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1.	Introduction 
 

Haptic feedback offers the potential to increase the quality and capability of human-machine 
interactions as well as the ability to skillfully manipulate objects by exploiting the sense of 
touch (Lin & Salisbury, 2004). Previous studies on haptic feedback systems typically dealt 
with virtual reality (VR)-based simulations, and telemanipulation systems. VR-based 
simulation systems used haptic information for various applications such as gaming (Morris, 
2004), surgical simulations (Basdogan et al., 2004), or molecular simulations (Ferreira, 2006) 
in order to provide realistic virtual experiences along with sound and graphic rendering. In 
telemanipulation, haptic feedback has been studied in the fields of robotic guidance and 
obstacle avoidance (Hassanzadeh et al., 2005), robotic surgery (Mayer et al., 2007; Wagner et 
al., 2007) and micro/nano manipulation (Sitti & Hashimoto, 2003, Ammi et al., 2006). 
According to these studies, the feedback of haptic information to an operator can improve 
performance and provide telepresence. For example, in nano- or bio-manipulation 
applications, where the operator manipulates a micro-scale object with limited two-
dimensional vision feedback through a microscope, haptic assistance can be used to provide 
the depth information, generate virtual fixtures or guides and thus improve the operator 
manipulation final quality (e.g., operation time and efficiency). 
The goal of telemanipulation is to create a human operator interaction with a remote 
environment as closely as possible. Such a goal can be realized by (i) obtaining the available 
information of the slave site, such as the geometry, kinematic information, and material 
properties; (ii) applying this information to a user with high-fidelity master devices; and (iii) 
efficiently conveying the user response to the slave environment through actuating systems. 
Although many studies on the technical issues encountered in telemanipulation have been 
carried out, sensing the force information and its reflection to a user still constitutes a 
challenging issue because of problems associated with sensor design and force rendering. 
Sensing the force information of a slave environment is a prerequisite in order to display a 
user force feedback during manipulation tasks. For example, the realization of a force 
feedback in telemanipulation has mainly been done thus far by integrating force sensors into 
a slave site to measure reaction forces between a slave robot and the environment. The  
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Fig. 1. Telemanipulation with vision-based haptic feedback 
 
measured force signals are then filtered to guarantee the stability of the haptic device and 
offer an improved quality of the force feedback. The force sensor, however, has a low signal-
to-noise ratio (SNR) for force feedback and can be damaged through physical contact with 
the environment or by exposure to biological and chemical materials. Although the use of a 
strain-gauge sensor or a commercial six-axes force/torque sensor in teleoperated robotic 
surgery has been examined (Mayer et al., 2007; Wagner et al., 2007), current commercial 
surgery robots hardly provide an adequate haptic feedback due to safety and effectiveness 
issues, partially associated with the reliability of the force sensor in a noisy environment. 
Very-small-scale force sensing for micromanipulation is more difficult because of the design 
of small force sensors that needs to meet challenging requirements for such applications, 
including micro-sensing for multiple degrees of freedom (DOF) with high resolution and 
accuracy while maintaining a high SNR. In addition, sufficient reliability and repeatability 
of the force sensor must be preserved. In particular, micro-scale measurements for 
biomanipulation are subject to severe disturbances due to the liquid surface tension (e.g., 
when cells are in a medium) and adhesion forces (Lu et al., 2006; Gauthier & Nourine, 2007). 
Therefore, new methods capable of avoiding the use of the force sensors have recently 
become very prevalent. 
This chapter presents a new method for rendering the interaction forces of a slave 
environment based on visual information rather than on direct force measurements using a 
force sensor (Fig. 1). The visual information measured from optical devices is transformed 
into haptic information by modeling the slave environment. The interaction forces are 
rendered from this environment using a mechanical model representing the relationship 
between the object deformation and the applied forces. Therefore, it is not necessary to use 
force sensors. Originally, the term “haptic rendering” was defined as the process of 
computing and generating forces in response to a user interaction with virtual objects 
(Salisbury et al., 1995), including collision detection, force response, and control algorithms 
(Salisbury et al., 2004). The proposed algorithm also incorporates these components in order 
to compute and generate forces due to the user interaction with the visually modeled slave 
environment. 
The interaction force prediction algorithm is investigated using image processing and 
physically-based modeling techniques. The geometry (boundary) information of a 
deformable object is obtained from images of the slave site in pre-process, and the kinematic 
information of a slave tool tip can be obtained using a fast image processing algorithm for 
the input of the physically-based model to estimate the interaction forces. In this Chapter, 
the boundary element method (BEM) is used as a physically-based modeling technique for 

 

the modeling while a priori knowledge of the material properties is assumed. During the 
interactions, the boundary conditions are updated using a real-time motion analysis of the 
slave environment. The interaction forces are then calculated based on the model, and are 
then conveyed to the user through a haptic device. The proposed algorithm only requires 
the material properties and the object edge information. Thus, this algorithm is robust to 
topological changes of the model network. In addition, measuring the deformation of an 
entire object body and applying it to the model as nodal displacements can be a very time-
consuming work. Therefore the position update of a slave robot (tool tip) is used to recover 
the forces, similarly to the haptic interaction point (HIP) in VR applications (Massie & 
Salisbury, 1994). Moreover, the proposed system addresses the force sensing issues in both 
micro- and macro-scales so that a very small- or very large-scale slave environment can be 
rendered using the proposed algorithm. 
This chapter is organized as follows: Section 2 presents the previous work related to vision-
based force estimation methods. Section 3 provides an overview of the proposed haptic 
rendering algorithm, which is based on image processing and physically-based modeling 
techniques. In order to demonstrate the effectiveness of the proposed method, macro- and 
micro-scale telemanipulation systems were developed. In Section 4, the experimental results 
of the developed telemanipulation systems are presented. Finally, conclusions and 
suggestions with regard to future work are given in Section 5. 

 
2. Previous Work 
 

A large number of computer vision and image processing techniques have been investigated 
with regard to the object recognition and tracking (Ogawa et al., 2005), the characterization 
of material properties (Tsap et al., 2000; Liu et al., 2007a), the collision detection (Wang et al., 
2007), and the modeling of deformable objects (Metaxas & Kakadiaris, 2002). In this context, 
the force estimation from visual information has also received much attention. Forces are 
usually computed based on the geometric information of an object (or a manipulator) for the 
known input displacements, for which the measured geometrical information is applied to a 
force estimation algorithm. For instance, Wang et al. (2001) computed the deformation 
gradients of elastic objects from images and estimated the external forces using the stress-
strain relationships. Luo and Nelson (2001) presented a method fusing force and vision 
feedback for a deformable object manipulation, in which the measured deformation was 
applied to a finite element (FE) model to obtain the force estimates. Greminger and Nelson 
(2004) showed a force measurement through the boundary displacements of elastic objects 
using a Dirichlet-to-Neumann map. Nelson et al. (2005) measured the applied forces for 
biological cells with a point-load model for cell deformation. DiMaio and Salcudean (2003) 
measured the tissue phantom deformation to estimate the applied force distribution during 
the insertion of a needle. Anis et al. (2006) used the force-displacement relationship of a 
micro-gripper in a microassembly process. Liu et al. (2007b) measured the contact forces of a 
biological single-cell using the deflection of a polydimethylsiloxane (PDMS) post in a cell 
holding device. 
A few researchers have studied the real-time force estimation algorithms for haptic 
rendering based on visual information. Owaki et al. (1999) introduced a concept in which 
the visual data of real objects were used as haptic data to simulate the virtual touching of an 
object, but not for telemanipulation tasks. They used a high-speed active-vision system 
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(Salisbury et al., 2004). The proposed algorithm also incorporates these components in order 
to compute and generate forces due to the user interaction with the visually modeled slave 
environment. 
The interaction force prediction algorithm is investigated using image processing and 
physically-based modeling techniques. The geometry (boundary) information of a 
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the input of the physically-based model to estimate the interaction forces. In this Chapter, 
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then conveyed to the user through a haptic device. The proposed algorithm only requires 
the material properties and the object edge information. Thus, this algorithm is robust to 
topological changes of the model network. In addition, measuring the deformation of an 
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allowing to obtain visual data at 200 Hz. Ammi et al. (2006) used microscopic images to 
provide haptic feedback in a cell injection system. A cell nonlinear mass-spring model was 
used to compute the interaction forces for haptic rendering. However, mass-spring models 
offer limited accuracy (Kerdok et al., 2003). Other significant disadvantages of their method 
include its weak connection to biomechanics. For example, there was no mechanically 
relevant relationship between the model parameters and the object material properties. 
Moreover, the parameters were calculated from off-line finite element method (FEM) 
simulations; this required extra FE modeling efforts and the results were influenced by the 
network topology. Kennedy and Desai (2005) proposed a vision-based haptic feedback 
system in the case of robot-assisted surgery. A rubber membrane was modeled using a FE 
model, and a grid located on the rubber membrane was visually tracked in order to measure 
its displacement. The FE model then reflected the interaction forces using the displacement 
values as boundary conditions. With this method, however, it was necessary to stamp a grid 
pattern on the object to generate the internal meshes and track each node for the FE model, 
which made this method inconvenient and impractical for biological- and micro-scale 
objects. In addition, real-time solution of FEM is usually not feasible (Delingette, 1998). 
In conclusion, the mass-spring system and FEM model in the aforementioned studies 
present severe shortcomings, often requiring additional efforts. FEM models were not 
efficient enough to be used in real-time applications. Finally, in many of the previous 
systems, the FEM required a controlled slave environment to model the membrane. The 
mass-spring model was usually non-realistic and highly-sensitive to the tuning of the model, 
such as in the spring constant of the mesh, through additional experiments. To circumvent 
the issues related to the use of FEM and mass-spring models, the present paper uses BEM as 
an alternative approach to estimate the forces required for the haptic feedback. BEM is a 
numerical solution technique to solve the differential equations representing an object 
model that computes the unknowns on the model boundary instead of on its entire body. 
The proposed method uses the object edge information and known material properties, 
which make it highly adaptive to the network topology changes by reducing the amount of 
additional effort required in previous systems. 

 
3. Vision-Based Haptic Interaction Method 
 

3.1 Overview 
Fig. 2 represents the coordinates of the developed system. A master interface has a master 
space with frame Φ in which the position of the haptic stylus is given by the three-
dimensional (3D) vector Φp. The physical interactions between a manipulator and a 
deformable object are introduced in the slave space φ. The shape of an object can be 
expressed by φq and the position of the manipulator φp is related to Φp by the transform Tp. 
The interactions in the slave space are mapped to the image space I to measure the position 
φp and φq and to estimate the interaction force φF=f(φq, φp), where f(·) represents the 
continuum mechanics method. The interaction force φF is then transformed into ΦF = TF· φF 
using the transform TF. The transforms Tp and TF contain scaling factors between the master 
and slave spaces. If a position scaling factor in Tp is set to scale down (or up), the forces are 
scaled up (or down) by a force scaling factor in TF. 
 

 

 
Fig. 2. Coordinate frames of the telemanipulation system 
 
The algorithm consists of two parts (Fig. 3): the construction of a deformable object model 
(preprocess) and the interaction force update for each frame (run-time process). In the 
preprocess phase, the edge information of the object is obtained using image processing 
techniques, and a boundary mesh is constructed based on the edge information. The 
boundary element (BE) model is then created with the object mesh and known material 
properties. Using this model, the system of equations is built and pre-computed; it is used 
for a fast update of the system matrix in the run-time process. 
In the run-time phase, collision detection and force computations are performed at a rate of 
1 kHz. When a user interacts with a deformable object, the displacement at the contact point 
is applied to the model as a boundary condition. The boundary contact force is then 
computed using the BEM. If the displacement magnitude or the contact point changes, new 
force values can be obtained by updating the boundary conditions using real-time image 
processing and by applying them to the pre-computed system matrix in the preprocess 
phase. 
 

 
Fig. 3. The force prediction algorithm pipeline 
 
The key parts of the algorithm consist of the geometry extraction from images, the object 
modeling and the real-time computation of the interaction forces. The remainder of this 
Section concretely explains each part of the algorithm. 

 
3.2 Geometry Extraction 
Fast and accurate motion tracking and edge detection techniques are important for 
modeling a deformable object. The edge (Iq) of the object along with the tool tip position (Ip) 
of a slave-manipulator is extracted and tracked using the following methods. 
A template matching is used to track the tool tip position (Ip), which is a process that 
determines the location of a template by measuring the degree of similarity between an 
image and the template. Although there are several methods that can measure the degree of 
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similarity, such as the summation of the squared difference (SSD), a normalized cross-
correlation coefficient was implemented to reduce the degree of sensitivity to contrast 
changes in the template and in the video image (Aggarwal et al., 1981). The correlation 
between the pixel of the template (w × h) and every pixel in the entire image is given by 
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pixels, respectively. I ( x, y)I I  and T  are the average pixel value in the template and the 
average pixel value in the image under the template window, respectively. In order to 
reduce the computational load of the pixel-by-pixel operation (Equation 1), a moving 
region-of-interest (ROI) is adopted. As the movement of the tool tip is very small in the 
sequential frames, the ROI is determined around the identified position via a template 
matching. The template matching is then performed in the ROI to obtain the new position.  
To represent the geometry (φq) of a deformable object, the two-dimensional object boundary 
(Iq) is extracted using the active contour model (snake) developed by Kass et al. (1988). The 
contour with a set of control points is initially manually placed near the edge of interest. The 
energy function defined surrounding each control point is then computed, and the contour 
is drawn to the edge of the image where the energy has a local minimum. In this paper, a 
fast greedy algorithm (Williams & Shah, 1992) for energy minimization is used and the 
energy function Esnake is defined by 
 

Esnake = ∫(α(s)·Econt + β(s)·Ecurv + γ(s)·Eimage)ds                                      (2) 
 
Here, s is the arc-length along the snakes contour taken as a parameter. The continuity 
energy Econt minimizes the distance between control points and prevents all control points 
from moving toward the previous control point. Ecurv represents the curvature energy and it 
is responsible for the curvature of the contour corner. The image energy Eimage indicates the 
normalized edge strength. The values of α, β and γ determine the factors of each energy 
term. The edge of the object is finally represented by the positions of the control points 
which are used to mesh the boundary of the object for the BE model. 

 
3.3 Continuum Mechanics Model 
For realistic and plausible force estimation, the continuum mechanics modeling of a 
deformable object has been widely studied and developed in haptic applications (Meier et 
al., 2005). In continuum mechanics, differential equations for the stress- or strain-
equilibrium have to be solved and numerical methods such as FEM and BEM are usually 
used with a discretization of the object into a number of elements. 

 

The BEM directly uses mechanical parameters and handles various interactions between the 
tools and the objects. Due to its physically-based nature and computational advantages over 
the FEM, it has been used in computer animation and haptic applications. James and Pai 
(2003) successfully applied BEM to the simulation of a deformable object with haptic 
feedback. The reaction force and deformation were computed based on pre-computed 
reference boundary value problems known as Green’s functions (GFs) and a capacitance 
matrix algorithm (CMA). 
In this work, the BE model of a deformable object was built using the extracted object edge 
information using the control points of an active contour model and the related material 
properties (Young’s modulus E and Poisson’s ratio ν). The boundary of the object was 
discretized into N elements. The points representing the unknown values, tractions (forces 
per unit area) and displacements are defined as nodes. In the present study, we have 
selected constant elements for simplicity, namely the nodes are assumed to be in the middle 
of each element and the unknowns have a constant value over each element. The resulting 
system of equations is given by Equation 3 (Kim et al., 2009). 
 

HP = GV                                                                       (3) 
 
Here, the H(E, ν, q) and G(E, ν, q) matrices are 2N × 2N dense matrices in the case of 2D 
problems. P and V are the displacement and traction vectors, respectively. The boundary 
conditions, displacements or tractions, are applied at each node to solve these algebraic 
equations. When the displacement value is given on a node, the traction value can be 
obtained, and vice versa. Equation 3 can be rearranged as 
 

-1 -   AY AY 0 Y A ( AY) ,                                                    (4) 
 
where Y  is the unknown vector consisting of unknown boundary nodal values, and Y  
represents the known boundary conditions. A  and A  consist of the columns of the H and 
G matrices according to the indices of Y  and Y , respectively. Y  can be obtained by solving 
Equation 4. 
When an object is deformed, the boundary conditions at the collision nodes change. 
Therefore, Equations 3 and 4 must be rewritten to take the new boundary conditions into 
account and they must be solved in real-time. 

 
3.4 Real-Time Force Computation 
For a real-time and realistic haptic interaction, it is necessary to provide a haptic feedback 
with updating rates greater than 500 Hz (Chen & Marcus, 1998). In other words, the 
interaction forces must be computed within 2 msec. In order to solve the linear matrix 
system of Equation 4 in real-time, a CMA is used (James & Pai, 2003). If the S boundary 
conditions change for the linear elastic model, the A matrix for a new set of boundary 
conditions can be related to the pre-computed A0 matrix by swapping simple S block 
columns. Using the Sherman-Morrison-Woodbury formula, the relationship between A and 
A0 can be obtained as follows: 
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pixels, respectively. I ( x, y)I I  and T  are the average pixel value in the template and the 
average pixel value in the image under the template window, respectively. In order to 
reduce the computational load of the pixel-by-pixel operation (Equation 1), a moving 
region-of-interest (ROI) is adopted. As the movement of the tool tip is very small in the 
sequential frames, the ROI is determined around the identified position via a template 
matching. The template matching is then performed in the ROI to obtain the new position.  
To represent the geometry (φq) of a deformable object, the two-dimensional object boundary 
(Iq) is extracted using the active contour model (snake) developed by Kass et al. (1988). The 
contour with a set of control points is initially manually placed near the edge of interest. The 
energy function defined surrounding each control point is then computed, and the contour 
is drawn to the edge of the image where the energy has a local minimum. In this paper, a 
fast greedy algorithm (Williams & Shah, 1992) for energy minimization is used and the 
energy function Esnake is defined by 
 

Esnake = ∫(α(s)·Econt + β(s)·Ecurv + γ(s)·Eimage)ds                                      (2) 
 
Here, s is the arc-length along the snakes contour taken as a parameter. The continuity 
energy Econt minimizes the distance between control points and prevents all control points 
from moving toward the previous control point. Ecurv represents the curvature energy and it 
is responsible for the curvature of the contour corner. The image energy Eimage indicates the 
normalized edge strength. The values of α, β and γ determine the factors of each energy 
term. The edge of the object is finally represented by the positions of the control points 
which are used to mesh the boundary of the object for the BE model. 

 
3.3 Continuum Mechanics Model 
For realistic and plausible force estimation, the continuum mechanics modeling of a 
deformable object has been widely studied and developed in haptic applications (Meier et 
al., 2005). In continuum mechanics, differential equations for the stress- or strain-
equilibrium have to be solved and numerical methods such as FEM and BEM are usually 
used with a discretization of the object into a number of elements. 

 

The BEM directly uses mechanical parameters and handles various interactions between the 
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HP = GV                                                                       (3) 
 
Here, the H(E, ν, q) and G(E, ν, q) matrices are 2N × 2N dense matrices in the case of 2D 
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-1 -   AY AY 0 Y A ( AY) ,                                                    (4) 
 
where Y  is the unknown vector consisting of unknown boundary nodal values, and Y  
represents the known boundary conditions. A  and A  consist of the columns of the H and 
G matrices according to the indices of Y  and Y , respectively. Y  can be obtained by solving 
Equation 4. 
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conditions change for the linear elastic model, the A matrix for a new set of boundary 
conditions can be related to the pre-computed A0 matrix by swapping simple S block 
columns. Using the Sherman-Morrison-Woodbury formula, the relationship between A and 
A0 can be obtained as follows: 
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Here, IS is an 2N × 2S submatrix of the identity matrix, C is known as the capacitance matrix 
(2S × 2S) and Y0 is computed using Equation 4. The GFs Ξ is computed for a predefined set 
of boundary conditions in the preprocess phase. Equation 6, known as the capacitance 
matrix formulae, can then be implemented to reduce the amount of re-computation. The 
solution Y for the tractions and displacements over the entire boundary can be obtained by 
computing the inverse of the smaller capacitance matrix. For example, in the case of a point 
contact, S =1, only a 2 × 2 matrix inversion is required. 
It is not necessary to compute the global deformation because the visual feedback is 
provided through real-time video images rather than using computer-generated graphic 
images. Given the nonzero displacement boundary conditions at the contact S nodes, the 
resulting contact force can be computed by 
 

T -1 T -1
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Here, αE is the effective area. It consists of the nodal area and a scaling factor for different-
scale manipulation tasks in order to magnify (or reduce) the contact force while providing a 
haptic feedback to the user. 
Although the contact forces are rapidly computed using locally updated boundary 
conditions, the forces are obtained at a visual update rate (of approximately 60 Hz) because 
of the boundary conditions that are updated from the images. It is insufficient to achieve a 
good fidelity haptic feedback. Therefore, a force interpolation method (Zhuang & Canny, 
2000) is used to derive the forces at high rates (1 kHz). 

 
3.5 Collision Detection 
The collision detection is achieved utilizing hierarchical bounding boxes and a 
neighborhood watch algorithm (Ho et al., 1999). The BE model is hierarchically represented 
as oriented bounding box trees and stored in a preprocess phase. If a line segment between 
the previous and current tool tip positions is inside the bounding box, potential collisions 
are sequentially checked along the tree. When the last bounding box for the line element 
collides with the line segment, the ideal haptic interface point is constrained at the collision 
node. The distance between the tool tip and the collision node is used as the displacement 
boundary condition of the node. During interactions, the collision nodes are rapidly 

 

updated using a neighborhood watch algorithm, which is based on a predefined linkage 
between the nodes. 

 
4. Case Studies and Results 
 

The developed algorithm was evaluated for the manipulation of elastic materials with 
different scales. Two experiments were conducted to demonstrate the effectiveness of the 
algorithm in macro- and micro-telemanipulation tasks. In both systems, the deformation of 
the objects and the motion of a slave robot were captured by a CCD camera (SVS340MUCP, 
SVS-Vistek, Seefeld, Germany with 640 × 480 pixels resolution and maximum of 250 fps) 
and the images were transmitted to a computer (Pentium-IV 2.40 GHz). The 2D geometry 
information can be known through image processing techniques using OpenCV. A 
commercial haptic device (SensAble Technologies, PHANToM OmniTM, USA) was used for 
force feedback and a priori knowledge of the material properties was obtained through the 
experiment and from the literature. The behavior of the model during manipulation was 
compared with that from a real deformable object. The overall system block diagram is 
shown in Fig. 4. 
 

 
Fig. 4. Overall system block diagram 

 
4.1 Experiment 1: Macro-Scale Telemanipulation System 
The macro-scale manipulation system consists of an inanimate deformable object and a 
planar manipulator with an indenter tip as a slave robot. Fig. 5 shows the setup for the 
experimental platform. A 3 DOF planar manipulator (500 mm × 500 mm) performs 
indentation tasks on a rectangular-shaped object made from silicone gel (88 mm × 88 mm × 
9 mm, GE, TSE3062, USA). The Young’s modulus of the silicone block is 127 kPa (Kim et al., 
2008; Kim et al., 2009). The images obtained using a CCD camera have a size of 640×480 
pixels and a resolution of 0.35 mm/pixel. In addition, the indentation force is measured 
using a one-axis force sensor (Senstech, SUMMA-5K, Korea) with a resolution of 50 mN. The 
force sensor is used to validate the estimated force from visual information. 
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Fig. 5. Experimental setup of slave part in macro-scale telemanipulation system 
 
The geometry of the rectangular-shaped block was represented using 60 control points 
along the active contour. Hence, the BE model consisted of 60 line elements with 60 nodes. 
As one side of the block was fixed to the platform, zero displacement boundary conditions 
were applied on this side. When the indenter deformed the block, the resulting contact force 
was computed based on the proposed method. Simultaneously, the actual contact force 
along the indenter insertion axis was measured by the force sensor. 
The model prediction was compared with the block response. Fig. 6 shows a comparison 
between the actual block deformation and the global deformation of the BE model according 
to dissimilar indentation locations. The dotted line represents the nodes of the BE model; it 
is determined as a result of the input displacement at the contact point. Each nodal 
displacement of the BE model is in good agreement with the deformation of the object. The 
interaction forces at the contact point are shown in Fig. 7. The results show a reasonable 
match between the actual and estimated force values. While the local strain was raised, the 
difference between the values was increased due to the linear approximation of the silicone 
block nonlinearities. A measure of bias (0.0576 N) was also observed due to errors coming 
from the object buckling along the perpendicular direction to the plane and from 
measurement errors occurring in the image analysis (e.g., edge detection noise, minor 
illumination changes). The bias could be overcome using a scaling factor in the case of the 
micromanipulation system, where the scaled-up reaction force must be reflected to the user.  

 
Fig. 6. Deformation of silicone block and BE model (dotted line) 

 

  
                                          (a)                                                                              (b) 
Fig. 7. (a) Actual surface forces and nodal forces from BEM, and (b) errors along the 
indentation axis 

 
4.2 Experiment 2: Cellular Manipulation System 
In this experiment, an application to cellular manipulation is presented. Cellular 
manipulations such as a microinjection are now increasingly used in transgenics and in 
biomedical and pharmaceutical research. Some examples include the creation of transgenic 
mice by injecting cloned deoxyribonucleic acid (DNA) into fertilized mouse eggs and 
intracytoplasmic sperm injections (ICSI) with a micropipette. However, most cellular 
manipulation systems have primarily focused to date on visual information in conjunction 
with a dial-based console system. The operator needs extensive training to perform these 
tasks, and even an experienced operator can have low success rates and a poor 
reproducibility due to the nature of the tasks (Kallio & Kuncova, 2003; Sun & Nelson, 2002). 
 

 
Fig. 8. Developed cellular manipulation system 
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The developed cell injection system is shown in Fig. 8. It consists of an inverted microscope 
(Motic, AE31, China) and two 3 DOF micromanipulators (Sutter, MP225, USA) to guide the 
cell holding and injection units. An injection micropipette (Humagen, MIC-9μm-45, USA) is 
connected to a micromanipulator, whereas a glass capillary with an air pump (Eppendorf, 
CellTram Air, Germany) is connected to another micromanipulator to hold the cell. Each 
micromanipulator has a resolution of 0.0625 μm along each axis and a travel distance of 25 
mm. Images were captured at a 40× magnification. The obtained images have a size of 640 × 
480 pixels and a resolution of 2 μm/pixel. 
Zebrafish embryos were used as a deformable object in the experiments. Zebrafish have 
been widely used as a model in developmental genetic and embryological research due to 
their similarity to the human gene structure (Stainer, 2001). The embryos are considered as a 
linear elastic material for research in the small deformation linear theory. It has been 
reported that the Young’s modulus of the chorion of the zebrafish embryo is approximately 
1.51 MPa with a standard deviation of 0.07 MPa and that the Poisson’s ratio is equal to 0.5 
(Kim et al., 2006). These properties were used in the BE model of the cell. 
Conventionally, the cell injection procedure involves (i) guiding the injection pipette, (ii) 
puncturing the membrane, (iii) and depositing the materials. In this work, the task was to 
puncture the chorion of a zebrafish embryo and to guide the injection pipette to a targeted 
position. The location of the targeted position was randomly chosen and changed for every 
test. 

 
Fig. 9. Edge detection of a zebrafish embryo and BE model with 10 elements. 
 
Fig. 9 shows the edge detection of the zebrafish embryo and the BE model with line 
elements. The nodes attached to the holding pipette (a glass capillary) have zero 
displacement boundary conditions.. 
Unlike macro-scale experiments for the silicone block, and as a result of excessive forces, the 
cell membrane was punctured in this case using an injection pipette. Therefore, it was 
necessary to provide the user with a puncturing cue. As the BEM cannot compute the 
membrane puncturing, the overshoot of the injection pipette after the breaking of the 
membrane was measured. Published work revealed that the penetration force significantly 
decreases after puncturing (Kim et al., 2006). Accordingly, when the position overshoot 
occurred, the magnitude of the reaction force was set to zero. 
Fig. 10 shows the estimated force response for the deformation created by the injection 
pipette. The membrane was punctured when the deformation length ranged approximately 
between 50 μm and 200 μm. According to previously-published work (Kim et al., 2006), the 

 

force-deformation relationship for a zebrafish embryo is characterized by a nonlinear 
behavior that can be approximated as linear for small deformations (up to 100 μm). This 
allows us to use the proposed linear elastic model for small deformations. 

      
Fig. 10. Estimated force of a zebrafish embryo using vision-based haptic interaction method. 

 
Fig. 11. Amplified cell injection and puncturing force computed using vision-based haptic 
interaction method 
 
In order to display the force response to a user, the micro contact forces need to be 
magnified. Specifying and varying the appropriate force scaling factor has been an issue in 
micromanipulation (Lu et al., 2006; Menciassi et al., 2004). The scaling factor was 
experimentally chosen within the maximum applicable force of the haptic device (3.3 N). Fig. 
11 shows the scaling forces over time for haptic rendering. The forces increase during the 
insertion of the micropipette, and drop to zero when puncturing occurs. 
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5. Conclusions and Discussions 
 

In this paper, a haptic rendering algorithm of deformable objects was investigated while 
inferring the force information of a slave environment using visual information. This 
method is based on image processing techniques (active contour model and template 
matching) for the modeling of the slave environment and on a continuum mechanics model 
for the interactive haptic rendering. Experiments for different scales of telemanipulation 
systems were performed to demonstrate the effectiveness of the algorithm. The main result 
is that the developed method can be simply used to estimate the forces without a direct 
force measurement. The results of two different experiments also showed that the algorithm 
allows the users to feel reaction forces in real time during the indentation and injection tasks 
by means of haptic devices. 
The advantages of the proposed method over direct force measurements using force sensors 
can be summarized as follows. 
(i) The proposed system only requires a priori knowledge of the object material 

properties and edge information. These fewer requirements allow the algorithm to 
be robust to potential topological changes of the model network and do not imply a 
controlled slave environment. 

(ii) The scale of the slave environment does not affect the rendering method. The same 
algorithm can not only be used in a micro- (or nano-) scale but also in a macro-scale 
environment. The cellular manipulation system of a zebrafish embryo and the 
macro-scale telemanipulation experiment of a silicone block showed the potential 
of the proposed method when applied at different scales. Therefore, it is expected 
that the developed rendering algorithm can be used in telemanipulation systems 
with various scales. Examples may include a cellular manipulator, a microassembly 
system or a telesurgery system. The proposed algorithm is particularly well suited 
for micromanipulation due to difficulties associated with reliable micro force 
sensing. 

(iii) As the forces are inferred from the object model and the tracked tool tip position, it 
is not necessary to integrate a force sensor. As a non-contact (indirect) 
measurement, the developed algorithm will only be slightly affected by 
breakdowns caused by physical or biochemical interactions. In addition, the visual 
information of the slave environment is consistently available, as optical devices 
are installed in the manipulation system. 

In the proposed method, the accurate modeling of the deformable objects is a key part for 
getting a high-fidelity haptic feedback. A number of assumptions and model parameters 
were required for the physically-based modeling. These could be determined by considering 
the characteristics of the objects, such as the material properties, geometry and contact 
conditions. This study assumed that a manipulated object was characterized by linear elastic 
responses having isotropic and homogeneous properties. However, in reality many 
deformable objects (e.g., biological cells, soft tissues) are inhomogeneous, anisotropic and 
made of nonlinear materials. If the aforementioned assumptions enable a rapid computation 
speed for a better stability of the haptic feedback, the unmodeled behavior might lead to 
registration problems (modeling error). For example, because the linear elasticity 
assumption will fail once the model deformation is sufficiently large, the model behavior 
diverges from that of a deformable object when a large deformation is produced during a 
manipulation. This modeling error can also be observed due to friction modeling. In our 

 

future work, the detrimental effects of modeling errors on the telemanipulation performance 
will be studied. If a manipulation task requires a large object deformation or deep 
interaction, the modeling error in the proposed algorithm might be overcome by adopting a 
nonlinear modeling approach (Wu et al., 2001) and even an inhomogeneous modeling 
technique (Jun et al., 2006). The added values will be accompanied by additional 
computational difficulties introduced by the techniques adopted. An analysis of the trade-
off between the added values and the computational burden will also be required. 
The BE model was characterized by a priori knowledge of the material properties and 
geometry obtained from images. The material parameters of many animate and inanimate 
objects have been measured and determined for various applications including motion 
analysis, flaw identification and haptic rendering. In this study, the unknown material 
properties of the deformable objects (the zebrafish embryo and the silicone block) were 
obtained from literature and using experiments. However, the parameters of other objects of 
interest may not be readily obtainable. Additional efforts would then be required to 
objectively determine the physical parameters. In the future work, the authors will strongly 
consider increasing the available information from the imaging sources. To achieve this goal, 
an image-based method for the identification of material parameters will be developed by 
applying an efficient and robust prediction algorithm. The parameters and the interaction 
forces will be estimated for the input displacements. 
At two-dimensional modeling together with a mono image analysis was suitably established 
in the present experiments in the case of thin planar objects and planar manipulation tasks. 
An extension of this work to 3D models will be more helpful for many applications. Indeed, 
a 3D approach will provide additional cues for visual constraints such as those associated 
with depth information and occlusion. 
The developed algorithm has only considered point-contacts between the object and the 
instrument. However, the measurement of the distribution forces present on the object or 
the instrument can be achieved using the proposed method without difficulty, while a direct 
measurement using conventional force sensors is often difficult and sometimes impossible. 
Another interesting extension will also include the integration of additional haptic feedback 
modalities, such as a torque feedback. 
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responses having isotropic and homogeneous properties. However, in reality many 
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an image-based method for the identification of material parameters will be developed by 
applying an efficient and robust prediction algorithm. The parameters and the interaction 
forces will be estimated for the input displacements. 
At two-dimensional modeling together with a mono image analysis was suitably established 
in the present experiments in the case of thin planar objects and planar manipulation tasks. 
An extension of this work to 3D models will be more helpful for many applications. Indeed, 
a 3D approach will provide additional cues for visual constraints such as those associated 
with depth information and occlusion. 
The developed algorithm has only considered point-contacts between the object and the 
instrument. However, the measurement of the distribution forces present on the object or 
the instrument can be achieved using the proposed method without difficulty, while a direct 
measurement using conventional force sensors is often difficult and sometimes impossible. 
Another interesting extension will also include the integration of additional haptic feedback 
modalities, such as a torque feedback. 
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