
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

Onboard	Mission	Management	for	a	VTOL	UAV	Using	Sequence	and	Supervisory	Control 301

Onboard	Mission	Management	 for	a	VTOL	UAV	Using	Sequence	and	
Supervisory	Control

Florian	Adolf	and	Franz	Andert

X
	

Onboard Mission Management for a VTOL UAV
Using Sequence and Supervisory Control

Florian Adolf and Franz Andert

 Institute of Flight Systems, Unmanned Aircraft Dept.,
German Aerospace Center (DLR)

 Germany

1. Introduction

This chapter addresses the challenges of onboard mission management for small, low flying
unmanned aerial vehicles (UAVs) in order to reduce their dependency on reliable remote
control. The system presented and tested onboard an UAV provides different levels of
autonomy, switchable at runtime either manually by the operator or automatically due to
absence of a data link. This way, it is a feasible approach towards autonomous flight
guidance within the low-altitude domain (e.g. urban areas) where unpredictable events are
likely to require onboard decision-making.
In the following sections the problems of onboard mission management, embedded high
level architectures and their implementation issues are discussed. The design of a onboard
Mission Management System for a test platform with vertical take-off and landing (VTOL)
capabilities is presented, followed by discussions of the implemented system and a research
outlook.

2. Autonomy Management Problem

For many UAVs, an operator at a remote control station performs joystick control and plans
the mission. The operator often commands the UAV using joystick remote control (e.g. rate
or velocity commands) or sets a target location for a position command. With an onboard
world model and path planning capabilities, more autonomy is on board the system such
that an operator might issue higher-level commands, e.g. directing the vehicle to search a
collision free path automatically and fly back to base.
This implies different abstraction levels within the onboard system such that each level of
system autonomy is clearly represented. The level of autonomy at which an operator
commands the UAV might vary during a mission. For example, while the UAV performs
waypoint navigation the operator interrupts the flight in order to manually direct the UAV
towards an object of interest that just appeared in a live video feed from the onboard
camera.
The design and implementation of different levels of control necessitates provisions for
operational safety and certain user requirements. In particular, the operator must remain in

19

www.intechopen.com

Cutting	Edge	Robotics	2010	302

the loop at all levels of autonomy whenever the data link is available. Also, the operational
environment is characterized by events that can occur in an unknown order and at sporadic
time instances. It must implement input checks for syntactical plausibility and even
semantic correctness, wherever possible.
Beside this autonomy management problem, the organization and abstraction of the system
into a suitable architecture is a challenge. Thus, in the next section existing architectural
concepts are discussed.

3. Related High-Level Control Architectures

More self-reliance and decision-making autonomy poses questions regarding a suitable
architecture according to which the management system is designed.
Knowledge-based systems establishing the concept of a cognitive process as decision-
making entity were presented in the UAV domain (Hill 1997, Putzer 2003). Concepts exist
that are based on the behavior-based paradigm (Weiss 2005), where a set of elementary
behaviors (so-called skills, such as movement primitives) is combined in such a way that a
new emergent behavior is created. Furthermore, layered architectures (Freed 2005) have
been proposed that comprise distinct system modes also known as hybrid control (Egerstedt
1999).
Using knowledge-based systems, classical artificial intelligence spent over five decades
trying to model human-like intelligence. Inspired by these systems, several research projects
seek to produce a human-like thinking process (also known as cognition) in order to achieve
high-level control in decision-making systems (Hill 1997, Putzer 2003). A commonly used
cognitive architecture is implemented in SOAR (Laird 1987). Since real-time properties are
one crucial design aspect for a UAV decision-making system, a real-time derivate of SOAR,
Hero-SOAR exists.
However, there are major implementation issues related to cognitive production systems
(Musliner 1995). First, "chunking", a pattern matching technique, might be hard to confine
with respect to execution time and memory usage. Second, real-time reflexive actions (a
direct connection of a sensor to an actuator) invoke a high-variance of unpredictable system
events. Furthermore, problems were experienced when trying to effectively coordinate and
mediate reflexive behaviors with the overall deliberative behavior of the system. If the
reflexive actions can bypass the normal deliberation mechanisms, it may be difficult or
impossible for the deliberation processing to reason about and affect the real-time reaction.
Hence, the architecture for any UAV decision making system should particularly focus on
"embedding real-time in artificial intelligence" rather than "embedding artificial intelligence
in real-time” (Musliner 1995). Moreover, a principle shortcoming of the cognitive approach
is the emphasis on representation at a high, symbolic level. This yields to control strategies
that may make conceptual sense to a human designer but the intelligence in such systems
belongs to the designer. Additionally, it is questionable whether humans deploy a complex
thinking process for every intended behavior rather than think in a more reactive way (Agre
1995).
These disadvantages are addressed by the behavior-based control with the Subsumption
Architecture (Toal 1996, Brooks 1990), which does not necessarily seek to produce cognition.
It rather uses a hierarchy of fast reactive loops where each loop is capable of executing a
distinct behavior. Moreover, higher reactive loops modify the behavior of lower ones. The

concept of arbitration allows to automatically select among behaviors, and the so-called
action-oriented perception frames the perceptual input according to the task. Some
approaches interconnect elementary behaviors and superposition them, which results in a
new, emergent system behavior. The ultimate goal in many behavior-based approaches is to
enable robot-learning techniques such that a system can automatically deduce which
behaviors must be compiled together in order to achieve a goal. Admittedly, one of the side
effects is that they produce complex system topologies if behaviors are interconnected. It
then is almost impossible to explain the system behavior. Moreover it is hard to achieve a
notion of optimality (Pirjanian 1999).
UAVs are supposed to be semi-autonomous, remotely guided, assistant systems rather than
anthropoid, autonomous systems. One of the key requirements of having several levels of
system autonomy cannot be achieved with solely deliberate nor reactive architectures.
Deliberate architectures relate "autonomy" to human-like intelligence and rational acting,
whereas reactive architectures consider it as a system's "ability to act independently in the
real world environment" (Makowski 2004).
Thus, it is desireble to combine advantages of knowledge-based and behavior-based
architectures. Current robotic development created architectures combining both ideas into
one system. Inspired by the Subsumption Architecture and empirical observations, the 3T
architecture (Bonasso 1997) separates intelligent control into three interacting layers (or
tiers). The first layer comprises a set of so-called reactive skills. These behaviors represent
control laws tightly coupled with the environment through sensor readings and actuators.
Skills make so-called simple-world assumptions such as, the sensor input is always valid
and the desired goal can be achieved.
In order to accomplish a specific task, the sequencer on the second layer assembles an
appropriate task network of skills by activating and deactivating respective skills. When
more than one skill is active, they form a so-called task network.
The third layer is the deliberative layer, which comprises a planner that reasons about goals,
resources and timing constraints with well-known rational techniques.

4. Mission Management System

In the following the overall system design is presented with respect to particular design
decisions. The effective architecture of the onboard mission management system is based on
ideas discussed in the previous section and yields two main system components: The
Sequence Control System and the Supervisory Control System.

4.1 Design Decisions
The major requirements with respect to real-time execution, predictable system behavior
and the need for different levels of autonomy at runtime yield the following principal
design decisions:

 The embedded system architecture must be separated into interacting layers, to
enable the implementation of deliberate and reactive approaches. This leaves room
for a behavior-based reactive layer and allows several kinds of artificial intelligence
techniques in the deliberative layer(s).

www.intechopen.com

Onboard	Mission	Management	for	a	VTOL	UAV	Using	Sequence	and	Supervisory	Control 303

the loop at all levels of autonomy whenever the data link is available. Also, the operational
environment is characterized by events that can occur in an unknown order and at sporadic
time instances. It must implement input checks for syntactical plausibility and even
semantic correctness, wherever possible.
Beside this autonomy management problem, the organization and abstraction of the system
into a suitable architecture is a challenge. Thus, in the next section existing architectural
concepts are discussed.

3. Related High-Level Control Architectures

More self-reliance and decision-making autonomy poses questions regarding a suitable
architecture according to which the management system is designed.
Knowledge-based systems establishing the concept of a cognitive process as decision-
making entity were presented in the UAV domain (Hill 1997, Putzer 2003). Concepts exist
that are based on the behavior-based paradigm (Weiss 2005), where a set of elementary
behaviors (so-called skills, such as movement primitives) is combined in such a way that a
new emergent behavior is created. Furthermore, layered architectures (Freed 2005) have
been proposed that comprise distinct system modes also known as hybrid control (Egerstedt
1999).
Using knowledge-based systems, classical artificial intelligence spent over five decades
trying to model human-like intelligence. Inspired by these systems, several research projects
seek to produce a human-like thinking process (also known as cognition) in order to achieve
high-level control in decision-making systems (Hill 1997, Putzer 2003). A commonly used
cognitive architecture is implemented in SOAR (Laird 1987). Since real-time properties are
one crucial design aspect for a UAV decision-making system, a real-time derivate of SOAR,
Hero-SOAR exists.
However, there are major implementation issues related to cognitive production systems
(Musliner 1995). First, "chunking", a pattern matching technique, might be hard to confine
with respect to execution time and memory usage. Second, real-time reflexive actions (a
direct connection of a sensor to an actuator) invoke a high-variance of unpredictable system
events. Furthermore, problems were experienced when trying to effectively coordinate and
mediate reflexive behaviors with the overall deliberative behavior of the system. If the
reflexive actions can bypass the normal deliberation mechanisms, it may be difficult or
impossible for the deliberation processing to reason about and affect the real-time reaction.
Hence, the architecture for any UAV decision making system should particularly focus on
"embedding real-time in artificial intelligence" rather than "embedding artificial intelligence
in real-time” (Musliner 1995). Moreover, a principle shortcoming of the cognitive approach
is the emphasis on representation at a high, symbolic level. This yields to control strategies
that may make conceptual sense to a human designer but the intelligence in such systems
belongs to the designer. Additionally, it is questionable whether humans deploy a complex
thinking process for every intended behavior rather than think in a more reactive way (Agre
1995).
These disadvantages are addressed by the behavior-based control with the Subsumption
Architecture (Toal 1996, Brooks 1990), which does not necessarily seek to produce cognition.
It rather uses a hierarchy of fast reactive loops where each loop is capable of executing a
distinct behavior. Moreover, higher reactive loops modify the behavior of lower ones. The

concept of arbitration allows to automatically select among behaviors, and the so-called
action-oriented perception frames the perceptual input according to the task. Some
approaches interconnect elementary behaviors and superposition them, which results in a
new, emergent system behavior. The ultimate goal in many behavior-based approaches is to
enable robot-learning techniques such that a system can automatically deduce which
behaviors must be compiled together in order to achieve a goal. Admittedly, one of the side
effects is that they produce complex system topologies if behaviors are interconnected. It
then is almost impossible to explain the system behavior. Moreover it is hard to achieve a
notion of optimality (Pirjanian 1999).
UAVs are supposed to be semi-autonomous, remotely guided, assistant systems rather than
anthropoid, autonomous systems. One of the key requirements of having several levels of
system autonomy cannot be achieved with solely deliberate nor reactive architectures.
Deliberate architectures relate "autonomy" to human-like intelligence and rational acting,
whereas reactive architectures consider it as a system's "ability to act independently in the
real world environment" (Makowski 2004).
Thus, it is desireble to combine advantages of knowledge-based and behavior-based
architectures. Current robotic development created architectures combining both ideas into
one system. Inspired by the Subsumption Architecture and empirical observations, the 3T
architecture (Bonasso 1997) separates intelligent control into three interacting layers (or
tiers). The first layer comprises a set of so-called reactive skills. These behaviors represent
control laws tightly coupled with the environment through sensor readings and actuators.
Skills make so-called simple-world assumptions such as, the sensor input is always valid
and the desired goal can be achieved.
In order to accomplish a specific task, the sequencer on the second layer assembles an
appropriate task network of skills by activating and deactivating respective skills. When
more than one skill is active, they form a so-called task network.
The third layer is the deliberative layer, which comprises a planner that reasons about goals,
resources and timing constraints with well-known rational techniques.

4. Mission Management System

In the following the overall system design is presented with respect to particular design
decisions. The effective architecture of the onboard mission management system is based on
ideas discussed in the previous section and yields two main system components: The
Sequence Control System and the Supervisory Control System.

4.1 Design Decisions
The major requirements with respect to real-time execution, predictable system behavior
and the need for different levels of autonomy at runtime yield the following principal
design decisions:

 The embedded system architecture must be separated into interacting layers, to
enable the implementation of deliberate and reactive approaches. This leaves room
for a behavior-based reactive layer and allows several kinds of artificial intelligence
techniques in the deliberative layer(s).

www.intechopen.com

Cutting	Edge	Robotics	2010	304

 The layered architecture chosen for this hybrid control problem is the 3T
architecture. It offers a flexible way of modularization, centralizes the execution of
actions and does not rely on interacting skills.

 The behavior-based paradigm, as a bottom-up strategy for intelligent systems, is
worth being considered for the reactive layer, since it enables real-time execution
and relatively simple behavior development. This paradigm allows a way to
compile elementary problem solutions (e.g. moving to a position) into a library of
behaviors.

 Known shortcomings of the behavior-based approach with respect to online
learning, behavior interaction and arbitration techniques, are eliminated
intentionally.

 When behavior interaction and abstract behaviors are not available in the reactive
layer, the discussed disadvantages of the 3T approach can be neglected.

As a result, this design concept for onboard mission management combines the 3T
architecture with ideas from the behavior-based paradigm.
In the following, the overall system is described from three points of view. The illustrations
in Figure 1 outline how the principles of 3T’s high level control decomposition are
represented in the system. In order to highlight a system wide context, Figure 2 describes
the component organization from an implementation point of view.

4.2 High-Level Control Architecture
The high-level control architecture onboard the UAV is based on the 3T architecture for a
hierarchical decomposition of system autonomy (Figure 1). Moreover, the behavior-based
paradigm yields distinct behaviors that can be combined sequentially across each layer. The
behaviors are either of a basic movement primitive type (e.g. flying a linear trajectory) or of
deliberate nature (e.g. searching and tracking an object on ground).

Fig. 1. Onboard high-level control based on the 3T architecture

Two basic prerequisites of the proposed mission management architecture in Figure 1 are
implemented by two systems, sequentially executed at each instant of time. The first system
implements deliberate behaviors and a set of operational safety features.
The second component generates flight control commands at every instant of time. It
contains a library of basic movement behaviors from the reactive layer. Figure 1 illustrates
which behaviors are located at the skill layer. These behaviors generate instantaneous
trajectory-based control commands that are fed into the flight controller.
The deliberate layer shows examples of complex behaviors. These alter existing missions or
create new missions. In this context, mission planning will output the list of sequential
behavior commands shown in Figure 1.

Fig. 2. The Mission Manager allows different levels of autonomy and comprises a supervisor
and sequence controller implementing the 3T architecture

The set of basic behaviors from the reactive layer need to be represented as a system. It
needs to coordinate and execute the reactive layer’s basic movement behaviors that interface
with the ight control system. Furthermore, a sequence of such behaviors needs to be
executed automatically while handling unforeseen events like a sudden interruption from
the remote operator. This is done in the Sequence Control System as it implements the
executive component of the sequencing layer of the 3T architecture.
Since neither the deliberative layer nor the skills alone can handle all situations optimally,
the Supervisory and Sequence Control System provide additional glue logic to store
procedural knowledge that neither belongs clearly to the deliberative layer nor to the skill
layer. For example, during flight testing a safety pilot may need to switch between manual
or computer control, and thus the system must stop producing actuator commands and set
its onboard components into a dened stand-by state.

www.intechopen.com

Onboard	Mission	Management	for	a	VTOL	UAV	Using	Sequence	and	Supervisory	Control 305

 The layered architecture chosen for this hybrid control problem is the 3T
architecture. It offers a flexible way of modularization, centralizes the execution of
actions and does not rely on interacting skills.

 The behavior-based paradigm, as a bottom-up strategy for intelligent systems, is
worth being considered for the reactive layer, since it enables real-time execution
and relatively simple behavior development. This paradigm allows a way to
compile elementary problem solutions (e.g. moving to a position) into a library of
behaviors.

 Known shortcomings of the behavior-based approach with respect to online
learning, behavior interaction and arbitration techniques, are eliminated
intentionally.

 When behavior interaction and abstract behaviors are not available in the reactive
layer, the discussed disadvantages of the 3T approach can be neglected.

As a result, this design concept for onboard mission management combines the 3T
architecture with ideas from the behavior-based paradigm.
In the following, the overall system is described from three points of view. The illustrations
in Figure 1 outline how the principles of 3T’s high level control decomposition are
represented in the system. In order to highlight a system wide context, Figure 2 describes
the component organization from an implementation point of view.

4.2 High-Level Control Architecture
The high-level control architecture onboard the UAV is based on the 3T architecture for a
hierarchical decomposition of system autonomy (Figure 1). Moreover, the behavior-based
paradigm yields distinct behaviors that can be combined sequentially across each layer. The
behaviors are either of a basic movement primitive type (e.g. flying a linear trajectory) or of
deliberate nature (e.g. searching and tracking an object on ground).

Fig. 1. Onboard high-level control based on the 3T architecture

Two basic prerequisites of the proposed mission management architecture in Figure 1 are
implemented by two systems, sequentially executed at each instant of time. The first system
implements deliberate behaviors and a set of operational safety features.
The second component generates flight control commands at every instant of time. It
contains a library of basic movement behaviors from the reactive layer. Figure 1 illustrates
which behaviors are located at the skill layer. These behaviors generate instantaneous
trajectory-based control commands that are fed into the flight controller.
The deliberate layer shows examples of complex behaviors. These alter existing missions or
create new missions. In this context, mission planning will output the list of sequential
behavior commands shown in Figure 1.

Fig. 2. The Mission Manager allows different levels of autonomy and comprises a supervisor
and sequence controller implementing the 3T architecture

The set of basic behaviors from the reactive layer need to be represented as a system. It
needs to coordinate and execute the reactive layer’s basic movement behaviors that interface
with the ight control system. Furthermore, a sequence of such behaviors needs to be
executed automatically while handling unforeseen events like a sudden interruption from
the remote operator. This is done in the Sequence Control System as it implements the
executive component of the sequencing layer of the 3T architecture.
Since neither the deliberative layer nor the skills alone can handle all situations optimally,
the Supervisory and Sequence Control System provide additional glue logic to store
procedural knowledge that neither belongs clearly to the deliberative layer nor to the skill
layer. For example, during flight testing a safety pilot may need to switch between manual
or computer control, and thus the system must stop producing actuator commands and set
its onboard components into a dened stand-by state.

www.intechopen.com

Cutting	Edge	Robotics	2010	306

4.3 The Sequence Control System
The Sequence Control System is exposed to a number of potentially concurrent events.
Hence, the specication and implementation of the system is modelled as an event-based
system. The majority of event-based systems are modelled using the Unified Mark-up
Language (UML), an industry-wide standard notation. It supports the object oriented design
pattern and provides dynamic modelling techniques such as state charts, sequence diagrams
and activity diagram. State charts have been extensively studied such that abstract testing
techniques allow verifying a model (semi-) automatically. Also, there exists good software
tool support, which eases the development process signicantly. Moreover, there are tools
that provide code generators such that the implemented code is directly derived from the
state chart-based specication. Otherwise, it is likely that specication and implementation
begin to diverge over time.
Thus, the Sequence Control System is modelled as UML 1.2 State Charts. Basically, State
Chart diagrams (also known as State Machines in UML 2) are nite automatons with a nite
set of states where exactly one state is active at a time. They depict the dynamic behavior
based on its response to events, showing how the model reacts to various events depending
on its current state. Events can trigger a transition into another state, where so-called guards
are the condition that must become true in order to traverse along the transition. The guards
on similar transitions leaving a state must be consistent (deterministic) with one another.

Fig. 3. The UML State Chart Model specifying the top level of the Sequence Control System

The UML model of the Sequence Control System is shown in Figure 3. It has two
hierarchical levels where the top level models the procedural ow for a safe operation. The
two composite states, ”Mission Mode” and ”Command Mode”, model mission plan
processing and direct command execution respectively. Every state of the top level has a
transition to the ”Mission Controller Off” to handle a manual control event, such that the
Sequence Control System stands by in an idle state. If the system is in computer-based ight

mode (auto mode), another idle state ”Stand By” lets the UAV hover at its current position
when the state was entered; including a position on the ground. The state ”Slow Down” is
necessary to assure a smooth changeover into ”Stand By” regardless of the ight maneuver
being executed. In case the operator commands the UAV to stop, a transition from every
auto mode state assures that the command is executed. Among events certain priorities
exist. For example, an event switching to manual mode is more important than a stop
command and requires processing. The order in which the event check is performed
accounts for this obligation.
The state mission mode contains the actual library of behaviors. There are no transitions
among behaviors assuring that only one can be active at a time. This is required in order to
overcome emergent system behavior caused by overlapping and interactions. For each
behavior there exists a termination condition, which transits into the command parser
”Parse Command”. Basically this state grabs behavior commands from an existing mission
plan (Figure 4). It issues an event for traversing into the appropriate state. When the mission
plan is processed, the ”Mission Mode” composite state is exited. For payload directed flight,
the composite state ”Command Mode” can be entered from every state inside “Mission
Mode”.

4.4 The Supervisory Control System
The Supervisory Control System is responsible for taking high level decisions based on
internal and external events. It is responsible for managing requests from the UAV operator
(e.g. allow to load a mission or executing a complex command), as well as reacting to a loss
of the data link. It is executed before the Sequence Control System at every instant of time.
This allows the Supervisory Control System to modify a mission when conditions are
recognized to imply a necessity of modification. Moreover, as long as there is no mission
update incoming from the operator, it can act as a substitute commanding entity for the
operator. It can command the Sequence Control System via the same type of commands that
a remote operator can send to the Sequence Control System (e.g. start and stop the execution
of a mission currently loaded). It is the entity in charge of managing the execution of
deliberate behaviors. Therefore, the Supervisor retains planning capabilities, and recognizes
associated high-level mission objectives (e.g. "Fly Home").

Fig. 4. Supervisory Control System as State Chart model managing two deliberate behaviors

Similarily to the Sequence Control System an UML model is be defined for the Supervisory
Control System shown in Figure 4. In this example, it implements two high-level behaviors,
“fly home” and “search and track object”. The first lets the vehicle find a way to fly back to a
start position, whereas the second lets the vehicle search and track an objects moving on the

www.intechopen.com

Onboard	Mission	Management	for	a	VTOL	UAV	Using	Sequence	and	Supervisory	Control 307

4.3 The Sequence Control System
The Sequence Control System is exposed to a number of potentially concurrent events.
Hence, the specication and implementation of the system is modelled as an event-based
system. The majority of event-based systems are modelled using the Unified Mark-up
Language (UML), an industry-wide standard notation. It supports the object oriented design
pattern and provides dynamic modelling techniques such as state charts, sequence diagrams
and activity diagram. State charts have been extensively studied such that abstract testing
techniques allow verifying a model (semi-) automatically. Also, there exists good software
tool support, which eases the development process signicantly. Moreover, there are tools
that provide code generators such that the implemented code is directly derived from the
state chart-based specication. Otherwise, it is likely that specication and implementation
begin to diverge over time.
Thus, the Sequence Control System is modelled as UML 1.2 State Charts. Basically, State
Chart diagrams (also known as State Machines in UML 2) are nite automatons with a nite
set of states where exactly one state is active at a time. They depict the dynamic behavior
based on its response to events, showing how the model reacts to various events depending
on its current state. Events can trigger a transition into another state, where so-called guards
are the condition that must become true in order to traverse along the transition. The guards
on similar transitions leaving a state must be consistent (deterministic) with one another.

Fig. 3. The UML State Chart Model specifying the top level of the Sequence Control System

The UML model of the Sequence Control System is shown in Figure 3. It has two
hierarchical levels where the top level models the procedural ow for a safe operation. The
two composite states, ”Mission Mode” and ”Command Mode”, model mission plan
processing and direct command execution respectively. Every state of the top level has a
transition to the ”Mission Controller Off” to handle a manual control event, such that the
Sequence Control System stands by in an idle state. If the system is in computer-based ight

mode (auto mode), another idle state ”Stand By” lets the UAV hover at its current position
when the state was entered; including a position on the ground. The state ”Slow Down” is
necessary to assure a smooth changeover into ”Stand By” regardless of the ight maneuver
being executed. In case the operator commands the UAV to stop, a transition from every
auto mode state assures that the command is executed. Among events certain priorities
exist. For example, an event switching to manual mode is more important than a stop
command and requires processing. The order in which the event check is performed
accounts for this obligation.
The state mission mode contains the actual library of behaviors. There are no transitions
among behaviors assuring that only one can be active at a time. This is required in order to
overcome emergent system behavior caused by overlapping and interactions. For each
behavior there exists a termination condition, which transits into the command parser
”Parse Command”. Basically this state grabs behavior commands from an existing mission
plan (Figure 4). It issues an event for traversing into the appropriate state. When the mission
plan is processed, the ”Mission Mode” composite state is exited. For payload directed flight,
the composite state ”Command Mode” can be entered from every state inside “Mission
Mode”.

4.4 The Supervisory Control System
The Supervisory Control System is responsible for taking high level decisions based on
internal and external events. It is responsible for managing requests from the UAV operator
(e.g. allow to load a mission or executing a complex command), as well as reacting to a loss
of the data link. It is executed before the Sequence Control System at every instant of time.
This allows the Supervisory Control System to modify a mission when conditions are
recognized to imply a necessity of modification. Moreover, as long as there is no mission
update incoming from the operator, it can act as a substitute commanding entity for the
operator. It can command the Sequence Control System via the same type of commands that
a remote operator can send to the Sequence Control System (e.g. start and stop the execution
of a mission currently loaded). It is the entity in charge of managing the execution of
deliberate behaviors. Therefore, the Supervisor retains planning capabilities, and recognizes
associated high-level mission objectives (e.g. "Fly Home").

Fig. 4. Supervisory Control System as State Chart model managing two deliberate behaviors

Similarily to the Sequence Control System an UML model is be defined for the Supervisory
Control System shown in Figure 4. In this example, it implements two high-level behaviors,
“fly home” and “search and track object”. The first lets the vehicle find a way to fly back to a
start position, whereas the second lets the vehicle search and track an objects moving on the

www.intechopen.com

Cutting	Edge	Robotics	2010	308

ground. The Fly Home behavior provides the vehicle with the capability of returning
autonomously to the starting point of a given mission. It implements the replanning process
shown in Figure 5 which is based on the properties of each basic movement primitives of the
reactive layer. The Search and Track behavior can be used to find and track a moving object
on the ground (Figure 6). Once spotted (e.g. using payload directed object detection) it is
desirable to track it. Similar to the Fly Home behavior, it seizes information in the a-priori
mission plan to implement tactical means, avoiding suboptimal search execution and
tracking performance. Further details on the internal ongoings of these behaviors are
presented in (Adolf 2009).

Fig. 5. Planning process of the Fly Home deliberate behavior based on the basic behaviors

Fig. 6. The Search and Track deliberate behavior shown as it finds and track a ground object
with a defined search area

4.5 Abstract System Testing
The overall complexity of the Supervisory and Sequence Control System imposes a
thorough test strategy. Abstract tests relate to Model-based testing and as such assure that
the model is free of principle design mistakes.
In the modelling stage a set of errors can occur. Some relate to potentially isolated or
unreachable states, as well as, missing or erroneous triggers and guards. An even more
fundamental problem is the theoretically innite set of sequences that have to be tested in an
abstract manner. That is, regardless of the meaning and function behind events, states and
transitions, the tests must traverse through the model even if a certain test would make no
sense from a practical point of view.

Fig. 7. Abstract testing strategies applied to the State Chart models

UML state charts represent a constructive model such that tests can make use of its internal
structure, also known as white-box testing. These abstract tests can be divided into three
groups, namely the path coverage, transition coverage and state coverage tests as
highlighted in Figure 7. For each of these groups, a set of event chains is generated and
executed. Once a full coverage of all possible combinations is reached, the tests are
completed. However, there is no dened nal state and states can have loops such that
innitely long test chains for path coverage tests occur. Therefore, a relaxation for the path
coverage criteria is implemented such that loops must be passed exactly once. This is a
strong and feasible criterion (Rumpe 2005). The system with greatest deepness is the
Sequence Control System where at maximum six events yield from the start state to the
deepest level. This implies 346 test sequences for the Sequence Control System.
Moreover, the McCabe metric (McCabe 1976) is used to finally estmate the cyclomatic
complexity:

V(G)=edges+nodes+2 (1)
The State Chart with most transitions and states is the Sequence Control System. The system
has 43 edges and 23 nodes, thus a McCabe complexity of 22. This is commonly considered as
a complex system but still with reasonable risk. A V(G)-value of more than 50 is considered
a system not testable. This would be the case, if for example the system wasn’t decomposed
into a Supervisory and a Sequence Control System. According to this metric, the more
deliberate behaviors the Supervisor contains, the more imminent becomes a further
decomposition the Supervisory Control System. Since the deliberate behaviors are modelled
using individual State Charts this problem is practically circumvented.

www.intechopen.com

Onboard	Mission	Management	for	a	VTOL	UAV	Using	Sequence	and	Supervisory	Control 309

ground. The Fly Home behavior provides the vehicle with the capability of returning
autonomously to the starting point of a given mission. It implements the replanning process
shown in Figure 5 which is based on the properties of each basic movement primitives of the
reactive layer. The Search and Track behavior can be used to find and track a moving object
on the ground (Figure 6). Once spotted (e.g. using payload directed object detection) it is
desirable to track it. Similar to the Fly Home behavior, it seizes information in the a-priori
mission plan to implement tactical means, avoiding suboptimal search execution and
tracking performance. Further details on the internal ongoings of these behaviors are
presented in (Adolf 2009).

Fig. 5. Planning process of the Fly Home deliberate behavior based on the basic behaviors

Fig. 6. The Search and Track deliberate behavior shown as it finds and track a ground object
with a defined search area

4.5 Abstract System Testing
The overall complexity of the Supervisory and Sequence Control System imposes a
thorough test strategy. Abstract tests relate to Model-based testing and as such assure that
the model is free of principle design mistakes.
In the modelling stage a set of errors can occur. Some relate to potentially isolated or
unreachable states, as well as, missing or erroneous triggers and guards. An even more
fundamental problem is the theoretically innite set of sequences that have to be tested in an
abstract manner. That is, regardless of the meaning and function behind events, states and
transitions, the tests must traverse through the model even if a certain test would make no
sense from a practical point of view.

Fig. 7. Abstract testing strategies applied to the State Chart models

UML state charts represent a constructive model such that tests can make use of its internal
structure, also known as white-box testing. These abstract tests can be divided into three
groups, namely the path coverage, transition coverage and state coverage tests as
highlighted in Figure 7. For each of these groups, a set of event chains is generated and
executed. Once a full coverage of all possible combinations is reached, the tests are
completed. However, there is no dened nal state and states can have loops such that
innitely long test chains for path coverage tests occur. Therefore, a relaxation for the path
coverage criteria is implemented such that loops must be passed exactly once. This is a
strong and feasible criterion (Rumpe 2005). The system with greatest deepness is the
Sequence Control System where at maximum six events yield from the start state to the
deepest level. This implies 346 test sequences for the Sequence Control System.
Moreover, the McCabe metric (McCabe 1976) is used to finally estmate the cyclomatic
complexity:

V(G)=edges+nodes+2 (1)
The State Chart with most transitions and states is the Sequence Control System. The system
has 43 edges and 23 nodes, thus a McCabe complexity of 22. This is commonly considered as
a complex system but still with reasonable risk. A V(G)-value of more than 50 is considered
a system not testable. This would be the case, if for example the system wasn’t decomposed
into a Supervisory and a Sequence Control System. According to this metric, the more
deliberate behaviors the Supervisor contains, the more imminent becomes a further
decomposition the Supervisory Control System. Since the deliberate behaviors are modelled
using individual State Charts this problem is practically circumvented.

www.intechopen.com

Cutting	Edge	Robotics	2010	310

4.6 Plausibility Checks at Runtime
It is a relatively complex decision to determine whether payload directed flight should be
permitted or not. First, compared to behaviors in ”Mission Mode”, every direct command
may not have a termination condition. For example, one instantaneous velocity command
from the operator cannot reach a timely bounded target state. For such cases, a quasi innite
behavior is bounded in execution time, such as the time passed since a velocity command
was last received. Second, it depends on which data is coming on what input channels.
These types of problems are addressed using a static truth table (Figure 8).

Fig. 8. Truth table assessing priority plausibility of payload or operator low-level commands

It checks valid combinations for payload directed flight and manual interruption of missions
by the operator (e.g. joystick or position commands). The table is conict-free, prioritses all
combinations of relevant signals and allows plausibility checks of every incoming signal.
Likewise the command checks for low-level commands, missions dened as sequence of
behavior commands need to be considered as one single complex command. Although it is
hard to reason about the “sense” of a mission plan, it is possible to implement a plausibility
check using a language grammar. This way, a behavior sequence is treated as a
programming language that satises type 2 of the Chomsky hierarchy of languages. It can
be expressed via a context-free language and thus it can be dened in an Extended Backus-
Naur Form (EBNF, ISO-14977 2001). Furthermore, using attribute features (e.g. semantic
checks of a height parameter), the attributed EBNF shown in Figure 8 has been implemented
which fullls the following general requirements:
 There’s a need for a unique identier for each mission by which the ground control

station can recognize that a mission plan has been loaded by the onboard system
successfully.

 Optionally, each mission can contain a coordinate transform header in order to
transform certain behavior parameters from the ground control station’s reference
system into the onboard system’s reference system.

 Enable delay for a mission start, e.g. by waiting on ground for a given period of time.

 Always command a take-off before any other locomotion behavior is performed, to
assure any subsequent behavior command does not move the vehicle while still on
ground.

 Only one mission repetition command is allowed and only at the end of the mission.
 Only at the end of a mission, aborting or pausing the execution of a mission plan.
 A single land behavior command without a consecutive take off is safe only when

commanded at the end of a mission.
In general, EBNF descriptions specify syntax not semantics. Thus, in this notation each
EBNF factor is optionally followed by a semantic action (here: parameters to nonterminals).
If an EBNF expression is expected at the place the sequence stands, then a semantic action
must either be an expression or be omitted. In the rst case, semantic actions are particularly
important tools to check oating point values against their “meaning” (=semantics), e.g.
expected range for degree values. The implemented attributes show the extended
plausibility check capabilities. Checks syntactically hard to perform can be handled. For
example, it checks against an allowed maximum velocity of a movement behavior or
maximum flight height restrictions. Moreover, behavior parameters are validated against a
spatial discrepancy between the end and start position of movement behaviors. A start
position of a behavior must always match the expected end position of a previous behavior.

www.intechopen.com

Onboard	Mission	Management	for	a	VTOL	UAV	Using	Sequence	and	Supervisory	Control 311

4.6 Plausibility Checks at Runtime
It is a relatively complex decision to determine whether payload directed flight should be
permitted or not. First, compared to behaviors in ”Mission Mode”, every direct command
may not have a termination condition. For example, one instantaneous velocity command
from the operator cannot reach a timely bounded target state. For such cases, a quasi innite
behavior is bounded in execution time, such as the time passed since a velocity command
was last received. Second, it depends on which data is coming on what input channels.
These types of problems are addressed using a static truth table (Figure 8).

Fig. 8. Truth table assessing priority plausibility of payload or operator low-level commands

It checks valid combinations for payload directed flight and manual interruption of missions
by the operator (e.g. joystick or position commands). The table is conict-free, prioritses all
combinations of relevant signals and allows plausibility checks of every incoming signal.
Likewise the command checks for low-level commands, missions dened as sequence of
behavior commands need to be considered as one single complex command. Although it is
hard to reason about the “sense” of a mission plan, it is possible to implement a plausibility
check using a language grammar. This way, a behavior sequence is treated as a
programming language that satises type 2 of the Chomsky hierarchy of languages. It can
be expressed via a context-free language and thus it can be dened in an Extended Backus-
Naur Form (EBNF, ISO-14977 2001). Furthermore, using attribute features (e.g. semantic
checks of a height parameter), the attributed EBNF shown in Figure 8 has been implemented
which fullls the following general requirements:
 There’s a need for a unique identier for each mission by which the ground control

station can recognize that a mission plan has been loaded by the onboard system
successfully.

 Optionally, each mission can contain a coordinate transform header in order to
transform certain behavior parameters from the ground control station’s reference
system into the onboard system’s reference system.

 Enable delay for a mission start, e.g. by waiting on ground for a given period of time.

 Always command a take-off before any other locomotion behavior is performed, to
assure any subsequent behavior command does not move the vehicle while still on
ground.

 Only one mission repetition command is allowed and only at the end of the mission.
 Only at the end of a mission, aborting or pausing the execution of a mission plan.
 A single land behavior command without a consecutive take off is safe only when

commanded at the end of a mission.
In general, EBNF descriptions specify syntax not semantics. Thus, in this notation each
EBNF factor is optionally followed by a semantic action (here: parameters to nonterminals).
If an EBNF expression is expected at the place the sequence stands, then a semantic action
must either be an expression or be omitted. In the rst case, semantic actions are particularly
important tools to check oating point values against their “meaning” (=semantics), e.g.
expected range for degree values. The implemented attributes show the extended
plausibility check capabilities. Checks syntactically hard to perform can be handled. For
example, it checks against an allowed maximum velocity of a movement behavior or
maximum flight height restrictions. Moreover, behavior parameters are validated against a
spatial discrepancy between the end and start position of movement behaviors. A start
position of a behavior must always match the expected end position of a previous behavior.

www.intechopen.com

Cutting	Edge	Robotics	2010	312

Fig. 8. Attributed EBNF for plausibility checks of sequence of behavior commands.

5. Integration and Flight Testing

The Mission Management system is integrated onboard the Autonomous Rotorcraft Testbed
for Intelligent System (ARTIS) helicopters (Figure 9).

Fig. 9. The ARTIS helicopter UAVs.

The Mission Manager is integrated onboard the flight control computer as a component
commanding directly and every cycle to the flight controller. The vehicle state estimates (e.g.
position, velocities, acceleration) and further sensor states (e.g. ground distance sensor) are
the main input to the system. Furthermore, the ground control station can send instructions
on different levels of autonomy as described in the previous section.

Fig. 10. Integration scheme of the Mission Manager onboard the ARTIS helicopter UAVs.

Before every ight test, the system is tested using the abstract testing method presented in
the previous section. Once these tests are passed successfully, the integrated mission
management software is tested Hardware-in-the-Loop (HITL) using a set of standard
scenarios. Finally, the Mission Manager is flight tested to verify the generation of expected
State Chart events (e.g. detection whether the vehicle is on ground or not), state transitions
and feasibility of the state abstraction in the design.

Fig. 11. Flight testing onboard the ARTIS UAV (A) using the integrated Supervisory and
Sequence Control System (B).

The example scenario in flight test of Figure 11 comprises an automatic take-off, navigation
to a set of waypoints and an automatic landing. The behavior sequence is generated once
before the test using an automated mission planning system (Figure 12). Once the mission
has been accepted by the EBNF and loaded by the Supervisory Control System, it is
automatically executed by the ARTIS helicopter UAV.

www.intechopen.com

Onboard	Mission	Management	for	a	VTOL	UAV	Using	Sequence	and	Supervisory	Control 313

Fig. 8. Attributed EBNF for plausibility checks of sequence of behavior commands.

5. Integration and Flight Testing

The Mission Management system is integrated onboard the Autonomous Rotorcraft Testbed
for Intelligent System (ARTIS) helicopters (Figure 9).

Fig. 9. The ARTIS helicopter UAVs.

The Mission Manager is integrated onboard the flight control computer as a component
commanding directly and every cycle to the flight controller. The vehicle state estimates (e.g.
position, velocities, acceleration) and further sensor states (e.g. ground distance sensor) are
the main input to the system. Furthermore, the ground control station can send instructions
on different levels of autonomy as described in the previous section.

Fig. 10. Integration scheme of the Mission Manager onboard the ARTIS helicopter UAVs.

Before every ight test, the system is tested using the abstract testing method presented in
the previous section. Once these tests are passed successfully, the integrated mission
management software is tested Hardware-in-the-Loop (HITL) using a set of standard
scenarios. Finally, the Mission Manager is flight tested to verify the generation of expected
State Chart events (e.g. detection whether the vehicle is on ground or not), state transitions
and feasibility of the state abstraction in the design.

Fig. 11. Flight testing onboard the ARTIS UAV (A) using the integrated Supervisory and
Sequence Control System (B).

The example scenario in flight test of Figure 11 comprises an automatic take-off, navigation
to a set of waypoints and an automatic landing. The behavior sequence is generated once
before the test using an automated mission planning system (Figure 12). Once the mission
has been accepted by the EBNF and loaded by the Supervisory Control System, it is
automatically executed by the ARTIS helicopter UAV.

www.intechopen.com

Cutting	Edge	Robotics	2010	314

Fig. 12. Example for an automated planning is used to generate the sequence of behaviors.

The flight test shown in Figure 12 lets the UAV traverse along predefined waypoints, thus
focusing on the waypoint navigation capabilities of the Sequence Control System. High-
level behaviors of the Supervisory Control System were successfully tested as well. The
flight test as shown in Figure 13 addresses the Search and Track behavior. The behavior
successfully recognizes convex cells of a search area such that the vehicle does not exceed
search cell perimeters while tracking. As a result, the Supervisory Control System
autonomously commanded the Sequence Control System using a high-level.

Fig. 13. The Search and Track deliberate behavior shown as it finds and track a ground
object with a defined search area

The integrated mission management components system, the Supervisory and Sequence
Control System, were first flight tested in September 2006 and since then continuously
extended by new features. In particular the implementation of new high-level behaviors is
an ongoing activity. While the control architecture remained untouched since its first
deployment, the basic movement capabilities are also continuously extended in a “plug-

and-fly” fashion. This way, the architecture and the design consideration of both high-level
control components showed to be a feasible solution to the software intensive task of
onboard mission management.

6. Summary

This chapter present a 3T architecture combined with a behavior-based approach to
integrate different levels of system autonomy onboard of UAVs. The presented approach
comprises two State Chart modelled components, the Sequence and a Supervisory Control
System, both implementing the sequencing layer of the 3T architecture. The Sequence
Control System contains the reactive layer’s movement primitives and the Supervisory
Control System monitors and manages deliberate behaviors. Both systems are tested in an
abstract way and flight-tested successfully.
By design both system components keep the operator in the loop as long as a data link is
available. He has the possibility to intercept any running behavior by different kinds of
commands, ranging from direct velocity commands (e.g. for remote joystick control), direct
position commands, a single behavior (e.g. land) or a complex behavior command sequence.
For each level of system autonomy, the system implements plausibility checks performed at
runtime. In particular the attributed EBNF grammar enhances operational safety as it rejects
a malformed behavior sequences harming the vehicle or exceeding allowed mission
parameters (e.g. the maximum height).
As a result, the ARTIS UAV test platforms are controlled by a robust system that can handle
unforeseen events deterministically. New behaviors, both deliberate and reactive, are added
to the behavior library such that functional extensibility is facilitated.
Future work will address control architecture extensions as soon as the centralized
sequencing layer needs to implement concurrency (e.g. multiple deliberate behaviors need
to be active). Moreover, the current system does not allow concurrency between all
behaviors and modules in the system. Moreover, a stronger formalism than State Chart
models could address limitations in support for temporal design aspects.

7. References

Adolf, F. et.al. (2009). Behavior-based High-Level Control of a VTOL UAV, Proceedings of
AIAA Infotech@Aerospace Conference, Seattle, WA, April 2009

Agre, P. et.al. (1995). Pengi : An Implementation of a theory of activity, Computatioanl
Intelligence: Collected Readings, pages 635-644, American Association for Artificial
Intelligence, Menlo Park, CA, USA, 1995, ISBN 0-262-62101-0

Bonasso, R. et.al. (1997). Experiences with an Architecture for Intelligent, Reactive Agents,
Journal of Experimental and Theoretical Artificial Intelligence, Vol. 9, No. 2/3, pages
237-256, April 1997

Brooks, R. (1990). A robust layered control system for a mobile robot, Readings in uncertain
reasoning, pages 204-213, Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 1990, ISBN 1-55860-125-2

Egerstedt, M. et.al. (1999). A Hybrid Control Approach to Action Coordination for Mobile
Robots, Proceedings of IFAC 99 14th World Congress, Bejing, China, July 1999

www.intechopen.com

Onboard	Mission	Management	for	a	VTOL	UAV	Using	Sequence	and	Supervisory	Control 315

Fig. 12. Example for an automated planning is used to generate the sequence of behaviors.

The flight test shown in Figure 12 lets the UAV traverse along predefined waypoints, thus
focusing on the waypoint navigation capabilities of the Sequence Control System. High-
level behaviors of the Supervisory Control System were successfully tested as well. The
flight test as shown in Figure 13 addresses the Search and Track behavior. The behavior
successfully recognizes convex cells of a search area such that the vehicle does not exceed
search cell perimeters while tracking. As a result, the Supervisory Control System
autonomously commanded the Sequence Control System using a high-level.

Fig. 13. The Search and Track deliberate behavior shown as it finds and track a ground
object with a defined search area

The integrated mission management components system, the Supervisory and Sequence
Control System, were first flight tested in September 2006 and since then continuously
extended by new features. In particular the implementation of new high-level behaviors is
an ongoing activity. While the control architecture remained untouched since its first
deployment, the basic movement capabilities are also continuously extended in a “plug-

and-fly” fashion. This way, the architecture and the design consideration of both high-level
control components showed to be a feasible solution to the software intensive task of
onboard mission management.

6. Summary

This chapter present a 3T architecture combined with a behavior-based approach to
integrate different levels of system autonomy onboard of UAVs. The presented approach
comprises two State Chart modelled components, the Sequence and a Supervisory Control
System, both implementing the sequencing layer of the 3T architecture. The Sequence
Control System contains the reactive layer’s movement primitives and the Supervisory
Control System monitors and manages deliberate behaviors. Both systems are tested in an
abstract way and flight-tested successfully.
By design both system components keep the operator in the loop as long as a data link is
available. He has the possibility to intercept any running behavior by different kinds of
commands, ranging from direct velocity commands (e.g. for remote joystick control), direct
position commands, a single behavior (e.g. land) or a complex behavior command sequence.
For each level of system autonomy, the system implements plausibility checks performed at
runtime. In particular the attributed EBNF grammar enhances operational safety as it rejects
a malformed behavior sequences harming the vehicle or exceeding allowed mission
parameters (e.g. the maximum height).
As a result, the ARTIS UAV test platforms are controlled by a robust system that can handle
unforeseen events deterministically. New behaviors, both deliberate and reactive, are added
to the behavior library such that functional extensibility is facilitated.
Future work will address control architecture extensions as soon as the centralized
sequencing layer needs to implement concurrency (e.g. multiple deliberate behaviors need
to be active). Moreover, the current system does not allow concurrency between all
behaviors and modules in the system. Moreover, a stronger formalism than State Chart
models could address limitations in support for temporal design aspects.

7. References

Adolf, F. et.al. (2009). Behavior-based High-Level Control of a VTOL UAV, Proceedings of
AIAA Infotech@Aerospace Conference, Seattle, WA, April 2009

Agre, P. et.al. (1995). Pengi : An Implementation of a theory of activity, Computatioanl
Intelligence: Collected Readings, pages 635-644, American Association for Artificial
Intelligence, Menlo Park, CA, USA, 1995, ISBN 0-262-62101-0

Bonasso, R. et.al. (1997). Experiences with an Architecture for Intelligent, Reactive Agents,
Journal of Experimental and Theoretical Artificial Intelligence, Vol. 9, No. 2/3, pages
237-256, April 1997

Brooks, R. (1990). A robust layered control system for a mobile robot, Readings in uncertain
reasoning, pages 204-213, Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 1990, ISBN 1-55860-125-2

Egerstedt, M. et.al. (1999). A Hybrid Control Approach to Action Coordination for Mobile
Robots, Proceedings of IFAC 99 14th World Congress, Bejing, China, July 1999

www.intechopen.com

Cutting	Edge	Robotics	2010	316

Freed, M. et.al. (2005). An Architecture for Intelligent Management of Aerial Observation
Missions, Proceedings of AIAA Infotech@Aerospace Conference, Arlington, VA,
September 2005

Hill, R. et.al. (1997). Intelligent agents for the synthetic battlefield: A company of rotary wing
aircraft, The Ninth Innovative Applications of Artificial Intelligence Conference on
Artificial Intelligence (IAAI-97), Providence, Rhode Island, July 1997

ISO-14977 (2001). Information Technology ó Syntactic Metalanguage ó Extended BNF,
International Organization for Standardization, ISO/IEC 14977, 2001

Laird, J. et.al. (1987). SOAR: An Architecture for General Intelligence, Journal of Artificial
Intelligence, Vol. 33, No. 1, pages 1-64, 1987

Makovski, P. et.al. (2004). Survey on Architecures and Frameworks for Autonomous Robots,
November 2004

McCabe, T. (1976). A complexity measure, IEEE Transactions On Software Engineering, Vol.
Se-2, No.4, December 1976

Musliner, D. et.al. (1995). The Challenges of Real-Time AI, IEEE Computer, Vol 28, No.1,
January 1995

Pirjanian, P. (1999). The Notion of Optimality in Behavior-Based Robotics, Journal of Robotics
and Autonomous Systems, 1999

Putzer, H. et.al. (2003). COSA A generic cognitive system architecture based on a cognitive model
of human behavior, Journal of Cognition, Technology and Work, Vol. 5, 2003

Rumpe, B. (2005). Agile Modellierung mit UML, Xpert.press, Springer Verlag, 2005
Taol, D. et.al. (1996). Subsumption Architecture for the Control of Robots, IMC-13, Limerick,

1996
Weiss, L.-G. (2005). Intelligent Collaborative Control For UAVs, Proceedings of AIAA

Infotech@Aerospace Conference, Arlington, VA, September 2005

www.intechopen.com

Cutting Edge Robotics 2010

Edited by Vedran Kordic

ISBN 978-953-307-062-9

Hard cover, 440 pages

Publisher InTech

Published online 01, September, 2010

Published in print edition September, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Robotics research, especially mobile robotics is a young field. Its roots include many engineering and scientific

disciplines from mechanical, electrical and electronics engineering to computer, cognitive and social sciences.

Each of this parent fields is exciting in its own way and has its share in different books. This book is a result of

inspirations and contributions from many researchers worldwide. It presents a collection of a wide range of

research results in robotics scientific community. We hope you will enjoy reading the book as much as we have

enjoyed bringing it together for you.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Florian Adolf and Franz Andert (2010). Onboard Mission Management for a VTOL UAV Using Sequence and

Supervisory Control, Cutting Edge Robotics 2010, Vedran Kordic (Ed.), ISBN: 978-953-307-062-9, InTech,

Available from: http://www.intechopen.com/books/cutting-edge-robotics-2010/onboard-mission-management-

for-a-vtol-uav-using-sequence-and-supervisory-control

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

