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Abstract

The paper deals with modeling of human-like reaching movements. Several issues are under
study. First, we consider a model of unconstrained reaching movements that corresponds to
the minimization of control effort. It is shown that this model can be represented by the well-
known Beta function. The representation can be used for the construction of fractional order
models and also for modeling of asymmetric velocity profiles. Next, we address the formation
of boundary conditions in a natural way. From the mathematical point of view, the structure
of the optimal solution is defined not only by the form of the optimality criterion but also by
the boundary conditions of the optimization task. The natural boundary conditions, defined
in this part of the paper, can also be used in modeling asymmetric velocity profiles. Finally,
addressing the modeling of reaching movements with bounded control actions, we consider
the minimum time formulation of the optimization problem and (for the n-th order integrator)
find its analytical solution.

1. Introduction

Understanding the trajectory formation in reaching movements is a very important research
problem in computational neuroscience and modern robotics. From the viewpoint of control
theory the problem can be attacked from two directions, one deals with the open-loop control
and employs optimization approaches (Flash et al., 2003; Kawato, 1999) while the other is
based on the sensory-motor feedback control (Arimoto et al., 2005; Tsuji et al., 2002). These
two research lines are quite different but both important because, in our opinion, it is the
blending of the feedforward and feedback control that defines the appearance of reaching
movements.
Indeed, experiments show that for relatively slow movements the velocity profiles are left-
skewed (Milner and Ijaz, 1990; Nagasaki, 1989), a feature that is well-captured by the feedback
control. On the other hand, for relatively fast movements the velocity profile of the hand tra-
jectory tends to a symmetric1 bell-shaped form (Abend et al., 1982; Morasso, 1981), that can be
captured by the feedforward control (Flash and Hogan, 1985). Thus, the resulting movement
can be considered as the superposition of a major ballistic (feedforward) component and a

1 Experiments also show that for very fast movements the velocity profiles can be even slightly skewed
to the right (Nagasaki, 1989; Wiegner and Wierbicka, 1992).
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corrective (feedback) component (Berthier, 1996; Milner, 1992). How specifically the blending
of these components works is one the greatest secrets of the CNS.
In this paper we will deal with the feedforward control of reaching movements. The reasoning
behind this scheme is that in fast reaching movements the effective use of feedback is nearly
impossible due to the delays in neural circuits and muscle activation. The feedforward control
is often modeled via optimization theory. In the optimization approach, the trajectory of the
human arm is predicted by minimizing, over the movement time T, an integral performance
index J subject to boundary conditions imposed on start and end points. The performance
index can be formulated in the joint space (Soechting and Lacquaniti, 1981; Uno et al., 1989)
or in the task space normally associated with the human hand (Flash and Hogan, 1985; Ohta
et al., 2004). Depending on whether the arm dynamics is taken into account or not, the per-
formance index is defined in the motion (Flash and Hogan, 1985; Soechting and Lacquaniti,
1981) or force domain (Svinin et al., 2005; Uno et al., 1989).
Several modeling issues are under study in this paper. First, in Section 2 we consider a gen-
eralization of the classical minimum jerk model of the free-space reaching movements, relate
it to the lowest polynomial approach, and show that the solution is given by the regularized
incomplete Beta function. Next, in Section 3, we address the boundary conditions of the op-
timization task. Since the optimal solution is defined not only by the optimality criterion but
also by the boundary conditions, the latter is not not less important than the former. However,
the role of the boundary conditions is rarely discussed in the literature on reaching move-
ments. Then, in Section 4, we address the formation of reaching movements with bounded
control actions and consider the minimum time formulation of the optimization problem. Fi-
nally, conclusions are summarized in Section 5.

2. Minimum effort model

In our analysis, we will consider a simplified, one-dimensional model of human movements
where the configuration dependence of the human arm is ignored and the motion considered
at the hand level. For this model one can formulate a generalized criterion of optimality
minimizing the squared n-th derivative of the hand position x over the movement time:

J =
1

2

∫

T

0

(

dnx

dtn

)2

dt. (1)

From the control theoretical point of view this is the minimum effort criterion for the con-

trolled system x(n)(t) = u, describing the hand movement in the free space. Here, u is the
control input, and n is the order of the motor dynamics associated with the hand. This or-
der implies 2n boundary conditions necessary for the correct formulation of the optimization
problem. The state vector is composed of the hand position and its first n − 1 derivatives.
Assuming that the hand is at rest in the beginning and in the end of the reaching movement,
one assigns

x(0)=0, ẋ(0)=0, ẍ(0)=0, . . . , x(n−1)(0)=0, (2)

x(T)= L, ẋ(T)=0, ẍ(T)=0, . . . , x(n−1)(T)=0, (3)

where L stands for the length of reaching movement.
The optimization problem—minimization of the criterion (1) under the boundary conditions
(2,3)—is often raised in the prediction of human reaching movements, normally for n = 3 (the

www.intechopen.com



Optimality	Principles	and	Motion	Planning	of	Human-Like	Reaching	Movements 117

minimum hand jerk model (Flash and Hogan, 1985)) and occasionally for n = 4 (the mini-
mum snap model (Flash, 1983; Wiegner and Wierbicka, 1992)). Comparing to these models,
the minimum hand acceleration model (n = 2) is often rejected on the ground that it pro-
duces non-zero initial and final accelerations, which is considered to be incompatible with
experimental data (Stein et al., 1986).
A general formula for the optimal velocity profiles has been suggested in (Piazzi and Vi-
sioli, 2000; Richardson and Flash, 2002). Here, we present a formal derivation, establish
the solution, and recognize it as a famous special mathematical function. To pose the opti-
mization problem in non-dimensional settings, introduce the following change of variables:
x(t) = L y(τ(t)) where τ = t/T, τ ∈ [0, 1]. In the new variables y and τ we have the criterion

J =
1

2

∫ 1

0

(

dny

dτn

)2

dτ, (4)

and the boundary conditions

y(0) = 0, y′(0) = 0, y′′(0) = 0, . . . , y(n−1)(0) = 0, (5)

y(1) = 1, y′(1) = 0, y′′(1) = 0, . . . , y(n−1)(1) = 0, (6)

where y(k)(τ) = Tkx(k)(t)/L, k = 1, . . . , n − 1. As can be easily shown, the Euler-Lagrange

equation for the problem under consideration is y(2n)(τ) = 0. The general solution for this

equation is given by the polynomial y(τ) = ∑
2n−1
i=0 ci τ

i, where the coefficients ci are estab-
lished from the boundary conditions (5,6). Thus, the optimization problem under considera-
tion is equivalent to the construction of the lowest order polynomial satisfying the boundary
conditions (5,6).
To clarify the analytical structure of the solution, we recast the optimization task as the optimal

control problem. Let us introduce the state vector y = {y, y′, . . . , y(n−1)}T and define the

control input u = y(n). The state dynamics are the n-th order integrator ẏ = Ay + bu, where
b = {0, . . . , 0, 1}T, and the elements of the matrix A are defined as

[A]ij =

{

1 if j = i + 1,
0 otherwise.

(7)

The analytical solution for the minimum effort control problem, seeking the control mini-

mizing J = 1
2

∫ 1
0 u2 dτ for the dynamic system ẏ = Ay + bu and the boundary conditions

y(0) = y0, y(1) = y1, is well-established in the control literature (Luenberger, 1969). It can be
represented as

y(τ) = eAτ
({

I −W (τ)W−1(1)
}

y0 +W (τ)W−1(1)e−Ay1

)

, (8)

where

W (τ) =
∫

τ

0
e−AsbbTe−A

Tsds. (9)

For the n-th order integrator the matrix exponent is defined as

[

eAτ
]

ij
=







τ
j−i

(j − i)!
if j ≥ i,

0 if j < i,

(10)
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and by direct calculations one finds

[W (τ)]ij =
(−1)i+j

τ
2n+1−i−j

(2n + 1 − i − j)(n − i)!(n − j)!
. (11)

As shown in (Rose and Bronson, 1969), for the n-th order integrator the matrix W (τ) can be
decomposed as W (τ) = τP (−τ)HP (−τ), where

[P (τ)]ij =







τ
n−j

(n − i)!
if i = j,

0 otherwise.

(12)

and H is the Hilbert matrix

[H ]ij =
1

(2n+1−i− j)
, (13)

the inverse of which is known to be

[

H−1
]

ij
=

(−1)i+j(2n − i)!(2n − j)!

(2n+1−i− j){(n−i)!(n− j)!}2(i−1)!(j−1)!
. (14)

The elements of the inverse matrix W−1(τ) = τ
−1P−1(−τ)H−1P−1(−τ) can now be easily

established:

[

W−1(τ)
]

ij
=

(2n − i)!(2n − j)!

(2n+1−i− j)(n − i)!(n − j)!(i − 1)!(j − 1)!τ2n+1−i−j
. (15)

For the rest-to-rest movements y0 = 0, y1 = {1, 0 . . . , 0}T, and e−Ay1 = y1. Therefore,
y(τ) = eAτW (τ)W−1(1)y1. The components of the vector y(τ), which are the derivatives
of the corresponding order of y(τ), are found from (10,11,15) by direct computation:

y(i−1)(τ)=
n

∑
j=i

n

∑
s=1

(−1)j+s(2n−1)!(2n−s−1)!τ2n+1−i−s

(j−i)!(2n+1−s− j){(n−s)!}2(n− j)!(n−1)!(s−1)!
. (16)

To find the velocity y′(τ), we set i = 2 in (16) and take into account that

n

∑
j=2

(−1)j

(j−2)!(2n+1−s− j)(n− j)!
= −

1

(s−n−1)(s−n−2) . . . (s−n−(n−1))

=
(−1)nΓ(1+n−s)

Γ(2n−s)
=

(−1)n(n−s)!

(2n−s−1)!
, (17)

where Γ is the usual Gamma function. Then, after some simple manipulations using the bino-
mial expansion for (1−τ)n−1, one obtains

y′(τ) =
(2n−1)!τn−1

(n−1)!

n

∑
s=1

(−1)n+s
τ

n−s

(n−s)!(s−1)!
=

τ
n−1(1 − τ)n−1

B(n, n)
, (18)

where

B(n, n) =
(n − 1)!(n − 1)!

(2n − 1)!
(19)

y y’
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is the symmetric Beta function. Therefore, the solution y(τ) can be formally represented as

y(τ) =

∫

τ

0 pn−1(1 − p)n−1dp

B(n, n)
�

B(τ; n, n)

B(n, n)
� B̄(τ; n, n). (20)

This expression is known as the regularized incomplete Beta function (Abramowitz and Ste-
gun, 1972). While it is widely used in many fields, it is best known for its applications in statis-
tics (Dutka, 1981). The basic properties of the Beta distribution are well-known (Abramowitz
and Stegun, 1972). In particular, the velocity y′(τ) is symmetric with respect to the mid-

dle point τ = 1/2, the position y(1/2) = 1/2, and all even derivatives y(2k)(1/2) = 0 for
k = 1, 2, 3 . . ..
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y
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0.5

1

1.5
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2.5

3

3.5

y’

Fig. 1. Normalized position and velocity profiles in the minimum effort model for n =
1, 2, . . . , 10.

The first 10 solutions for y(τ) and y′(τ) are plotted in Figure 1. While the solutions yn(τ)
are continuous functions of τ for any fixed n, in the limiting case of n → ∞ the solution is
discontinuous. In this case the velocity is the unit impulse function y′

∞
(τ) = δ(τ − 1/2),

∫ 1
0 y′

∞
(τ)dτ = 1. The position y∞(τ) is the unit step function, which is unity for τ > 1/2 and

is 0 for τ < 1/2.
Several comments are in order.
1o. It is noticed in (Flash and Hogan, 1985) that while, in general, the minimum jerk model
(n = 3) is a good candidate for mimicking human-like movements, the minimum snap model
(n = 4) sometimes also provide a reasonable fit to the experimental data of unconstrained
reaching movements. In this connection, it should be noted that the Beta function is defined
not only for integer but also for real n. This suggests that the criterion (1) can be generalized to
non-integer orders using, for example, Riemann-Liouville fractional integrals and derivatives
(Samko et al., 1993). It also suggests that in fitting experimental data of reaching movements
we can use real numbers n ∈ [3, 4] (see Figure 2). The assumption of real n sounds biologically
plausible because the natural sensors and actuators in the human body are likely to deal with
the fractional derivatives.
2o. The symmetry of the Beta function with respect to its last two arguments in (18,20) is
explained by the symmetric placement of the boundary conditions. It can be shown that for
the asymmetric placement (na boundary conditions at the start point and nb at the end point,
na+nb =2n) the solution is expressed through the asymmetric Beta function

y(τ) =

∫

τ

0 pna−1(1 − p)nb−1dp

B(na, nb)
�

B(τ; na, nb)

B(na, nb)
, (21)
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Fig. 2. Normalized position and velocity profiles for the integer (red lines: n = 3 and n = 4)
and fractional (blue lines: n = 3.25, n = 3.5, and n = 3.75) orders.

where

B(na, nb) =
(na − 1)!(nb − 1)!

(na + nb − 1)!
. (22)

The asymmetric Beta functions are illustrated in Figure 3.
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Fig. 3. Normalized position and velocity profiles given by the symmetric (red line: B(3, 3),
center) and asymmetric (blue lines: B(2, 4) on the left, and B(4, 2) on the right) Beta functions.

Note that while the function (21) is the lowest order polynomial satisfying the asymmetric
boundary conditions, it does not have a variational meaning. Strictly speaking, it does not
minimize (4) because in the classical variational formulation the boundary conditions at the
end-points (those that are imposed directly, as in (5,6), and those obtained automatically from
the variational formulation and sometimes called the natural boundary conditions (Gelfand
and Fomin, 1963)) are always placed symmetrically.

3. Natural boundary conditions

This section addresses the formation of the boundary conditions. They are an important part
of the optimization problem because the optimal solution is defined not only by the form of
the optimality criterion but also by the boundary conditions, and they are not less important
than the criterion itself.
In the optimization problem considered in Section 2 we fixed first n− 1 derivatives of the hand
position, which, as far as human movements are concerned, might not be always plausible
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y y’

y y’

from the physiological point of view2. Note that in experiments human subjects are normally
not literally requested to produce zero end-point accelerations; they are only instructed to
move comfortably from one point to another and stop there. Therefore, it does not seem
reasonable to constrain the initial and final hand accelerations to zero in the optimization
models. We can reliably pose the boundary conditions only for position and velocities. The
remaining boundary conditions should be established differently.
Consider again the optimality criterion given by (1) but assume now that instead of (2,3) we
fix only the first k ≤ n − 1 derivatives of the hand position:

x(0) = 0, ẋ(0) = 0, . . . , x(k)(0) = 0, (23)

x(T) = L, ẋ(T) = 0, . . . , x(k)(T) = 0. (24)

The variation of the functional (1) is defined as

δJ =
∫

T

0
x
(2n)(t) δx dt +

[

n−1

∑
i=0

x
(2n−1−i)(t) δx

(i)(t)

]T

0

. (25)

Taking into account that δx(i)(0) = δx(i)(T) = 0 for i = 0, . . . , k, from the necessary condition

of optimality, δJ = 0, one obtains the Euler-Lagrange equation x(2n)(t) = 0, and establishes
the following boundary conditions:

x(n)(0) = 0, x(n+1)(0) = 0, . . . , x(2n−2−k)(0) = 0, (26)

x(n)(T) = 0, x(n+1)(T) = 0, . . . , x(2n−2−k)(T) = 0, (27)

Note that in the calculus of variations the boundary conditions (26,27), obtained from the con-
dition δJ = 0, are called natural (Gelfand and Fomin, 1963). The solution of the optimization
problem is the polynomial of degree 2n− 1 whose coefficients are established from the directly
imposed (23,24) and the natural (26,27) boundary conditions.
Consider, for the purpose of illustration, the case of n = 3 and k = 1. In this model we fix the
boundary conditions for the position and velocities of the hand, while the hand accelerations
in the beginning and the end of movement are defined ŞautomaticallyŤ from the minimiza-
tion of the squared hand jerk over the movement time. This differs from the conventional
formulation where the boundary conditions for accelerations are set to zero. The minimum
hand jerk model with the boundary conditions (23,24) and (26,27) yields

x = Lτ
2(2.5 − 2.5τ

2 + τ
3), (28)

where τ= t/T, while the conventional minimum hand jerk model gives

x = Lτ
3(10 − 15τ + 6τ

2). (29)

Both these models produce single-phased velocity profiles. However, the maximal velocity in
the former model is 1.5625L/T, while in the latter one it is 1.875L/T.
It should be noted that the solution (28) features non-zero initial and final acceleration jumps
because in this model ẍ(0) �= 0 and ẍ(T) �= 0. To avoid possible confusion, it should be said
that no coordinate jumps are physical, of course. Strictly speaking, the exact modeling of this

2 For example, in the minimum snap model (n = 4) the end-point jerk are supposed to be zero. However,
it is not evident that human can do the end-point control of the 3rd derivative of the hand position.
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phenomenon requires more sophisticated models considered at different time scales as the
coordinate (acceleration, in our case) change is considerably high in a short instance of time.
However, in simplified models, such as the one considered in our paper, this behavior can be
modeled by the jumps in the boundary conditions.
The assumption of zero initial and final hand accelerations can be too restrictive when dealing
with fast movements in highly dynamic reaching tasks Svinin et al. (2008). For the free-space
movements the applicability of the models (28) or (29) is likely to depend on the movement
duration T. For relatively slow movements the CNS has enough time to nullify the end-point
accelerations and this defines the model (29). For relatively fast movements the end-point
accelerations are placed at will and one gets the model (28).
To unify the minimum hand jerk model (28) with natural boundary conditions for acceler-
ations with the conventional one (29), it is reasonable to assume that the CNS controls the
boundary conditions. Intuitively, the way they are controlled is changed from task to task
and, in general, the more dynamic the reaching task the looser the control of the boundary
conditions.
To reflect the cost of control of the boundary conditions, one can replace the optimality crite-
rion (1) by

J =
1

2

∫

T

0

(

dnx

dtn

)2

dt +
1

2

n−1

∑
i=0

wi0

(

x(i)(0)−x̄i
0

)2
+ wiT

(

x(i)(T)−x̄i
T

)2
. (30)

Here, x̄i
0 and x̄i

T are the “desired” steady state values for the derivatives of the hand trajectory
at the boundary points, and wi0 ≥ 0 and wiT ≥ 0 are the corresponding weight coefficients
assigned by the CNS. For simplicity, we assume that x̄i

0 = 0 for i = 0, . . . , n, x̄i
T = 0 for

i = 1, . . . , n, and x̄0
T = L.

Consider now the criterion of optimality given by (30). Note that now the separation of the
boundary conditions into the directly imposed and the natural ones is no longer necessary, as
we assume that all of them are controlled by the CNS and all of them are established from the
condition δJ = 0. In other words, all the boundary conditions are natural now. It is straightfor-
ward to show that the variation of the functional (30) is defined as

δJ =
∫ T

0
x(2n)(t) δx dt +

[

n−1

∑
i=0

x(2n−1−i)(t) δx(i)(t)

]T

0

+
n−1

∑
i=0

wi0

(

x(i)(0)−x̄i
0

)

δxi(0) + wiT

(

x(i)(T)−x̄i
0

)

δxi(T). (31)

From δJ = 0 one obtains the Euler-Lagrange equation, x(2n)(t) = 0, and establishes the
natural boundary conditions. Since the variations δxi(t) are not restricted at the boundary
points, one obtains:

−x(2n−1−i)(0) + wi0

(

x(i)(0)− x̄i
0

)

= 0, (32)

x(2n−1−i)(T) + wiT

(

x(i)(T)− x̄i
T

)

= 0, (33)

where i = 0, . . . , n − 1. It is worth pointing out two limiting cases. First, if wi0 → ∞ (the CNS
places a very high gain) the initial state for the i-th derivative coincides with the desired one,
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as the condition (32) is reduced to x
(i)(0) = x̄

i
0. If, on the other hand, the CNS cannot afford

to control x
(i)(0) then wi0 → 0 and we get x

(2n−1−i)(0) = 0.
Let us continue the illustrative example of n = 3 and assign x̄

i
0 = 0, i = 0, 1, 2, x̄

0
T
= L, and

x̄
i

T
= 0, i = 1, 2. Assuming the tight control for the initial and final position and velocity,

we set wi0 = wiT = ∞, i = 0, 1. By considering, for simplicity, the symmetric assignment of

the accelerations weights, define w � w20 = w2T . It is not difficult to show that the optimal
solution, parameterized by the acceleration weight w is defined as

x =
Lτ

2
(

30 + 10w̄τ − 15(2 + w̄)τ2 + 6(2 + w̄)τ3
)

(12 + w̄)
, (34)

where τ = t/T, and w̄ = wT. For w = 0 we get the model (28) with natural boundary con-
ditions for accelerations, and for w → ∞ we get the conventional minimum hand jerk model
(29). Changing the acceleration weight from zero to infinity defines a family of curves (all
in the class of the minimum hand jerk models). The velocity and acceleration profiles of this
family for L = 1, T = 1 are shown in Fig. 4.
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Fig. 4. Velocity and acceleration profiles for the family of curves (34).

Several comments are in order.
1o. Asymmetric velocity profiles can be obtained by asymmetric placement of the weight
coefficients (wi0 �= wiT). Note also that the optimality criterion (30) can be generalized by the
introduction of matrix weight coefficients.
2o. It is not clear how specifically the CNS may assign the weight coefficients. Intuitively,
the human perception and control of position is better than that of velocity, that of velocity
is better than that of accelerations, and so on, and it is plausible to assume that wi,0 > wi+1,0

and wi,T > wi+1,T . The specific assignment of the weight coefficients must depend on how
fast the reaching movement under inspection is. In this connection, it should be noted that the
analysis of reaching movements is often conducted under the subtle assumption that the CNS
operates without undue stress, away from the limits of neuromuscular performance (Flash
and Hogan, 1985). But this assumption is not specific.
It is reported that for comfortable reaching movements in free space the movement time is in
the range of [0.25, 0.8]s for the traveling distance varying from 0.2m to 0.5m (Kawato, 1995).
Since the conventional minimum hand jerk model and the minimum torque change model
are well established and experimentally verified for these ranges, one can presume that in
such movements the boundary conditions for the hand accelerations are zero. However, if
the movement time is decreased the CNS obviously cannot afford to keep the initial hand
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accelerations zero. Therefore, for curtain ranges of time the reaching movements will feature
the acceleration jumps (soft impacts). And if the movement duration is decreased further, the
movements will feature even the velocity jumps (hard impact). One can see such impulsive
movements in the exercises of karate fighters.
Obviously, the movement time T cannot be reduced arbitrarily without violating the con-
straints imposed by the neural and musculoskeletal hardware on the traveling distance, max-
imal force, and the accuracy of reaching. These constraints are ignored in the optimization
problems considered in this section. Taking into account additional considerations would
lead to different models with possibly different criteria of optimality (Nelson, 1983). One of
these models is the minimum time model.

4. Minimum time model

In this section, the hand trajectory x(t) is determined by minimizing the performance index

J =
∫ T

0
dt = T, (35)

where T is the movement time to be obtained. For the simplicity of formulation, we will
consider the rest-to-rest time-optimal control where the boundary conditions are defined by
(2,3) and the scalar control input is bounded as

|u(t)| ≤ U. (36)

For a linear controllable system, existence and uniqueness of the time-optimal solution are
guaranteed, and the solution is “bang-bang” control with a finite number of switches (Her-
mes and LaSalle, 1969; Lee and Markus, 1967). It is easy to show that for the system under
consideration (n-th order integrator) the optimal solution is symmetric about T/2, and the
number of switches is n + 1 (t0 = 0, t1, t2, . . . , tn = T).
Assuming L > 0, we set u(t) = (−1)sU for the time interval t ∈ [ts, ts+1], s = 0, 1, . . . , n − 1,

and, by integrating x(n) = u(t), define the (n − k)-th derivative (k = 1, . . . , n) of the hand
position:

x(n−k)(t) =
(t − ts)k

k!
(−1)sU +

k−1

∑
p=0

x(n−k+p)(ts)
(t − ts)p

p!
. (37)

For t = ts+1 one therefore has

x(n−k)(ts+1) =
(ts+1 − ts)k

k!
(−1)sU +

k−1

∑
p=0

x(n−k+p)(ts)
(ts+1 − ts)p

p!
. (38)

By considering this recurrent relationship with the zero initial condition (2), one can represent

x(n−k)(ts) in the following non-recurrent form

x(n−k)(ts) =
U

k!

s

∑
i1=1

s

∑
i2=1

. . .
s

∑
ik=1

(−1)min{i1,i2,...,ik}−1
∆ti1

∆ti2
. . . ∆tik

, (39)
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where ∆ti = ti − ti−1, and s = 1, 2, . . . , n. Now, substitute x(n−k)(tn), k = 1, 2, . . . , n, into the
boundary condition (3). After some algebra, one obtains the following system of n equations

2

{
n−1

∑
i=1

(−1)itk
i

}

+ (−1)ntk
n = 0, k = 1, . . . , n − 1, (40)

2

{
n−1

∑
i=1

(−1)itn
i

}

+ (−1)ntn
n = (−1)nn!L/U, (41)

with respect to the unknown switching times t1, t2, . . . , tn. The system (40) is homogenous,
and with the introduction of the non-dimensional times τi = ti/tn it is converted to the fol-
lowing form

n−1

∑
i=1

(−1)i
τ

k
i = (−1)n+1/2, k = 1, . . . , n − 1. (42)

Let us show that the solution for this system is given by

τi = sin2

(
πi

2n

)

, i = 1, . . . , n − 1. (43)

First, by converting (43) to the double angle representation and substituting it into (42), one
obtains

n−1

∑
i=1

(−1)i
τ

k
i =

n−1

∑
i=1

(−1)i

{
1

2

(

1 − cos
πi

n

)}k

=

=
n−1

∑
i=1

(−1)i 1

2k

(

1 − cos
πi

n

)k

=
1

2k

k

∑
j=0

(−1)jC
j
k

n−1

∑
i=1

(−1)i cosj πi

n
, (44)

where C
q
p = p!/(q!(p − q)!) denotes the binomial coefficient. Next, it is known (see section

4.4.2 of (Prudnikov et al., 1986)) that

n−1

∑
k=0

(−1)k cosm πk

n
=







1

2

{
1 − (−1)m+n

}
for m = 0, 1, 2, . . . , n − 1

n

2n−1
for m = n

. (45)

Therefore, for k < n we have

n−1

∑
i=1

(−1)i
τ

k
i =

1

2k

k

∑
j=0

(−1)jC
j
k

{
1

2

[

−1 − (−1)n+j
]}

=

=
1

2k+1

k

∑
j=0

C
j
k(−1)j+1

︸ ︷︷ ︸

0

−
(−1)n

2k+1

k

∑
j=0

C
j
k

︸ ︷︷ ︸

2k

= −
(−1)n

2
. (46)

Thus, the non-dimensional switching times τi are defined by (43). It remains now to find the

duration of movement T � tn. For this purpose, rewrite (41) as

2

{
n−1

∑
i=1

(−1)i
τ

n
i

}

+ (−1)n = (−1)nn!
L

UTn
. (47)
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By considering (44) for k = n and taking into account (45) and (46), one obtains

n−1

∑
i=1

(−1)i
τ

n
i =

1

2n

n

∑
j=0

(−1)jC
j
n

n−1

∑
i=1

(−1)i cosj πi

n
=

1

2n

n−1

∑
j=0

(−1)jC
j
n

n−1

∑
i=1

(−1)i cosj πi

n
︸ ︷︷ ︸

−
(−1)n

2

+
(−1)n

2n

n−1

∑
i=1

(−1)i cosn πi

n
︸ ︷︷ ︸

n

2n−1

=

−
(−1)n

2
+

(−1)nn

22n−1
. (48)

Therefore, the minimal movement time is defined as

T =
n
√

22(n−1)(n − 1)!L/U, (49)

and the control switching times t0, t1, t2, . . . , tn are computed as

ti =
n

√

22(n−1)(n − 1)!L

U
sin2

(
πi

2n

)

, i = 0, . . . , n. (50)
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Fig. 5. Normalized position and velocity profiles in the minimum time model for n =
1, 2, . . . , 10.

The first 10 solutions for the normalized position and velocity profiles in the minimum time
model are plotted in Figure 5. Comparing these plots with those shown in Figure 1, one can
say that qualitatively the minimum time model is similar to the minimum effort model.
Several comments are in order.
1o. It should be noted that in modeling of rapid reaching movements the minimum time
model is often rejected (in favor of, say, the minimum hand jerk model) on the ground that it
features acceleration jumps, which is not compatible with experimental data (Stein et al., 1986;
Wiegner and Wierbicka, 1992). The rejection of the minimum time model only for this reason
is premature because it is based on the fallacious comparison of the minimum time model for
n = 2 with the minimum effort model for n = 3.
2o. The minimum time model for n = 3 does not feature acceleration jumps (the discon-
tinuities here are at the jerk level). The velocity profile in this model looks like the typical
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y y’

bell-shaped pattern observed in experiments, with the normalized maximal velocity being be-
tween those in the minimum hand jerk (n = 3) and snap (n = 4) models (see Table 1). Thus,
the minimum time model for n = 3 can be a legitimate candidate for mimicking human-like
reaching movements.

model n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8

minimum effort 1.0 1.5 1.875 2.188 2.461 2.707 2.933 3.142
minimum time 1.0 2.0 2.0 2.343 2.584 2.823 3.039 3.242

Table 1. Normalized velocity at the middle point: L
T v( T

2 ).

3o. An interesting approach to modeling of human-like reaching movements is proposed in
(Ben-Itzhak and Karniel, 2008). The approach is based on the minimum acceleration model
and can be linked to the minimization of kinetic energy. In the generalized form, for the
controlled system dnx/dtn = u(t) the trajectory is found by minimizing the criterion J =
1
2

∫ T
0

(

dn−1x/dtn−1
)2

dt under the constraints |u(t)| ≤ U. This is a singular optimal control
problem. We conjecture that this approach is equivalent to the minimum time model when
the movement duration is specified by (49). This fact can be easily verified for n = 2 and n = 3
but remains to be proven for the general case.

5. Conclusions

Several issues related to modeling human-like reaching movements were under study in this
paper. First, a mathematical model, based on the minimization of square derivatives of the
hand position over the movement duration, has been established in the analytical form. This
is a generalized model, described by the well-known Beta function. The representation can be
used for the construction of fractional order models and also for modeling of asymmetric ve-
locity profiles. Next, we addressed a natural (from the viewpoint of the calculus of variations)
formation of the boundary conditions. From the mathematical point of view, the structure of
the optimal solution is defined not only by the form of the optimality criterion but also by
the boundary conditions of the optimization task. The natural boundary conditions, defined
in our paper, can also be used in modeling asymmetric velocity profiles. Finally, address-
ing modeling reaching movements with bounded control actions, we have considered the
minimum time formulation of the optimization problem and (for the n-th order integrator)
established its analytical solution.
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