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1. Introduction    

Photovoltaic solar power installations can be broadly classified as static (non-tracking), 
single-axis tracking, polar axis-tracking and two-axis tracking installations (Agee et al., 
2006). In general, tracking photovoltaic systems have higher percentage energy recovery per 
Kilowatt of installed capacity than static solar power systems (Ed. Kusoke et al., 2003). A key 
component of existing photovoltaic tracking systems is the solar position sensor and 
associated conditioning circuitry, which provides the information with which the tracking 
angle is updated. These sensors add to the overall cost of installed photovoltaics. For 
example, in South Africa where the average installed cost of photovoltaics is ZAR 
29.00/Watt (Greenology, 2010), the percentage sensor(s) cost for installed photovoltaic 
wattage is shown in Figure 1, based on an average sensor cost of USD110.0. It is evident 
from Figure 1 that for low power solar photovoltaic applications, the percentage sensor cost 
motivates the exploitation of alternative tracking strategies that are devoid of sensors. 
Sensor-less tracking offer a cost effective solution in such low power applications. Sensor-
less tracking has been reported in literature (Ibrahim et al., 2004; Cheng & Wong, 2009; 
Power from the Sun, 2010; Chen et al., 2006; Stine & Harrington, 1988) concerning solar-
thermal systems. These rely on the use of well established astronomical formulae to extract 
the direction of sunrays as a function of the local clock time, after due compensation for any 
differences between the local clock time and the solar time. The equation of time (EOT) and 
the local longitude compensation are factored into the derivation of the final local time 
equation.  EOT is an equation that evaluates the difference between the local clock time and 
the solar hour. In the discourse presented in the current chapter, the sensor-less tracking of a 
polar-axis solar tracker is reported. The concepts of differential flatness (Fliess et al.; Fliesss 
et al.; Levine & Nguyen, 2003; Bitaud, 1990, 1997, 2003) is used for embedding the equations 
of the direction of sunrays into the feedback loop of the controller. 
In the rest of the chapter, the physical structure of the polar-axis solar tracker and the 
derivation of its dynamic equations are described in section two. The concepts of differential 
flatness and the derivation of the flat output for the polar-axis solar tracker is presented in 
section three. Controller design is contained in section four. A derivation of the relationship 
between the local clock time and the direction of sunrays with respect to an observer (or the 
photovoltaics platform) at a given location, together with the integration of time-based 
values of the sunrays angle for sensor-less tracking is presented in section five of the 
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chapter. Illustrative simulations and results presentation and discussion form section six of 
the chapter. Conclusions are presented in section seven. A list of references is included at 
the end of the chapter. 
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Fig. 1. Percentage sensor cost as a function of installed wattage of photovoltaics 

2. The polar-axis photovoltaic solar tracker 

The platform carries ten Shott 300W photovoltaic panels. In addition, two smaller, Shell SQ 
80W solar panels are provided, to compensate for the energy looses in the electrical 
installation.  The detailed design of the 3KW platform is presented elsewhere (de Lazzer, 
2005). The standing 3KW platform is shown in Figure 2.  The drive system consists of a d.c 
motor linked to the platform through a gear train having a gear ratio of 800. Additional 
provision was made for the occasional manual adjustment of the elevation of the platform 
for the purposes of field experimentation.  
 

 

Fig. 2. The 3KW polar-axis solar power platform  
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2.1 Mathematical modelling of the 3 KW solar power platform  

The block diagram representation of the platform in the east-west direction is shown in 
Figure 3. Where:  θs(t) is the instantaneous direction of sunlight and θp(t) the instantaneous 
position of the platform. Following (de Lazzer, 2005; Agee et al., 2006; Agee & Jimoh, 2007), 
for the D.C motor we can write: 

 a m
a a a a b

di d
e R i L K

dt dt

θ
= + +  (1) 

 where  ( )ae t : armature voltage (V); ( )ai t :  armature current (A); aR :  armature resistance 

(Ω); aL : armature inductance (H); bK : back-emf constant (V/rad/s) and ( )m tθ : rotor 

displacement (rad.). Similarly, the mechanical torque developed by the motor is given by   

  m m aT K i=   (2)   

where ( )mT t is torque(N.m.) and mK  the torque constant (N.m/A). 

Furthermore, the mechanical torque is written as in equation (3). 

 
2

2
m m

m t m

d d
T J B K

dtdt

θ θ θ= + +  (3) 

where 2
t m lJ J N J= +   and mJ  : moment of inertia of the motor ( 2.kg m ); lJ  : moment of 

inertia of the load( 2.kg m );  N : gear-train ratio between motor and load; B :  viscous-friction 

coefficient of the motor ( 1. .kg m s− ); K : spring constant ( 2 2. .kg m s− ).   

The physical-variables state-space description of the platform, x Ax Bu= +$ , could thus be 

written as: 

 

1 2

2 1 2 3

3 2 3

1

.

1 2 3

1

;

[ , , ] [ , , ]

[0,0,1 / ]

m

t t t

b a

a a a

m a

T
mm a

T
a

x x

KK B
x x x x

J J J

K R
x x x u

L L L

y x u e

x x x x i

B L

θ

θ θ

=

= − − +

= − − +

= = =

= =

=

$

$

$
 (4) 

3. Differential flatness of platform 

By definition, a linear system given by:  

 

.

, ; 1n m

x Ax Bu

x R u R n m

= +

∈ ∈ ≥ +
 (5) 

is said to be differentially flat (or simply flat) if it is equipped with  a set of variables 1h , 

called the flat output (Levine & Nguyen,  2003),  such that for some integer r, 
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 ( )
1 1( , , , ,....., ),0 ;r mh g x u u u u r h R= < ≤ ∞ ∈$ $$  (6) 

such that every state , 1,2,...ix i n=  of the linear system, together with its input u  can be 

described completely in terms of the flat output and its derivatives as in equation (7). 

 

. ..
( )

1 11 1

. ..
( 1)

1 11 1

( , , ,....., )

( , , ,.....,

q
i i

q

x p h h h h

u Q h h h h +

=

=
 (7) 

Where q is a finite integer, such that the initial equations  
( ) ( 1)

1 1 1 1 1 11 1( , , ,....., ) ( , , ,....., )q qx Ap h h h h BQ h h h h += +$ $$ $ $$$ , where 1 2[ , ,...... ]T
nα α α α= ,  are identically 

satisfied.  We shall thus show that every state variable of the physical model of the platform 

could be written in terms of a set of variables, the flat variable, and a finite number of its 

derivatives. 

3.1 Derivation of the flat output for a linear system with a scalar input 

For the given linear system, re-write the dynamics in the formal variable s as: 

 1

1

( ) ( ) ( )

( )

A s X s Bu s

A s sI A

=
= −

 (8) 

The formal derivation of the flat output for (8) follows the method of Levine and Nguyen; 

and requires that there be a matrix C , of rank n-m, orthogonal to B  (Levine & Nguyen, 

2003) such that, 

 0TC B =  (9) 

 1( ) ( ) 0TC A s P s =  (10) 

 1
1( ) ( ) ( ) ( )T TQ s B B B A s P s−=  (11) 

hence, for a given linear system for which A1(s) and B(s) are known, C can be evaluated 
from (9). P(s) is then evaluated from equation (10), and finally, Q(s) is evaluated from 
equation (11) 

3.2 Derivation of the flat output for the polar-axis-type photovoltaic solar power 
platform 
 The detailed derivation of the flat output for the polar-axis solar tracker is presented in 
(Agee & Jimoh, 2010). Key result is summarised as follows: 

 

1 1

2 1

2
3 1

( ) ( )

( ) ( )

( ) ( )

m

t

t t

K
p s h s

J

p s sp s

b K
p s s s h s

J J

=

=

⎧ ⎫⎪ ⎪= + +⎨ ⎬
⎪ ⎪⎩ ⎭

 (12) 
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Fig. 3. Block diagram of the open-loop 3KW solar power platform  
 

and 1
1( ) ( ) ( ) ( )T TQ s B B B A s P s−=  yields 

 
{ } { } 2 3

1( ) ( )a b m a a aa
a

t t t

R B K K L K L B R JR K
Q s s s L s h s

J J J

⎧ ⎫+ + +⎪ ⎪= + + +⎨ ⎬
⎪ ⎪⎩ ⎭

 (13) 

It is evident from equation (12) that each of the states of the platform could now be written 

in terms of the flat output 1( )h t  and its derivatives. The input u(t) could be written from 

equation (13). Hence,   
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 (14) 
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{ } { }. ..

(3)
1 11 1( ) a b m a a aa

a a
t t t

R B K K L K L B R JR K
u t e h h h L h

J J J

+ + +
= = + + +  (16) 

Alternatively, 

 

1

. .

1

.. .

1

( ) ( )

( ) ( )

( ) ( ) ( )

t
m

m

t
m

m

ma m
m m

J
h t t

K

J
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K
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θ

θ

θ θ

=

=

= − −

 (17) 

Notice also that, if the desired trajectories of motion are either know apriori, or given, the 

reference values of the flat output and it derivatives (3)** * *
1 1 1 1, , ,h h h h$ $$ , could be described.  

DC 

Motor 
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N 
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)(t

s
θ )(t
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θ
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3.3 Alternative Description of the Dynamics of the Tracker 

The flat description of the systems dynamics, as in equations (14)-(16), enables an alternative  

 

{ } { }

.

1 2

.

2 3

.

3 1 2 3

1
( )a b m a a aa

t a t a t a a

h h

h h

R B K K L K L B R JR K
h h h h u t

J L J L J L L

=

=

+ + +
= − − − +

 (18) 

presentation of the dynamics of the platform, in terms of the flat output. Hence, using equation 
(16), a representation of the plant in terms of the flat output could be presented as in equation 
(18). The presentation in equation (8) is particularly suitable for controller design. 

4. Controller design  

The differential flatness property allows to exploit sensor-less control of the platform, in 
which loop closure is with respect to the time derivation of the angular position of the sun 
with respect to an earth-based observer. Details are presented in section five of the chapter. 

4.1 Controller tuning  
For the design of a three-term controller in the flat variables, substitute equation (19) in 
equation (18),  

 
.

* * * *
3 3 1 1 1 2 2 2 3 3 3( ) ( ( ) ( )) ( ( ) ( )) ( ( ))h t h K h t h t K h t h t K h h t= − − − − − −$  (19) 

and the steering input is thus given by:  

 

* * *
1 1 1 2 2 3 3 1 1 1

.

32 2 2 3 3 3

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

c a a a

a a a

u t K L h t K L h t K L h t K h t

K L h t K L h t L h t

β

β β

= + + + −

+ − + − +
 (20) 

Where, 

 1 2 3; ;a a b m a a a

t t t

R K R B K K L K L B R J

J J J
β β β+ + +

= = =  (21) 

 the substitution resulting also in the following controlled system in equation (22): 

 

.

1 2

.

2 3

.
*

3 3 1 2 3

.
* * * *

31 1 2 2 3 3 3, , ,

h h

h h

h h K e K e K e

e h h e h h e h h e h h

=

=

= − − −

= − − − = − = −

$ $ $$

$$ $$ $$$

 (22)   

with the equivalent characteristics equation given by equation (23).  

 3 2
3 2 1[ ] ( ) 0s K s K s K E s+ + + =  (23) 
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Fig. 4. Measurement of direction of sunrays, in the earth-centred coordinate systems 

To obtain the controller parameters 1 2 3, ,K K K , the platform is tuned to yield the same 

dominant pole-pair as in (Agee et al., 2006); with the dominant poles given as 

1 2, 2.324 2.34s s j= − +  and the third pole given by 3 33.506s = − . This system of closed-loop 

poles leads to the closed-loop dynamics of equations (24) and (25). 

 

1 2

2 3

* * *
3 1 1 2 2 3 3

1 2 3

355.7276( ( )) 165.0125( ( )) 38.114( ( ))

335.7276, 165.0125, 38.114

h h

h h

h h h t h h t h h t

K K K

=

=

= − − − − − −
∴ = = =

$

$

$
 (24) 

 

* *
1

...
* *

12 2 3 3

( ) ( ) ( 355.7276)( ) (

165.0125)( ) ( 38.114)( )

a a b m a

t t

a a
a

t

R K R B K K L K
u t u t h h

J J

L B R J
h h h h L h

J

+ +
= + − − +

+
− − + − − +

 (25) 

In equation (25), it has also been assumed that the reference acceleration *
3( ) 0h t =$ , for 

bravity.  

4.2 Classical control of polar-axis tracker with a solar position sensor  

In the classical control of systems, feedback loop closure is with respect to the expected 

steady-state values of state. Suppose that the tracker is at rest at an initial position (0)pθ ; for 

generality, use the notation  

 (0) 0pθ =  (26) 

Also at this rest position, all velocities and accelerations are zero. Hence,  (0) (0) 0....P Pθ θ= =$ $$  

It also follows from  equations (14)-(17) that:  
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Fig. 5. Relationship between earth-centred  solar coordinates and the perpendicular 
coordinates used on the surface of the earth 

 

 

Fig. 6. Reference from equatorial plane to the plane of observer latitude 

 
1

. . .. ..

1 1

(0) (0) 0

(0) (0) (0) (0) 0

m

m m

h

h h

θ

θ θ

= =

= = = =
 (27) 

And the classical control strategy is implemented as in equation (29): 

Suppose that the sensor updates its output to a non-zero step change in the direction of 

sunrays ( ).P tθ$  The tracker will respond and track this new direction, which becomes the 

desired steady state direction of the sunrays; or ( ) ( )P Ptθ θ= ∞$ , then for the new angular 

position of the sun: 
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.

* * *
1 1 2 2 3 3

800
( ) ( ) ( ), ( ) ( ) 0, ( ) ( ) 0t

P
m

J
h t h h t h h t h

K
θ= ∞ = ∞ = ∞ = = ∞ =  (28) 

 

{ }

1 2

2 3

*
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1

2 3

355.7276( ( )) 165.0125 38.114
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( ) ( 355.7276) ( ) ( )

( 165.0125) ( 38.114)

a t
P

t m

a b m a a a

t t

h h

h h

h h h h h

R K J
u t h t

J K

R B K K L K L B R J
h h

J J

θ

=

=

= − − ∞ − −

= − − ∞

+ + +
+ − + −

$

$

$  (29) 

4.3 Design of controller with trajectories of sunrays  
The flatness property enables to integrate the mathematical formula for the trajectory of 
sunrays into the controller structure. These trajectories are derived in the sequel. 

5. Derivation of the direction of sun rays as a function of local clock time 

Sensorless solar tracking has been applied in solar-thermal systems (Ibrahim et al., 2004; 
Cheng & Wong, 2009; Power from the Sun, 2010; Chen et al., 2006; Stine & Harrington, 
1988), and uses the concept of solar time and solar angle to relate the time of the day and 
time of the year to the position of the sun. For the derivation of the mathematical 
relationships employed in sensor-less solar tracking, consider first Figure 4, which shows the 
traditional measurement of the direction of sunrays, in a coordinate system with its origin as 
the centre of the earth. This coordinate system has one axis pointing toward the poles of the 
earth, and the other being the equatorial plane of the earth. Consider also the sunrays 
having an instantaneous declination δ with respect to the equatorial plane, through a 
meridian that differ from the meridian O, of the observer (the observer here being the polar-
axis solar platform) by an angle (the solar angle) ω. The solar angle being the difference 
between the current meridian (or longitude) of sunrays and the observer meridian. 
 

 

Fig. 7. Collector-centred coordinate systems and its realtionship to the earth-centred co-
ordinates at the observer  location 
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On the earth surface however, an observer uses a set of co-ordinates wherein, one of the 

cardinal axes points vertically upward, and the remaining two point north-south and east-

west respectively. Figure 5 shows the relative orientations of the original solar co-ordinates 

and those used by an observer at the surface of the earth. The directional cosines relating the 

two co-ordinate systems [S], at the equator, are given by (Ibrahim et al., 2004; Cheng & 

Wong, 2009; Power from the Sun, 2010; Chen et al., 2006; Stine & Harrington, 1988) as: 

 

cos cos

[ ] cos sin

sin

m

e

p

S

S S

S

δ ω
δ ω
δ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

  (30) 

 

Referred to the observer latitude Ф at position O, as shown in Figure 6, a further set of 

angular transformations is given by equation (31): 

 

cos 0 sin

0 1 0

sin 0 cos

Φ Φ⎡ ⎤
⎢ ⎥Φ =⎡ ⎤⎣ ⎦ ⎢ ⎥
⎢ ⎥− Φ Φ⎣ ⎦

 (31) 

 

where is Φ the latitude angle.  
For a tracking collector mounted on a stand, motion is only possible in two axes. Hence, for 

the collector surface located at O, the solar position is measured in terms of an observer-

centred cordinate system, consisting of a vertical (OV) or zenith (OZ) axis, and a horizontal 

(OH) axis. The elavation angle ǂ (or its complement, the zenth angle θZ) and the azimuth 

angle ǃ are therefore sufficient descriptors of the colloctor orientation in the OV-OH plane. 

This collector-centred co-ordinate system compares with the earth-surface co-ordinates as 

shown in Figure 7. The collector orientation is shown in Figure 8, and the orientation admits 

the representation in equation (32):  

 /

sin

cos sin

cos cos

V

H

R

S

S S

S

α
α β
α β

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (32) 

 
The  collector elavation ǂ, and  its azimuth ǃ, are the required tracking angles.  In an ideal 

azimuth-elavation system, OV, OH and OR axes of the collector-centred frame are parallel 

to the OZ, OE and ON axes of the earth-surface frame, as shown in Figure 9. Generally, this 

coincidence may not apply, and the two co-ordinates are rotated from each other. The three 

possible scenarios are as illustrated in Figure 10. The associated transformation angles of the 

three orientations are given by equations (33)-(35): 

 

1 0 0

0 cos sin

0 sin cos

ϕ φ φ
φ φ

⎡ ⎤
⎢ ⎥= −⎡ ⎤⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

 (33) 
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Fig. 8. Orientation of the collector in the OV-OH-OR axes 

 

 

Fig. 9. Ideal orientation of collector in the OV-OH-OR axes 

 

  

Fig. 10. Orientations of the OV-OH-OR axes relative to the OZ-OE-ON axes 
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cos sin 0

sin cos 0

0 0 1

λ λ
λ λ λ

−⎡ ⎤
⎢ ⎥=⎡ ⎤⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

 (34) 

 

cos 0 sin

0 1 0

sin 0 cos

ζ ζ
ζ

ζ ζ

⎡ ⎤
⎢ ⎥=⎡ ⎤⎣ ⎦ ⎢ ⎥
⎢ ⎥−⎣ ⎦

 (35) 

The overall cosine angles are threfore given by the combined transformation as in equation 

(36): 

 

sin cos cos

cos sin cos sin

cos cos sin

V

H

R

S

S

S

α δ ω
α β ζ λ φ δ ω
α β δ
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⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = Φ −⎡ ⎤⎡ ⎤⎡ ⎤⎡ ⎤⎣ ⎦⎣ ⎦⎣ ⎦⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (36) 

Solving the above matrix equation for the solar altitude angle in the collector-centred frame, 

we have for ǂ, the elavation angle of the sun with respect to the orientation of the platform, 

given by:  

 

{ }1sin

cos cos

cos cos cos cos sin sin sin sin cos sin

cos sin [sin sin cos sin cos ]

sin [cos cos sin cos sin sin cos sin cos cos ]

ab c d

a

b

c

d

α
δ ω
ζ λ ζ λ φ ζ φ
δ ω ζ φ ζ λ φ

δ ζ λ ζ λ φ ζ φ

−= + +

=
= Φ − Φ − Φ
= − −
= Φ + Φ + Φ

 (37) 

Or the zenith angle 

  
2

Z

πθ α= −  (38) 

Similarly, the azimuth angle is given by: 

 

1

1

)
sin ; 0

cos

)
sin ; 0

cos

cos cos

sin cos cos sin sin

cos sin cos cos

sin [sin sin cos sin cos ]

ae m f

ae m f

a

e

m

f

β
α

β
π β

α
δ ω
λ λ φ
δ ω λ φ

δ λ λ φ

−

−

⎧ + +⎧ ⎫
≥⎨ ⎬⎪

⎪ ⎩ ⎭= ⎨
+ +⎧ ⎫⎪ − <⎨ ⎬⎪ ⎩ ⎭⎩

=
= Φ + Φ
= −
= Φ − Φ

 (39) 

and because ǃ can exist in any of the four quadrants,  depending on the observer location on 

the earth, time of the day and  season of the year, the following two evaluations must be 

jointly made to determine the quadrant of ǃ, hence its actual value. 
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+ +
=
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 (41) 

5.1 Special cases of observer solar angles  
Special cases of the sun angles from the collector are presented by (Ibrahim et al., 2004). For 
example, for elavation-azimuth tracking, set the angles φ  = π, λ = 0 and ζ = Φ − π/2 in the 

general formulas. For this case, the general tracking formula can be then simplified to 

 
/ 2Zθ π δ

β ω
= −
=

 (42) 

Where θZ  is the zenith angle, and ǃ is the azimuth angle. In polar-axis tracking, the zenith 
angle is fixed ( or seassonally fixed), as a function of the local lattitude angle. The azimuth 
anlge information is then available for one-axis tracking, from sunrise to sunset. From 
equation (42), the azimuth angle at any instant of time has the value of the sun hour angle, 
ω. Now, from (Power from the Sun, 2010),   

 15( 12) ; 180 180o o o
stβ ω ω= = − − ≤ ≤  (43) 

and ts the solar hour, ω the solar angle is zero degrees when the sun is directly overhead, or 
when the solar hour is 12.00hrs. 

5.2 Relating the azimuth angle of sunrays to the local clock time  
The solar hour may differ from the local clock time (LCT). This difference is quantified by 
the equation-of-time (EOT). A version of the EOT which is accurate to within 0.63 seconds is 
given by (Power from the Sun, 2010): 

  
5

0

360 360
cos sin [ ]

365.25 365.25
K K

K

Kn Kn
EOT A B hours

=

⎧ ⎫⎛ ⎞ ⎛ ⎞= +⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎩ ⎭

∑  (44) 

Where the AK’s and BK’s are given in Table 1 and  n is the number of days into a leap year 
cycle, with n=1 being January of each leap year and n=1461 corresponding to 31st December 
of the 4th year in a leap year cycle. The complete relationship between solar time and the 
local clock time is given in equation (45): 

 [ ]st LCL EOT LC D hours= + − −  (45) 

www.intechopen.com



 Solar Collectors and Panels, Theory and Applications 

 

258 

K AK(hr) BK(hr) 

0 2.0870 × 10-4 0 

1 9.2869 × 10-3 - 1.2229 x 10-1 

1 -5.2258 x 10-2 - 1.5698x 10-1 

3 - 1.3077 x l0-3 - 5.1 602x 10-3 

4 - 2.1867x l0-3 - 2.9823x 10-3 

5 - 1.5100 x 10-4 - 2.3463x 10-4 

Table 1. Coefficients for conversion between solar time and clock time 

D is 1 hour where daylight saving time is used, otherwise, D=0. In South Africa, D=0. The 
local longitude correction (LC) is given by: 

 [ ]
15

LL LoLTz
LC hours

−
=  (46) 

where LC : the longitude collection, LL : local logitude at the location of the local time clock, 
and LoLTz : Longitude of the standard time zone meridian. Summarising  equations (43-46), 
the azimuth direction of sunrays, at a given location, as a function of time in seconds could 
be re-written as in equation (47). 

 
15

( ) 180 [deg ]
3600

0 86400sec

s t t rees

t

β = −

≤ ≤
 (47) 

And local clock time in seconds have been used in equation (47), instead of LCT. Given that 
no tracking is needed before sunrise, and after sunset, equation (47), may be written as  

 
( ) 0.00416667( ) (0) 180 [deg ]s R R

R S

t t t rees

t t t

β β= − + −
≤ ≤

 (48) 

Where tR is the sunrise time (seconds)  at the location, βR(0)=0.004166 tR is the sunrise angle, 
and ts is the sunset time. 

5.3 Trajectories generation for sensorless tracking  
To generate trajectories of motion for sensorless control, substitute equation (48) into 
equation (17) to obtain equation (49), for which the reference trajectories for feedback are 
given by: 

  

*
1

.
*
2

..
*
3

( ) ( )

( ) ( )

( ) ( )

m
s

t

m
s

t

m
s

t

K
h t t

J

K
h t t

J

K
h t t

J

β

β

β

=

=

=

 (49) 

Which, by substitution yields: 
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* *
1 1

* *
2 2

* *
3 3

( ) 0.00416667 ; (0) 0.00416667

( ) 0.00416667 ; (0) 0

( ) 0, (0) 0

m m
R

t t

m

t

K K
h t t h t

J J

K
h t h

J

h t h

= =

= =

= =

 (50) 

6. Simulations, results presentation and discussion  

Simulation results present the dynamic response of the open-loop platform, the impact of 
feedback on platform performance, and the performance of the platform in tracking the 
direction of sunrays through sensorless control.  

6.1 System data  

The data used for the simulation of the platform systems is shown in Table 2. 
 

Ra=5Ω La=0.003H B=3.95.10-6 Kg.ms-1 

Kb=0.0636V/rad/s Km=0.00711 
Kgm/A 

K=0.01Kgm2s-2 

JM=7.72.10-6 Kg m2 JL=970Kgm2 N=1/n=1/800 

Table 2. Platform system parameters 

6.2 Dynamics of uncontrolled platform  

The dynamics of the uncontrolled platform is shown in Figure 11. Overshoots of 96% are 
confirmed in the rotor position and speed. The settling time is 102seconds. The results 
confirm those presented in (de Lazzer, 2005; Agee et al., 2006). 

0 50 100 150
0

0.5

1

1.5

2

Time(s)

R
o
to

r 
a
n
g
le

 (
ra

d
)

0 50 100 150
-4

-2

0

2

4

Time(s)

R
o
to

r 
v
e
lo

c
it
y
(r

a
d
/s

)

0 50 100 150
0

0.5

1

1.5

Time(s)

A
rm

a
tu

re
 c

u
rr

e
n
t 

(A
)

0 50 100 150
0

0.005

0.01

0.015

Time(s)

T
o
rq

u
e
(N

m
)

(a) (b)

(c) (d)
 

Fig. 11. Dynamics of open-loop platform 
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Fig. 12. Comparison of dynamics for controlled and uncontrolled platform  

6.3 Dynamics of platform controlled by classical three-term controller  

The effect of including a classical linear three-term controller is shown in Figure 12. 
Compared to the dynamics of the uncontrolled platform, the controller brings the systems to 
settle in about 2 seconds. Overshoots of the rotor angle and velocity are within the 
acceptable limit of 17% (Kuo and Galnoraghi, 2003). However, the overshoots in the motor 
armature current and the delivered torque have been worsened by the inclusion of the 
classical controller. Current overshoots and torque overshoots have implications in the 
choice of the rating and costs of the drive systems, as well as the extra installed PV capacity 
required for the drive hardware. 

6.4 Performance of controlled platform with trajectories of motion  

Figures 13-15 show the dynamics of the platform in sensorless tracking. In Figure 13, we see 
that the tracking of the direction of the sunrays is achieved within a second, and without 
oscillations. From Figures 14 and 15, we could conclude that the transient velocity 
(maximum value of about 0.003.8deg./sec) and maximum acceleration (0.02deg./sec2) were 
not excessive. As such, the energy required for sensorless tracking is low. This is a major 
factor of merit when considering also the cost of supplying the tracker drive system.    

7. Conclusions  

In conclusion, a flat model of the solar tracker was presented and used for controller design. 
Mathematical derivation of the direction of sunrays as a function of the local clock time was 
given. It was also shown how the flatness property could be combined with the 
mathematical formulation of the direction of sunrays to generate trajectories of motion for 
sensorless tracking. Results also showed that sensorless tracking was achieved without 
oscillations, at modest velocities and accelerations. The low energy requirement in  
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Fig. 13. Polar axis tracking of angle of sunrays 
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Fig. 14. Velocity response of tracker 
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Fig. 15. Comparison of acceleration 
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sensorless tracking could be beneficial in reducing the rating requirements of auxiliary 
photovoltaic power, required for the tracker drive system. Combined with the elimination of 
sensor cost, the reduced drive energy requirement could lead to significant reductions in the 
overall cost of photovoltaic hardware. 
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