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Abstract  

The ability to recognize emotion is one of the hallmarks of emotion intelligence. This paper 
proposed to recognize emotion using physiological signals obtained from multiple subjects. 
IAPS (International Affective Picture System) images were used to elicit target emotions. 
Five physiological signals: Blood volume pulse (BVP), Electromyography (EMG), Skin 
Conductance (SC), Skin Temperature (SKT) and Respiration (RESP) were selected to extract 
30 features for recognition. Two pattern classification methods, Fisher discriminant and 
SVM method are used and compared for emotional state classification. The experimental 
results indicate that the proposed method provides very stable and successful emotional 
classification performance as 92% over six emotional states. 

 
1 Introduction 

One of the interesting challenges in the community of human-computer interaction today is 
how to make computers be more human-like for intelligent user interfaces. In several 
experiments of Reeves and Nass [1], they show that humans impose their interpersonal 
behavioral patterns onto their computers. Thus, the design of recent human-computer 
interfaces should reflect this observation in order to facilitate more natural and more 
human-like interaction. Emotion, one of the user affect, has been recognized as one of the 
most important ways of people to communicate with each other. Given the importance and 
potential of the emotions, affective interfaces using the emotion of the human user are 
gradually more desirable in intelligent user interfaces such as human-robot interactions [2]. 
In order for such an affective user interface to make use of user emotions, the emotional 
state of the human user should be recognized or sensed in many ways from diverse 
modality such as facial expression, speech, and gesture. Thus, this paper investigates the 
automatic recognition of emotions in human-machine interaction using the combination of 
several feature sets from physiological signals. Research efforts in human-computer 
interaction are focused on the means to empower computers (robots and other machines) to 
understand human intention, e.g. speech recognition and gesture recognition systems [3]. In 
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spite of considerable achievements in this area during the past several decades, there are 
still a lot of problems, and many researchers are trying to solve them. Besides, there is 
another important but ignored mode of communication that may be important for more 
natural interaction: emotion plays an important role in contextual understanding of 
messages from others in speech or visual forms. 
There are numerous areas in human-computer interaction that could effectively use the 
capability to understand emotion [3]. For example, it is accepted that emotional ability is an 
essential factor for the next-generation personal robot, such as the Sony AIBO [4]. It can also 
play a significant role in 'intelligent room' [5] and 'affective computer tutor' [6]. The 
remainder of this paper is organized as follows: First, we describe related works to 
recognize the emotions of human user. The experience protocol and used equipment for 
emotion recognition are presented in section 3. In section 4, we specify the feature extraction 
method to classify our emotional categories from physiological signals. In section 5, we 
present the obtained experimental results. Finally, conclusion and future works are 
presented in section 6. 

 
2 Related work 

2.1 Modeling of discrete emotions 
As people display the emotional expressions of others to their various degrees individually, 
it is not an easy task to judge or to model human emotions. The researchers often use two 
different methods to model emotions. One approach is to label the emotions in discrete 
categories, i.e. human judges have to choose from a prescribed list of word labels, e.g. joy, 
sadness, surprise, anger, love, fear, etc. One problem with this method is that the stimuli 
may contain blended emotions that cannot adequately be expressed in words since the 
choice of words may be too restrictive and culturally dependent. Another way is to have 
multiple dimension or scales to categorize emotions. Instead of choosing discrete labels or 
words, observers can indicate their impression of each stimulus on several continuous 
scales, for example, pleasant-unpleasant, attention-rejection, simple-complicated, etc. Two 
common scales are valence and arousal. Valence represents the pleasantness of stimuli, with 
positive (or pleasant) on the end, and negative (or unpleasant) on the other. Another 
dimension is arousal (activation level). The different emotional labels could be plotted at 
various positions on a two-dimensional plane spanned by these two axes to construct a 2D 
emotion model [7]. 
Recently, the low consistency of physiological configurations supported the hypothesis that 
the autonomic nervous system ANS activation during emotions indicates the demands of a 
specific action tendency and action disposition, instead of reflecting emotions [8]. 
The relation between physiological signals and arousal/valence is established in 
psychophysiology that argues that the activation of the autonomic nervous system (ANS) 
changes while emotions are elicited [9]. 

 
2.2 Automatic emotion recognition using physiological signals 
There is a vast body of literature on the automatic recognition of emotions. With labelled 
data collected from different modalities, most studies rely on supervised pattern 
classification approaches to automatic emotion recognition. 
 

Relatively little attention has been paid so far to physiological signals for emotion 
recognition compared to other channels of expression. A significant series of work has been 
conducted by Picard and colleagues at MIT Lab. For example, they showed that certain 
affective states may be recognized by using physiological measures including heart rate, 
skin conductivity, temperature, muscle activity, and respiration velocity [10]. Eight 
emotions deliberately elicited from a subject in multiple weeks were classified with an 
overall accuracy of 81%. Nasoz and al. [11] used movie clips to elicit target emotions from 29 
subjects and achieved the best recognition accuracy (83%) by applying the Marquardt 
Backpropagation algorithm. More recently, Wagner and al [12] presented an approach to the 
recognition of emotions elicited by music using 4-channel biosignals which were recorded 
while the subject was listening to music songs, and reached an overall recognition accuracy 
of 92% for a 4-class problem. 

 
3. Experimental Data Acquisition 

3.1 Emotion induction protocol 
A prevalent method to induce emotional processes consists of asking an actor to feel or 
express a particular mood. This strategy has been widely used for emotion assessment from 
facial expressions and to some extent from physiological signals [13]. However, even if 
actors are known to deeply feel the emotion they try to express, it is difficult to insure 
physiological responses that are consistent and reproducible by nonactors. Furthermore, 
emotions from actor-play databases are often far from real emotions found in everyday life. 
The alternate approach for inducing emotions is to present particular stimuli to an ordinary 
participant. Various stimuli can be used such as images, sounds, videos [14] or video games. 
This approach presents the advantages that there is no need for a professional actor and that 
responses should be closer to the ones observed in real life. 
It was essential to obtain a database of physiological signals representing specific emotional 
statuses. To acquire a database of physiological signals in which the influence of emotional 
status was faithfully reflected, we developed a set of elaborate protocols for emotion 
induction. We use the international affective picture system (IAPS) developed by LANG et 
al [15], and adopted for many psychophysiological studies involving emotion induction. 
A preliminary test of the protocols was performed for 10 healthy subjects (7 males, 3 
females) aged from 23 to 30 years. We have used five physiological signals (Blood Volume 
Pulse (BVP), Electromyography (EMG), Electrodermal activity (SC), Skin temperature (SKT) 
and Respiration (Resp)) (Figure 1). The EMG was measured from frontalis muscle. BVP and 
SKT were measured from little finger and the ring finger of the left hand, respectively. SC 
was measured from the index and middle fingers of the right hand. Resp was measured 
from abdomen subject's. We used a combination of these signals, to derive a set of features 
that can be used to train a classification algorithm. 
For each subject, we presented six basic emotions: Amusement, Contentment, Disgust, Fear, 
No emotion (Neutrality) and Sadness. For each emotion, ten images are presented during 50 
seconds.  
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Fig. 1. Physiological signals acquisition system 
 
3.2 Acquisition of physiological signals 
The physiological signals were acquired using the PROCOMP Infiniti system [16]. The 
sampling rate was fixed at 256 samples per second for all the channels. Appropriate 
amplification and bandpass filtering were performed. One session of experiments took 
approximately 5 min. The subjects were requested to be as relaxed as possible during this 
period. Subsequently, emotional stimulus was applied, and physiological signals were 
recorded. 
The participant was asked to self assess the valence and the arousal of his/her emotion 
using a Self Assessment Manikin (SAM [17]), with 9 possible numerical judgments for each 
dimension (arousal and valence), which will be used in future works. The used sensors are 
described in the following. 

 
3.2.1 Blood Volume Pulse (BVP) 
The Blood Volume pulse sensor uses photoplethysmography to detect the blood pressure in 
the extremities. Photoplethysmography is a process of applying a light source and 
measuring the light reflected by the skin. At each contraction of the heart, blood is forced 
through the peripheral vessels, producing engorgement of the vessels under the light 
source-thereby modifying the amount of light to the photosensor. The resulting pressure 
waveform is recorded. 
 
 

 
Fig. 2. BVP sensor  

 
3.2.2 Electromyography (EMG) 
The electromyographic sensors measure the electromyographic activity of the muscle (the 
electrical activity produced by a muscle when it is being contracted), amplify the signal and 
send it to the encoder. In the encoder, a band pass filter is applied to the signal. For all our 
experiments, the sensor has used the 0-400 microvolt range and the 20-500 Hz filter, which is 
the most commonly used position. (Figure 3) 

 
Fig. 3. EMG sensor  

 
3.2.3 Electrodermal activity (EDA) 
Electrodermal activity (EDA) is another signal that can easily be measured from the body 
surface and represents the activity of the autonomic nervous system. It is also called 
galvanic skin response [18]. It characterizes changes in the electrical properties of the skin 
due to the activity of sweat glands and is physically interpreted as conductance. Sweat 
glands distributed on the skin receive input from the sympathetic nervous system only, and 
thus this is a good indicator of arousal level due to external sensory and cognitive stimuli. 

 
Fig. 4. Skin Conductivity sensor  

 
3.2.4 Skin Temperature (SKT) 
Variations in the skin temperature (SKT) mainly come from localized changes in blood flow 
caused by vascular resistance or arterial blood pressure. Local vascular resistance is 
modulated by smooth muscle tone, which is mediated by the sympathetic nervous system. 
The mechanism of arterial blood pressure variation can be described by a complicated 
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3.2.4 Skin Temperature (SKT) 
Variations in the skin temperature (SKT) mainly come from localized changes in blood flow 
caused by vascular resistance or arterial blood pressure. Local vascular resistance is 
modulated by smooth muscle tone, which is mediated by the sympathetic nervous system. 
The mechanism of arterial blood pressure variation can be described by a complicated 
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model of cardiovascular regulation by the auto-nomic nervous system. Thus it is evident 
that the SKT variation reflects autonomic nervous system activity and is another effective 
indicator of emotional status. 

 
Fig. 5. Skin Temperature sensor  

 
3.2.5 Respiration (Resp) 
The respiration sensor can be placed either over the sternum for thoracic monitoring or over 
the diaphram for diaphragmatic monitoring (Figure 6). The sensor consists mainly of a large 
velcro belt which extends around the chest cavity and a small elastic which stretches as the 
subject's chest cavity expands. The amount of stretch in the elastic is measured as a voltage 
change and recorded. From the waveform, the depth the subject's breath and the subject's 
rate of respiration can be learned. 

 
Fig. 6. Respiration sensor 

 
4. Features extraction 

Having established a set of signals which may be used for recognizing emotion, it is then 
necessary to define a methodology in order to enable the system to translate the signals 
coming from these sensors into specific emotions. The first necessary step was the extraction 
of useful information bearing features for pattern classification. 
For emotion recognition training or testing, the features of each bio-potential data must be 
extracted. In this study, for each record, we compute the six parameters proposed by Picard 
[10] on the N values (5 seconds at 256 samples per second gives N=1280): the mean of the 
raw signals (Eq.1), the standard deviation of the raw signals (Eq.2), the mean of the absolute 
values of the first differences of the raw signals (Eq.3), the mean of the absolute values of the 
first differences of the normalized signals (Eq.4), the mean of the absolute values of the 
second differences of the raw signals (Eq.5) and the mean of the absolute values of the 
second differences of the normalized signals (Eq.6). 
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model of cardiovascular regulation by the auto-nomic nervous system. Thus it is evident 
that the SKT variation reflects autonomic nervous system activity and is another effective 
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theory, pioneered by Vapnik [21], instead of heuristics or analogies with natural learning 
systems. 
SVM algorithms separate the training data in feature space by a hyperplane defined by the 
type of kernel function used. They find the hyperplane of maximal margin, defined as the 
sum of the distances of the hyperplane from the nearest data point of each of the two classes. 
The size of the margin bounds the complexity of the hyperplane function and hence 
determines its generalization performance on unseen data. The SVM methodology learns 
nonlinear functions of the form: 

    1
1

sgn
l

i i
i

f x y K x x b


 
  

 
    (5.3) 

where the αi are Lagrange multipliers of a dual optimization problem. Once a decision 
function is obtained, classification of an unseen example x amounts to checking on what side 
of the hyperplane the example lies. 

 
5.3 Fisher linear discriminant 
The Fisher's discriminant is a technique used to reduce a high dimensional feature set, x, to a 
lower dimensional feature set y, such that the classes can be more easily separated in the 
lower dimensional space. The Fisher discriminant seeks to find the projection matrix w such 
that when the original features are projected onto the new space according to 

,ty w x      (5.4) 
the means of the projected classes are maximally separated and the scatter within each class 
is minimized. This matrix w is the linear function for which the criterion function: 
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t

B
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W
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     (5.5) 

is maximized. In this equation, SB and SW represent the between class scatter and within class 
scatter, respectively. This expression is well known in mathematical physics as the 
generalized Rayleigh quotient. This equation can be most intuitively understood in the two 
class case where is reduces to: 
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




 
 

       (5.6) 

where 1m  and 2m  are the projected means of the two classes and 1s  and 2s  are the 
projected scatter of the two classes. This function is maximized when the distance between 
the means of the classes is maximized in the projected space and the scatter within each 
class is minimized [22]. 

 
6. Experimental results 

Figure 7 shows an example of the five physiological signals recorded during the induction 
of six emotions (Amusement, Contentment, Disgust, Fear, Neutrality and Sadness) for 
subject1 (male) and subject2 (female), respectively. It can be seen that each physiological 
signal, varies widely across emotion and also across subjects. 
 
 

For emotion recognition, we have implemented the SVM method with a linear kernel and 
Fisher's discriminant classifier. A set of six examples for each basic emotion was used for 
training, followed by classification of 4 unseen examples per emotion. 
Table 1 gives the percentage of correctly classified examples for ten subjects using SVM 
method and Fisher's discriminant. Using a linear classifier, we are able to correctly classify 6 
emotions of 10 subjects.As it can be observed, Fisher and SVM classifiers give a good results 
(92%, 90% respectively) for emotion recognition. 

 
Fig. 7. An example of five physiological signals (BVP, EMG, SC, SKT and Resp) acquired 
during the induction of the six emotions (left: Subjectl, right: Subject 2) 
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theory, pioneered by Vapnik [21], instead of heuristics or analogies with natural learning 
systems. 
SVM algorithms separate the training data in feature space by a hyperplane defined by the 
type of kernel function used. They find the hyperplane of maximal margin, defined as the 
sum of the distances of the hyperplane from the nearest data point of each of the two classes. 
The size of the margin bounds the complexity of the hyperplane function and hence 
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where the αi are Lagrange multipliers of a dual optimization problem. Once a decision 
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Future work on arousal, valence assessment will be used in order to identify the emotion in 
the valence / arousal space. We intend to use wireless sensor in order to ensure a natural 
and without constraints interaction between human and machine. There is also much scope 
to improve our system to incorporate other means of emotion recognition. Currently we are 
working on a facial expression system which can be integrated with physiological signal 
features. 
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Future work on arousal, valence assessment will be used in order to identify the emotion in 
the valence / arousal space. We intend to use wireless sensor in order to ensure a natural 
and without constraints interaction between human and machine. There is also much scope 
to improve our system to incorporate other means of emotion recognition. Currently we are 
working on a facial expression system which can be integrated with physiological signal 
features. 
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