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1.	Introduction 
 

Recently numbers of studies have been performed to make robots behave and interact with 
people more friendly and effectively. For example, nonverbal human-like behaviors such as 
eye-contact or maintaining suitable distance are known to be important in forming social 
relationships with people (Yoshikawa et al., 2006; Huettenrauch et al., 2006; Walters et al., 
2005). To provide services effectively and behave humanlike, robots needs to obtain detailed 
information on where people exist or what they have been doing. Moreover, robots can 
provide services to people in two different ways: people find and approaches robots, or 
robots approach person that needs assistance. When we look for services in the current 
world, shops, information kiosks or wall maps in public spaces are typical examples of the 
first type. In order to receive the service, people need to find out where the service is 
provided and have to approach the place. On the contrary, there had been few examples for 
the second form. Lifeguards at the swimming pool may be a rare example. When someone 
drawn is found, s/he dives in to help the person. Although the latter form is much more 
convenient, why can they be rarely seen in our everyday life? This is because services of this 
form need monitoring and recognition of people requirements which is still a difficult task. 
However, with the progress in ubiquitous sensing systems, this convenient form of service 
is becoming real. 
Several research projects have been running under this intent. One typical example is the 
aware home (Kidd et al., 1999)0, where sensors are installed in the residence and making the 
home a smart, intelligent space for supporting life. However, due to the high cost required 
in building such system on individual houses, it is hard to imagine every home having these 
facilities. Instead, public space such as shopping malls, stations or airports are more likely to 
be equipped with these sensing systems. However, public spaces show typical natures that 
cannot be seen in individual homes such as: 1. they are typically crowded with people, 2. the 
area is wide, and 3. most of the places are designed for certain purpose. The first two shows 
that sensing is much more challenging in these places. But by the last feature, there is a 
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possibility that robots may perform better utilizing the background knowledge specific to 
each environment. 
Several robotic projects in public spaces have been performed, that provides guidance or 
shop recommendations. For example, in the Robotics project (Jensen et al., 2005), numbers of 
mobile robots were placed in the national expo for 5 months. Here the robots cooperated 
with each other, in order to locate themselves or find persons that need help, using the 
predefined knowledge on several areas in the expo pavilion. However, as you can 
experience by walking in a crowded station, it is not so easy to recognize what’s happening 
in a place not nearby. With the help from the sensors equipped in the environment, this can 
be made easier. Also, when considering robotic services in real, knowledge on spatial area 
shall be better acquired mostly automatically, in order to follow the changes in the 
environment. 
Also from the aspect of developing robotic services, raw position information such as 
coordinates may not be sufficient. For example, when making a navigation services that find 
a person in lost, what is required most is the status or behavior of the person, not the 
coordinate s/he resides. This is also useful for providing services appropriate in each 
context or situation the target person is in. The same is also true for spatial knowledge as 
described previously. The abstract, symbolic information is better suited for easily 
describing scenarios for human-robot interaction or robotic services (Fig. 1). Several research 
efforts have begun to obtain this abstract information from sensing results (Kanda, et al, 
2007; Gerkey et al., 2003). 
 

 
 

Fig. 1. Human-robot interaction with and without symbolic information. 
 
Another issue related to the development of robotic services lies on their high cost in 
preparing a robotic system. Currently, developers need to prepare mostly every element by 
themselves that are required in composing a robot, such as localization, human 
identification or speech recognition. What is required is a common framework or platform 
system that can be used for building robots easily. Several projects have been conducted to 
prepare such common frameworks (Kranz et al., 2007; Thompson et al., 2007), but there 
seems to be nothing standard yet. 

 

Our intention is to prepare an infrastructural system that senses human behavior and spatial 
nature in the environment. This system will provide robots information obtained from the 
environment in a standard manner. In past, factories have been designed so that industrial 
robots can perform effectively, albeit of their limited sensing ability. However, it is not likely 
that public spaces are going to be built in the same way suitable for robots. Thus, instead of 
structuring the environment as in factories, by utilizing the advanced sensing and pattern 
recognition techniques, we intent to make the information extracted from the environment 
to be structured and to be easily processed in robotic systems. Our server system is based on 
four-layer architecture, the Structuring model of Environmental Information (Figure 2). 
Measurements from sensors are first processed in the sensor layer and are then integrated to 
produce uniform positioning results in the segment layer. At the same time, positions are 
accumulated and processed to produce symbolic information on human behavior and space 
in the primitive layer. Both the coordinates and symbolic information produced are provided 
to robots, enabling robotic services to be designed and run based on both numerical and 
symbolic descriptions. In past, there have been several attempts to combine robotic services 
with environmental sensing systems (Thompson et al., 2007). There were also studies on 
sensing systems that produce abstract symbolic information (Jensen et al., 2003). But as far 
as we know, no such integrated system exists which can be used in the real world and 
which provides standard access methods for robotic services in general. 
 

 
Fig. 2. Four-layer architecture of structured environmental information 
 
In the following, we will first describe the first three layers in our server platform: robust 
sensing methods for human positioning in real environments, integration of positioning 
results by individual sensors and methods for recognizing human behaviors and spatial 
nature. Based on the proposed architecture and these technologies, we have built two trial 
fields in public spaces and have been providing these to researchers for testing purpose. In 
the last section, we describe these two trial fields and briefly show some robotic service 
experiments held using the proposed server features. 
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In the following, we will first describe the first three layers in our server platform: robust 
sensing methods for human positioning in real environments, integration of positioning 
results by individual sensors and methods for recognizing human behaviors and spatial 
nature. Based on the proposed architecture and these technologies, we have built two trial 
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2. The Sensor Layer: Measuring Human Position 
 

Human positioning is one major field of research. Various methods and sensing devices 
have been actively developed (Hightower & Borriello, 2001). One typical and frequently 
used device is the Global Positioning System (GPS). Many cellular phones nowadays are 
equipped with GPS receivers, and are widely used for location-based services such as 
navigation or restaurant recommendation. Although these systems are sufficient for rough 
navigation, the accuracy of positioning is still not enough for their use in crowded public 
spaces. Moreover, for robotic use, much accuracy is required for approaching a person or for 
interacting movements such as making gestures or keeping eye contacts. 
Finding people by on-board sensors installed on robots are another field that is actively 
studied (Gockley et al., 2007; Fransen et al., 2007). However, this is effective only after the 
robots have approached close enough to the person in target. Thus, the issue still remains on 
how to find the person who needs help in the public environment. On the contrary, by 
installing and utilizing sensors in the environment, we can not only obtain a more accurate 
observation, but also be able to degrade the cost required in robot development. By 
accessing the positioning results from the environment, developers can get rid of 
positioning part and can concentrate on service development. 
Environmental sensing has been long studied in the field of computer vision or pattern 
recognition. Unfortunately, most of these methods do not perform robustly in the real 
environment, where people behavior or conditions such as lightening is not under control. 
In order to implement a robust real-time human positioning, we decided to obtain and 
integrate results from four sensors of different modalities. 

 
2.1 LRF tracking of human position 
Laser range finder (LRF) is one of the most commonly used sensors in the field of robotics. It 
can quickly and precisely scan the environment. However, in a public environment where 
many obstacles or person exists, the sensing is often obscured by occlusions. Our solution 
was to perform tracking using a network of multiple LRFs. Each LRF was mounted at 
average human torso height, approximately 85 cm high from the ground. A particle filter is 
used to track the position and velocity of each people, by using a model of a torso and two 
arms (Dylan et al., 2007)0. Fig. 3 shows the raw sensor data during the walking motion and 
how the model is fitted, and the results of tracking in real field. 
 

 
 

Fig. 3. Estimating pedestrian arm and torso movement from LRF output. 

 

2.2 Multi-camera and LRF based human tracking 
One of our goals for human positioning was to obtain the position of the human head. The 
head information is required for robots to effectively communicate with people, such as 
having conversation or maintaining eye contacts. This is done by integrating a head tracking 
system using multi-viewpoint images captured by a set of distributed cameras and the LRF 
based tracking system described above. Based on the 2D torso position estimation by the 
LRF tracker, head position is estimated by applying a human head model to edge images 
obtained (Matsumoto et al., 2008). As described previously, our purpose is to settle up this 
positioning system in a semi-outdoor public space, where there exists numbers of obstacles 
and the lightening condition frequently changes. This is a crucial condition for applying 
image processing techniques. Our solution was to combine both vision-based method and 
non-vision sensing method, in order to obtain detailed positioning estimation of people in 
the real environment. Fig. 4 shows an example of the tracking results. 
 

 
 

Fig. 4. Tracking results by the combination of multi-camera and LRF. The grey circles 
indicate head tracking result and the yellow dot clouds show hypotheses. The green dots 
on the bodies indicate base LRF tracking results. 

 
2.3 Human tracking by RFID tag and GPS 
Radio-frequency identification (RFID) tags and Global Positioning System (GPS) receivers 
carried by people are also used for obtaining their IDs and positions. As for the RFID tags, 
position estimation are done by a particle filter using the measured signal strength of active 
RFID tags (Shiomi et al., 2005). Although the positioning result obtained by RFID tags and 
GPS receivers are low both in accuracy and precision, these estimations are useful for 
associating identities (ID) to precise positioning results obtained from LRF or camera 
trackers. Moreover, GPS receivers can be used to track people in the wide outdoor 
environments where other sensors are not suitable. As people often move between indoor 
and outdoor in public spaces, continuous and seamless positioning in both fields are useful 
for keeping track of each person, especially for capturing their intention. 
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Radio-frequency identification (RFID) tags and Global Positioning System (GPS) receivers 
carried by people are also used for obtaining their IDs and positions. As for the RFID tags, 
position estimation are done by a particle filter using the measured signal strength of active 
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3. The Segment Layer: Integration of Position Estimations 
 

In the second layer, the segment layer, estimation results from individual trackers in the first 
layer are integrated to produce a final estimation of each person in the environment. That is, 
the 2D / 3D positions and IDs are integrated to compose a final 3D position of a human 
head accompanied with ID information ( 
Fig. 5). We currently use a simple nearest-neighbor method to integrate the resulting 
position and ID measurements, making concerns for error distribution of each of the initial 
estimations. Table 1 shows the positioning accuracy in the two trial fields and Fig. 6 shows 
the result of the integrated position estimation. We have found that our system is able to 
continuously track more than 20 people in real time. This was tested in real environments 
where various conditions such as number of people or illumination changes frequently. 
 

 
 

Fig. 5. Integration of individual tracking results in the segment layer. By combining 
estimation results from the four trackers, the segment layer outputs human head 3D 
positions with IDs. 
 

 Keihanna environment UCW environment 

Sensor type sensor # RMS sensor # RMS 

LRF (x,y) 6 49 mm 6 58 mm 
Camera (x,y,z) 16 13 cm 16 12cm 

RFID (x,y) 17 287 cm 9 249 cm 
GPS (x,y) - 10 m - 10-100 m 

Table 1. Accuracy of position estimation in the two trial fields. 
 

 

 
Fig. 6. Example of the integrated position estimation. The red dots show the head 
estimation results and the green dots show the torso estimation where head was not 
detected or when person was out of camera tracking area. 

 
4. The Primitive Layer: Recognition of Human Behaviors and Spatial Natures 
 

In order to efficiently design robotic services suitable for each environment, developers 
often need symbolic descriptions on how each person is behaving and what kind of attribute 
each area in the environment holds. Also, by knowing the typical behavioral patterns of 
people in the environment, robots will be able to provide context-aware services suitable for 
each person. These recognitions can be done by accumulating and learning people 
trajectories in the environment. 
By obtaining symbolic information based on each environment, developers can easily adapt 
their own robotic services to various places. We call these types of symbolic information 
primitives. Using the measured human position history, the platform server calculates and 
provides the primitives to the robots. In the following, the three types of primitives are 
described: local behavioral primitive, global behavioral primitive and spatial primitive. 

 
4.1 Local behavioral primitive 
One sort of information useful in designing robotic services is the short-time trend in people 
movement, such as walking or running. This kind of symbolic information is called local 
behavioral primitive. Recognition of local behavioral primitives is performed by a simple 
classifier based on support vector machine (SVM) using the obtained people trajectories. 
Features such as the velocity or degree of curvature of the trajectory are used for training the 
classifier. 
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In the current implementation, two types of local behavioral primitives are computed, each 
with its own classifier. The first is for the style of walking (straight, turning right/left, 
wandering, u-turn). The durations of trajectories used were 5.1 seconds. This means that 
observation of at least 5.1 seconds is required to decide the style of walking. We tested the 
classification accuracy by leave-one cross validation test which resulted in 82.5 % accuracy. 
Another is about the type of walking (running, busy/idle walking, stopping, waiting). We 
trained the classifier with 166 labeled data. The durations of trajectories used are 4.9 seconds. 
Leave-one cross validation test resulted in 87.8 % accuracy. Fig. 7 shows recognition results 
in a real environment.  
 

 
 

Fig. 7. Primitive recognition results. The box above a person indicates the detected local 
behavioral primitive (style of walking) and the one below shows the spatial primitive. 

 
4.2 Global behavioral primitive 
Global behavioral primitive shows what kind of typical visiting pattern the person is following. 
The difference in calculating between global and local behavioral primitives mainly exists 
on the length of the trajectory required. However, as the length of the trajectory increases, 
we can assume that the pattern holds more abstract, semantic information on the intent of 
each person.  
In an experiment was held in a science museum, where visitor trajectories were collected 
through RFID tag tracking (Kanda et al, 2007). By analyzing more than 8,000 moving 
patterns acquired, 5 typical visiting patterns were extracted. As we can think that these 
patterns, i.e. global behavioral primitives, indicate topic of interest for each visitor, robots 
can easily provide services or information adapted to each person.  

 

4.3 Spatial primitive 
A spatial primitive indicates the nature of an area. How people have been typically behaving 
in the area, or what kinds of events have frequently occurred there in the past. This can be 
manually specified by system designers. Fig. 7 shows an example of manually specified 
spatial primitive. Here, the ‘front_shop’ indicator shows that the person in target is in the 
front of a shop. Otherwise, spatial primitives can be calculated based on visitor trajectory 
histories as global behavioral primitive (Kanda et al, 2007).  

 
5. The Kansai Environment: Trial Field for Robotic Services 
 

Using these technologies, we have built two trial fields for robotic services: the Kansai 
Environment. One is located at the entrance of an office building (NICT Keihanna building) 
and another in a shopping mall (Universal City Walk Osaka, UCW for short), both in the 
Kansai district of Japan. These two locations were chosen due their difference in nature of 
the place and in the people behavior. The first location is mainly aimed for business or 
exhibition purpose and the second is for shopping. As the underlying systems in both fields 
are common, here we will mainly describe about the UCW field. The measured positioning 
accuracy for both fields is shown in Table 1. The only difference was, due to high buildings 
in the surroundings, we were not able to use GPS in the UCW field. 
The shopping mall where the UCW field is settled is located between a train station and an 
amusement park (Universal Studio Japan). Every day thousands of people walk through the 
mall for shopping, dining or just for the sake of passing for their way to the park. Fig. 8 
shows sensor alignments in UCW trial field. 
 

 
 

Fig. 8. Sensor alignments in the Kansai Environment (UCW). 
 
These trial fields were intended to be a common environment for testing various robotic 
service implementations, assisted by the environmental server functionalities. Thus, a 
common, standard interface was required for the server system. For this purpose, we have 
used the Robotic Localization Service standard (Nishio, et al., 2009). The access interface, 
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histories as global behavioral primitive (Kanda et al, 2007).  

 
5. The Kansai Environment: Trial Field for Robotic Services 
 

Using these technologies, we have built two trial fields for robotic services: the Kansai 
Environment. One is located at the entrance of an office building (NICT Keihanna building) 
and another in a shopping mall (Universal City Walk Osaka, UCW for short), both in the 
Kansai district of Japan. These two locations were chosen due their difference in nature of 
the place and in the people behavior. The first location is mainly aimed for business or 
exhibition purpose and the second is for shopping. As the underlying systems in both fields 
are common, here we will mainly describe about the UCW field. The measured positioning 
accuracy for both fields is shown in Table 1. The only difference was, due to high buildings 
in the surroundings, we were not able to use GPS in the UCW field. 
The shopping mall where the UCW field is settled is located between a train station and an 
amusement park (Universal Studio Japan). Every day thousands of people walk through the 
mall for shopping, dining or just for the sake of passing for their way to the park. Fig. 8 
shows sensor alignments in UCW trial field. 
 

 
 

Fig. 8. Sensor alignments in the Kansai Environment (UCW). 
 
These trial fields were intended to be a common environment for testing various robotic 
service implementations, assisted by the environmental server functionalities. Thus, a 
common, standard interface was required for the server system. For this purpose, we have 
used the Robotic Localization Service standard (Nishio, et al., 2009). The access interface, 
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including the outputs from the segment and primitive layer, was implemented to follow this 
standard. Also, a repository server was prepared to exchange the various metadata 
definition such as 3D coordinate reference systems or primitive symbolic coordinate systems 
used for the output.  

 
5.1 Basic robotic service in the Kansai Environment 
In order to see the effectiveness of the platform server system, we have conducted a robotic 
service experiment at the UCW field. A humanoid robot (Robovie-IIF) was used. This robot 
is equipped with several sensors, such as a LRF, an omni-directional camera and ultrasound 
distance sensors. However, none of them were used in this experiment. Instead, the robot 
completely relied on the information provided from the platform server and never used its 
own sensing system for interacting with people. 
 

  
(a)             (b)   

 
(c) 

Fig. 9. Scenes from the robotic service experiment using the Kansai Environment (UCW). (a) 
Server system detects a person standing in front of a shop. (b) Robot starts approaching the 
people based on the positioning results from the server. (c) The robot starts shop guidance 
service, while keeping eye contact with the target person. The robot’s eye contact motion is 
also performed based on the head position received from the server. 
 
Fig. 9 shows a sample sequence from the experiment. When the platform server detects a 
person with a local behavioral primitive 'stopping' and with a spatial primitive ‘shop front’ 
or ‘map’, Robovie starts approaching the person using the estimated position from the 
platform server. After the robot reaches nearby the person, it begins providing route 

 

guidance or shop information, depending on the spatial primitive it has received. While 
providing information, Robovie also makes gestures and keeps eye contact with the person, 
using the head position estimation given from the environmental server. 
Although the robotic service designed is quite a simple one, the fact that it worked out quite 
stably and effectively seems to indicate the validity of our idea in decreasing the robot 
development cost. At the same time, this also shows the possibility of developing robotic 
applications independent to the sensing ability of each robot.  

 
5.2 Using the Kansai Environment 
From June 2008 to March 2009, we made the Kansai Environment available to public. 
Interface specification was released on the web, and robot researchers were invited to use 
the environment for trying the environmental server functionality with their robots free of 
charge. Since its release, eight research organizations or projects used the field.  
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