and expensive to implement. 

Non-subtractive dithering, instead, implies averaging/ filtering the output without previous 

subtraction of the dither added at the input. This technique is much easier to implement 

with respect to subtractive dithering, and has been studied quite deeply in a number of 

theoretical works (see, e.g. [WLVW00], and the bibliography in [WK08]). Even easier is to 

use simple WGN as a dither signal, since this noise is (almost always) already present at the 

input of DAS, and may be easily incremented if necessary. This very common kind of 

dithering may be called “white Gaussian non-subtractive dither”  (WGND). Averaging the 

output of a linear DAS with WGN is therefore also a particular but very common and 

important case of non-subtractive dithering, the WGND (Fig. 4). 
 

 

n

x

( ')quant x

y

2

n
σ

'x
average of 

N samples 

 

Fig. 4. Basic scheme of operation of WGND applied to a perfectly linear quantizer.   

For the sake of completeness, it must be clarified that dithering consists in general in 

purposely altering the signal at the input of a system (the technique is not limited to data 

acquisition), in order to improve the performance of the system itself. In the field of data 

acquisition, besides adding an external signal, other kinds of dithering are possible and 

used, aiming at different performance improvements. For example, an effective anti-aliasing 

filter can be obtained, without increasing the sampling rate and without introducing 
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physical filters, by a proper randomization of the sampling instants. Amplitude and time 

dithering may be combined efficiently [AH98]. Of course random errors in sampling 

instants can be also an undesired effects, and in this case they are studied with specific 

mathematical models [AD09]. These techniques, dealing with errors in sampling instants 

and other kinds of alterations of the input signal, are not within the scope of this chapter. 

The scheme reported in Fig. 4 has been deeply examined in the context of quantization 

theory using the typical, quite complex mathematical tools of the theory. The analysis 

reported here is probably the simpler and most direct way to understand the actual benefits 

given by WGND, and in general by averaging/ filtering in presence of noise at the input of 

the DAS. The analysis is centred on the determination of the attainable ENOB in given 

conditions. 

5. Averaging infinite output samples 

The analysis starts considering the average of infinite output samples in the scheme of Fig. 4. 

Averaging infinite samples transforms the system, which includes random contributions, in 

a purely deterministic one. The input-output relationship of the system is the convolution of 

the ideal quantization function quant( )x  with the probability density function (pdf) of the 

dither, i.e. with the zero-mean Gaussian density  

 ( )
2

1

21
, ,

2

x

x e

μ
σϕ μ σ

σ π

−⎛ ⎞− ⎜ ⎟
⎝ ⎠=   (12) 

with 0μ =  and nσ σ= . The result of the convolution is a nonlinear function which is 

actually a smoothed quantization, or a dithered quantization quantd( )y x= . The system in 

Fig. 4 is transformed in that represented in Fig. 5. 
 

x

quantd( )x

y

 

Fig. 5. Representation of a nonlinear system equivalent to a perfectly linear DAS with WGN 

at the input and averaging of infinite samples at the output. 

The error introduced by the dithered quantization, ( ) quantd( )qde x x x= − , may be directly 

obtained by the convolution 

 

2
1

21
( ) ( ) * ( ) ( )

2

n

qd q q

n

e x e x x e e x d

ξ
σϕ ξ ξ

σ π

⎛ ⎞
− ⎜ ⎟⎜ ⎟+∞ ⎝ ⎠

−∞
= = ⋅ −∫ ,  (13) 

where ( )qe x  is the ideal quantization error quant( )x x−  (Fig. 6). 
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For a fixed input signal, and in particular for a full-scale triangular signal, the system in 

Fig. 5 may be represented also as an additive error (the dithered quantization error) with a 

fixed power 2
qdσ  (Fig. 7). This additive model is perfectly analogous to that used for the 

ideal quantization error. 

The rms error qdσ  introduced by dithered quantization may be evaluated by means of a 

numerical integration of the square of the smooth curve in Fig. 6, weighted with the 

distribution of the input signal. For the case of triangular uniformly distributed signal, there 

is no weighting: 

 
/ 22 2

/ 2

1
( )

Q

qd qdQ
e x dx

Q
σ

−
= ∫ .  (14) 

 

Fig. 6. Ideal quantization error ( )qe x  and dithered quantization error ( )qde x  (for the case 

0.1 LSBnσ = ). 

 

qd
e

x y

2

qd
σ

 

Fig. 7. Additive model of the dithered quantization of Fig. 5. 

www.intechopen.com



 Data Acquisition 

 

10 

(If ( )qe x  is substituted to ( )qde x , the result is trivially 2 2 / 12q Qσ = .) Of course the result of 

integration (14) with integrand given by (13) depends only on the standard deviation nσ of 

the input Gaussian noise: 

 ( )qd ngσ σ= .  (15) 

This function can be easily evaluated numerically. The result is reported in Fig. 8, and the 

values in a few points are reported in Tab. 1. 

The result shows that qdσ  becomes practically negligible at 0.5 LSBnσ ≅ : more precisely, at 

0.5 LSBnσ =  the dithered quantization error qdσ  is about 31.6 10  LSB−⋅  (Fig. 9). This means 

that 0.5 LSBnσ ≅  achieves an almost complete randomization of the quantization error (i.e., 

( ) 0qde x ≅  for every x ). A perfectly complete randomization, however, is theoretically 

achieved only for an infinite nσ . The randomized quantization error is removed by 

averaging a sufficiently high (theoretically, infinite) number of samples. 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

σ
n
 [LSB]

σ
q
d
 [

L
S

B
]

Q/
√

12

 
 

Fig. 8. Rms dithered quantization error, qdσ , as a function of the rms input Gaussian noise, nσ . 

For 0nσ =  the dithered quantization error becomes pure quantization error with standard 

deviation / 12q Qσ = . A zoom of the curve in the rectangle is represented in Fig. 9. 
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nσ  qdσ  

0 0.2887 

0.1 0.1921 

0.2 0.1023 

0.3 0.0381 

0.4 0.0096 

0.5 0.0016 

Tab. 1. Some points of the function ( )qd ngσ σ=  (both in LSB units). 

0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

X: 0.5
Y: 0.001622

σ
n
 [LSB]

σ
q
d
 [

L
S

B
]

 

Fig. 9. Zoom of the curve in Fig. 8 in the neighbourhood of 0.5 LSBnσ = . 

It is worth to recall that according to well-known results of quantization theory [Sch64], 

[WK08], a perfectly complete randomization of the quantization error is possible with a 

proper pdf of the input noise, and there are infinite pdfs that lead to such a perfect result. 

For example, a uniformly distributed noise in [ / 2, / 2]Q Q−  yields exactly ( ) 0qde x ≡  and 

therefore 0qdσ = . However, implementing a uniformly distributed noise with exact 

amplitude is unpractical; besides, it can be shown that the performance of a uniformly 

distributed dither, contrary to that of a Gaussian dither, is quite poor if there are 

nonlinearity errors in the quantization [WK08]. 
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The result depicted in Figs. 8-9 suggests that if one wants to improve the resolution using 

WGND, the ideal choice is a standard deviation 0.5 LSBnσ ≅ . This is indeed a typical choice 

of manufacturers who implement WGND in their DAS [Nat97], [Nat07]. However, even if 

the hypothesis of perfectly linear DAS is fulfilled, the ideal choice depends actually on the 

number of averaged samples, as shown in the next Section. 

An exact closed-form expression for the function ( )g ⋅  represented in Fig. 8 is not available. 

In [CP94] a series expansion of ( )qde x  is derived using typical methods of quantization 

theory; then, the series is truncated at its first term, squared and integrated. An asymptotic 

approximation of ( )g ⋅ , usable for high enough nσ , is derived: 

 
2 221

( )
2

n
ng e π σσ

π
−≅ ⋅

⋅
.  (16) 

This expression is implicit in [CP94], and written out explicitly in [SO05]; in both papers, it is 

recommended for 0.3 LSBnσ > . For some computations, like those presented in the next 

Section, an accurate evaluation of ( )g ⋅  is needed also for nσ  near to zero. This can be 

achieved with empirical approximate formulae. 

The simpler approximation, which makes use of (16), is: 

 
2 2

1
2

1
for 0.11 LSB

12
( ) ( )

1
for 0.11 LSB

2
n

n n

n n

n

g g

e π σ

σ σ
σ σ

σ
π

−

⎧ − ≤⎪⎪≅ = ⎨
⎪ ⋅ >
⎪ ⋅⎩

  (17) 

(the threshold 0.11 LSB achieves a nearly optimal approximation of ( )g ⋅  for this formula). A 

more accurate, even if less elegant approximation, is given by the expression (a refinement 

of that proposed in [AGS08]): 

 ( ) ( )
( )

1 1
2

2 2

, ,
( )

, ,

n
n n

n

g g k
ϕ σ μ σ

σ σ
σ μ σ

≅ =
Φ

. (18) 

where ( ), ,xϕ μ σ  is the Gaussian pdf (12), and ( ), , ( ', , ) '
x

x x dxμ σ ϕ μ σ
−∞

Φ = ∫  is the Gaussian 

cumulative distribution function. The five parameters 1 1 2 2, , , ,k μ σ μ σ , are determined by a 

nonlinear LS fitting and have the values: 

 1 1 2 20.0774; 0.0190; 0.1543; 0.0587; 0.1201k μ σ μ σ= = = = − = .  (19) 

Both the approximations are quite good (Fig. 10): in the range σ ∈[0,1] LSBn , 1( )g x  

approximates ( )g x  with a maximum error of 34 10−⋅  LSB, while the error introduced by 

2( )g x  is 20 times lower ( 42.1 10  LSB−⋅ ). It is to be remarked that the asymptotic expression 

(16) is usable for nσ  as low as 0.11 LSB, and the condition 0.3nσ >  is a bit too pessimistic. 

6. Averaging a finite number of output samples 

In practice, only a finite number of samples may be averaged. In order to evaluate the 

resulting ENOB it is convenient to derive a system equivalent to the noisy quantizer in 
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Fig. 1. Since the averaging is at the output, and not at the input, the signal-dependent and 

the signal-independent error contributions must be in reversed order. For the particular case 

of averaging infinite samples, the new equivalent system must reduce to that in Fig. 5. 

Therefore, the system is bound to have the form represented in Fig. 11. 

The contribution qre  is a random error with standard deviation qrσ , which takes into 

account the effect of the noise as seen at the output. As the error qde  is not removed at all by 

averaging, so qre  is completely removed by infinite averaging. The analysis of the system 

requires the introduction of the usual additive model of the deterministic error, obtaining 

the system in Fig. 12. 
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Fig. 10. Comparison between the numerically evaluated points of the function ( )g ⋅ , the 

asymptotic expression (16), and the approximations 1( )g ⋅  and 2( )g ⋅ . 
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Fig. 11. Equivalent representation of the noisy quantization in Fig. 1. 
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qre

x y
2

qrσ2

qdσ

qde  

Fig. 12. Equivalent representation of the noisy quantization for a fixed input signal. The 

input signal determines the parameters 2
qdσ  and 2

qrσ . 

For a full-scale uniformly distributed input signal, the standard deviation qdσ  is given by 

the function ( )ng σ  represented in Fig. 8  and approximated by expressions (16) and (18). As 

regards the determination of the standard deviation qrσ , even if a formal analysis of the 

problem is quite complicated, it can be proven [SO05] that qre  is white and uncorrelated 

with qde . This can be seen as a direct consequence of the equivalence of the system with that 

in Fig. 2, where the input noise n  is white and uncorrelated with the deterministic error qe . 

From the uncorrelation between qre  and qde  and the equivalence of the systems in Figs. 12 

and 2 follows that 

 2 2 2 2
n q qd qrσ σ σ σ+ = +   (20) 

and therefore 

 2 2 2 2 2 2 2( )qr n q qd n q ngσ σ σ σ σ σ σ= + − = + − .  (21) 

As a particular case, by assuming 0qdσ ≅  (a condition achieved exactly only for nσ = +∞ , 

and approximately for 0.5 LSBnσ ≅ ) the random output error has variance 

 2 2 2 2
qr n q eσ σ σ σ= + = ,  (22) 

i.e. the acquisition error is purely random. 

Now, by substituting the system of Fig. 12 in the noise + quantization cascade of Fig. 4, it is 

easy to compute the MSE 2
eσ , and therefore the ENOB, obtained by averaging N  samples 

(Fig. 13). 

 

average of 

N samples 

y

qr
e

x y
2

qr
σ2

qd
σ

qd
e

 
 

Fig. 13. Equivalent representation of the WGND applied to a linear quantizer. 

The ENOB of the system, from the uncorrelation between qde  and qre , and the whiteness of 

qre , is 
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2

2 2
2 2

1 1
log 12 log 12

2 2

qr

e e qdb b b
N

σ
σ σ

⎛ ⎞
⎜ ⎟= − = − +
⎜ ⎟
⎝ ⎠

  (23) 

This expression is first derived in [AGS04] (and re-published in [AGS08]), and recovered in 

the broader work [SO05]. An explicit expression of ENOB in terms of the rms input noise 

nσ  may be written in a simple approximate form or in exact form. The approximate formula 

is derived by assuming 0qdσ ≅  and 2 2 2 2 21/ 12qr n q n eσ σ σ σ σ≅ + = + = : 

 ( )2
2 2

1 1
log 1 12 log

2 2
e nb b Nσ≅ − + ⋅ + .  (24) 

 

The exact formula is derived by substituting ( )qd ngσ σ= :  

 
2 2

2
2

1 12[ ( )]1
log 12 ( )

2

n n
e n

g
b b g

N

σ σ
σ

⎛ ⎞+ −
= − +⎜ ⎟⎜ ⎟

⎝ ⎠
.  (25) 

 

Figs. 14-16 show the result of numerical simulations of an 8-bit quantizer with various levels 

of input WGN (ranging from 0.05 to 0.5 LSB), and Fig. 17 shows the result of an analogous 

simulation for a 12-bit quantizer. Simulations results are compared with both expressions 

(24) and (25). In (25), the approximate function 1( )g ⋅  has been used (slightly better 

agreement with simulations is obtained using 2( )g ⋅ ; this is especially true for the case in Fig. 

17.) Simulations basically demonstrate that (25) is able to predict with great accuracy the 

ENOB of a perfectly linear DAS with input noise and output averaging. A number of 

interesting and important facts follow from the validity of (25), and they are well illustrated 

by the curves in the figures. 

1. For a givenσn , the maximum (asymptotic) increase of performance is given by (Fig. 18): 

 σΔ = − −2 2log 12 log ( )nb g   (26) 

An accurate evaluation of (26) for low σn  can be obtained by using the approximation 

⋅2( )g  given by (18) (values in Tab. 2). The approximation ⋅1( )g  given by (17) is also 

usable, obtaining an extension of the formula given in [CP94]: 

 

σ σ
π π σ σ

⎧− − ≤
⎪Δ ≅ ⎨

+ ⋅ >⎪
⎩

2

2 2
2 2

log (1 12 ) for 0.11 LSB

log 2 log for 0.11 LSB
6

n n

n n

b
e

  (27) 

The unbounded increase predicted by approximation (24) is untrue. 

2. The usability of (24) depends on the actual number N  of averaged samples, and not 

simply on nσ . Under this viewpoint it is quite inaccurate to say that 0.5nσ ≅  is the 

right value to obtain an approximately full randomization of the quantization error. For 

example, 0.3 LSBnσ =  is not too low for the validity of (24), provided that 32N < . On 

the other hand, 0.5 LSBnσ =  is not sufficient to use (24), if 152N > . 
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3. As a consequence, if one wants to add some WGN to increase performance by 

averaging, the choice is dictated by the number of samples that may be averaged. This 

is clearly suggested by the intersecting continuous lines in Fig. 18, and better illustrated 

by Fig. 19, in which ENOB is plotted as a function of nσ for fixed N . It is clear, for 

example, that for 4N =  it is convenient 0.2 LSBnσ ≈ , etc. Quite surprisingly, the very 

frequent choice 0.5nσ =  is optimal only for N  of the order of 132 . 
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Fig. 14. ENOB of an 8-bit linear DAS with input WGN ( 0.05 LSBnσ = ), as a function of the 

number N  of the averaged samples. 
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Fig. 15. ENOB of an 8-bit linear DAS with input WGN ( 0.3 LSBnσ = ), as a function of the 

number N  of the averaged samples. 
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Fig. 16. ENOB of an 8-bit linear DAS with input WGN ( 0.5 LSBnσ = ), as a function of the 

number N  of the averaged samples. 

www.intechopen.com



Noise, Averaging, and Dithering in Data Acquisition Systems   

 

19 

 

 

 

 

 

 

 

 

 

 

0 2 4 6 8 10 12 14 16 18
11.5

12

12.5

13

 

 

X: 18
Y: 12.59

σn = 0.1 LSB

log
2
N

b
e

simulations

approx 1

approx 2

 
 

 

 

 

 

 

 

 

Fig. 17. ENOB of a 12-bit linear DAS with input WGN ( 0.1 LSBnσ = ), as a function of the 

number N  of the averaged samples. 
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Fig. 18. Variation in the ENOB (with respect to the nominal resolution b) as a function of the 

number N  of the averaged samples, for different values of input WGN ( nσ = 0.1, 0.2, 0.3, 

0.4, 0.5, 0.6 LSB). The figure compares the approximation given by (24) (approx. 1) with 

expression (25), in which the approximation (17) of ( )g ⋅  is used (approx. 2). 

  

nσ  [LSB] bΔ  [bit] 

0 0 

0.1 0.59 

0.2 1.50 

0.3 2.92 

0.4 4.92 

0.5 7.48 

 

Tab. 2. Maximum (asymptotic) increase of ENOB attainable by averaging, for given levels 

nσ  of input WGN. 
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Fig. 19. ENOB increase as a function of the input noise nσ , for fixed values of the number 

N  of averaged samples. The maxima of the curves, and the typical values 0.4 LSBnσ =  and 

0.5 LSBnσ =  are highlighted. 

7. Conclusions 

The chapter examines the overall effect, in terms of effective resolution, of input noise and 

output averaging in linear DAS. The analysis applies to both the cases of unwanted system 

noise, and of noise purposely added to increase the performance (non-subtractive 

dithering). After a brief discussion of the ENOB figure of merit, the equations to determine 

the ENOB in various situations are derived and validated by simulations. The results clarify 

the nature of the acquisition error in presence of noise – in terms of “dithered quantization 

error”  qde  and “randomized quantization error”  qre  – and can be used, for example, to 

choose the optimal level of input noise in a non-subtractive dithering scheme. The choice is 

demonstrated to be non-trivial, even if quite simple with the use of the proper equations. In 

particular, the very common choice 0.5 LSBnσ =  is demonstrated to be suboptimal in most 

practical cases. 

A very important warning is that the presented analysis is limited to the case of perfectly 

linear DAS, and is not applicable in the common case of meaningful nonlinearity error 

affecting the DAS. The case of non-subtractive dithering in nonlinear DAS can be analyzed 

with means similar to those presented in this chapter. In particular, the optimal levels of 
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noise for nonlinear DAS are considerably higher than those derived for linear DAS 

[AGLS07]. This is, however, the subject of a possible future extended version of the chapter. 
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