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Early Decision Making in Continuous Speech 
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1.Introduction     

In everyday life, speech is all around us, on the radio, television, and in human-human 
interaction. Communication using speech is easy. Of course, in order to communicate via 
speech, speech recognition is essential. Most theories of human speech recognition (HSR; 
Gaskell and Marslen-Wilson, 1997; Luce et al., 2000; McClelland and Elman, 1986; Norris, 
1994) assume that human listeners first map the incoming acoustic signal onto prelexical 
representations (e.g., in the form of phonemes or features) and that these resulting discrete 
symbolic representations are then matched against corresponding symbolic representations 
of the words in an internal lexicon. Psycholinguistic experiments have shown that listeners 
are able to recognise (long and frequent) words reliably even before the corresponding 
acoustic signal is complete (Marslen-Wilson, 1987). According to theories of HSR, listeners 
compute a word activation measure (indicating the extent to which a word is activated 
based on the speech signal and the context) as the speech comes in and can make a decision 
as soon as the activation of a word is high enough, possibly before all acoustic information 
of the word is available (Marslen-Wilson, 1987; Marslen-Wilson and Tyler, 1980; Radeau et 
al., 2000). The “reliable identification of spoken words, in utterance contexts, before 
sufficient acoustic-phonetic information has become available to allow correct identification 
on that basis alone” is referred to as early selection by Marslen-Wilson (1987). 
In general terms, automatic speech recognition (ASR) systems operate in a way not unlike 
human speech recognition. However there are two major differences between human and 
automatic speech recognition. First of all, most mainstream ASR systems avoid an explicit 
representation of the prelexical level to prevent premature decisions that may incur 
irrecoverable errors. More importantly, ASR systems postpone final decisions about the 
identity of the recognised word (sequence) as long as possible, i.e., until additional input 
data can no longer affect the hypotheses. This too is done in order to avoid premature 
decisions, the results of which may affect the recognition of following words. In more 
technical terms: ASR systems use an integrated search inspired by basic Bayesian decision 
theory and aimed at avoiding decisions that must be revoked due to additional evidence. 
The competition between words in human speech recognition, on the other hand, is not 
necessarily always fully open; under some conditions an educated guess is made about the 
identity of the word being spoken, followed by a shallow verification. This means that the 
winning word might be chosen before the offset of the acoustic realisation of the word, thus 
while other viable competing paths are still available. Apparently, humans are willing to 
take risks that cannot be justified by Bayesian decision theory.  

Source: Robust Speech Recognition and Understanding, Book edited by: Michael Grimm and Kristian Kroschel,
ISBN 987-3-90213-08-0, pp.460, I-Tech, Vienna, Austria, June 2007
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At a higher level, i.e., the level of human-human interaction, early decision making plays an 
eminent role as well. This is shown by the extremely efficient turn-taking processes, in 
which listeners take the turn after predicting the moment when turn-switching can take 
place (Garrod & Pickering, 2004), resulting in dialogues with minimal latencies between 
successive turns. Since current ASR systems do not recognise words before their acoustic 
offset, let alone that they would predict the end of an utterance, latencies in turn-taking in 
human-computer interaction are unavoidable, resulting in unnatural dialogues.  
If one wants to build an ASR system capable of early decision making, one needs to develop 
an algorithm that is able to produce a measure analogous to the word activation measure – 
as used by human listeners – that can be computed on-line, as speech is coming in. It is 
important to note that since early recognition involves making decisions before all 
potentially relevant information is available, it introduces the risk of making errors (i.e., 
false alarms of other words than were actually spoken). 
This chapter introduces a novel approach to speech decoding that enables recognising 
polysyllabic words before their acoustic offset. The concept behind this novel approach is 
‘early recognition’, i.e., the reliable identification of spoken words before the end of their 

acoustic realisation, but after the uniqueness point (UP)1 of the word (given a lexicon). The 

restriction to recognition at or after the uniqueness point allows us to focus on acoustic 
recognition, with the  same impact of a language model as in conventional ASR systems, 
which would be comparable – but certainly not identical – to the contexts used in human 
word recognition in Marslen-Wilson’s definition of ‘early selection’.  
Early recognition is dependent on the structure and the contents of the lexicon. If a lexicon 
contains many words that have a UP very late in the word (i.e., only differ in the last one or 
two phones), early recognition (on the basis of acoustic input) is more difficult than when 
the lexicon mainly consists of words which have an early UP (i.e., contain long phone 
sequences after the lexical uniqueness point). At the same time, it is evident that making 
decisions on the basis of only a few phones at the beginning of a long word is more 
dangerous than deciding on the basis of a longer string of word-initial phones. Therefore, 
we will investigate the impact of the number of phones before and after the UP on the 
decision criteria that must be applied for early recognition. This chapter will present 
experiments conducted to optimise the performance of a procedure for making decisions 
before all acoustic information is available and discuss the results. 

2.The recognition system

For conventional speech recognition, it suffices to search for the best-scoring path in the 
search space spanned by the language model, the lexicon, and the acoustic input. In early 
recognition, on the other hand, an additional decision procedure is needed for accepting a 
word as being recognised if its local word activation fulfils one or more criteria. In 
Scharenborg et al. (2003, 2005), we presented a speech recognition system called SpeM 
(Speech-based Model of human word recognition), based on Shortlist (Norris, 1994), that is 
capable of providing on-line dynamically changing ‘word activations’ derived from the log-

                                                                
1 In a lexicon organised in the form of a prefix-tree, the uniqueness point is the phoneme after which a 

path does not branch anymore. 
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likelihood values in conventional ASR systems. SpeM was originally developed to serve as a 
tool for research in the field of HSR.  
SpeM consists of three modules. The first module, the automatic phone recogniser (APR), 
generates a symbolic prelexical representation of the speech signal in the form of a 
(probabilistic) phone graph. The second module, the word search module, parses the graph 
to find the most likely (sequence of) words, and computes for each word its activation based 
on, among others, the accumulated acoustic evidence for that word. During the lexical 
search, SpeM provides a list of the most likely path hypotheses at every phone node in the 
phone graph. The third -decision- module is entered each time after a node in the phone 
graph is processed in the second module. This enables SpeM to recognise and accept words 
before the end of an utterance or phrase. The focus of this paper is on the third module, 
which makes decisions about accepting a word as being recognised if its local word 
activation fulfils one or more criteria. 
The most important difference between SpeM and conventional ASR systems is that the 
search module in SpeM depends in a crucial manner on the availability of some kind of 
prelexical symbolic representation of the speech signal. Consequently, it is not 
straightforward to implement early recognition as presented here in conventional frame-
based ASR systems, since in those systems a prelexical symbolic representation is 
deliberately lacking. This is not to say that computing on-line dynamically varying word 
activation scores is fundamentally impossible in decoders that avoid an explicit prelexical 
representation, but doing so would require a class of algorithms that differ very much from 
SpeM.

2.1 Material and evaluation 

In our evaluation of SpeM’s ability for early decision we focus on polysyllabic content 
words. The reasons for this are twofold. Firstly, function words and short content words 
that are not easy to predict from the (linguistic) context may not be identified by human 
listeners until the word following it has been heard (Grosjean, 1985).  Secondly, short words 
are likely to have a UP that is not before the end of the word since they are often embedded 
in longer words (McQueen et al., 1995), making it a priori impossible to recognise the word 
before its acoustic offset on the basis of only acoustic evidence. 
The training and test data are taken from the VIOS database, which consists of utterances 
taken from telephone dialogs between customers and the Dutch public automatic transport 
timetable information system (Strik et al., 1997). The material to train the acoustic models of 
the APR (AM training material) consists of 25,104 utterances in Dutch (81,090 words, 
corresponding to 8.9 hours of speech excluding leading, utterance internal, and trailing 
silent portions of the recordings). 
A set of 318 polysyllabic station names is defined as focus words. From the VIOS database, 
1,106 utterances (disjoint from the AM training corpus) were selected. Each utterance 
contained two to five words, at least one of which was a focus word (708 utterances 
contained multiple focus words). 885 utterances of this set (80% of the 1,106 utterances) were 
randomly selected and used as the independent test corpus. The total number of focus 
words in this test corpus was 1,463 (563 utterances contained multiple focus words). The 
remaining 221 utterances were used as development set and served to tune the parameters 
of SpeM (see also Section 2.3). The parameter settings yielding the lowest Word Error Rate 
(WER) on the development test set were used for the experiment. The WER is defined as: 
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 WER=(#I+#D+#S)/N 100% (1) 

where #I denotes the number of word insertions; #D the number of word deletions, #S the 
number of word substitutions, and N denotes the total number of words in the reference 
transcription.
The lexicon used by SpeM in the test consisted of 980 entries: the 318 polysyllabic station 
names, additional city names, verbs, numbers, and function words. There are no out-of-
vocabulary words in the test. For each word in the lexicon, one unique canonical phonemic 
representation was available. A unigram language model (LM; see also Section 2.3) was 
trained on the AM training data. This implies that the SpeM decoder only knew about the 
relative frequency of the 980 lexical entries (words), but that it had no means for predicting 
words from the preceding linguistic context – which is good for making the word 
competition as fair as possible.  

2.2 The automatic phone recogniser 

The APR used in this study was based on the Phicos ASR system (Steinbiss et al., 1993), but 
it is easy to build an equivalent module using open source software, such as HTK (Young et 
al., 2002). 37 context-independent phone models, one noise model, and one silence model 
were trained on the VIOS training set. All phone models and the noise model have a linear 
left-to-right topology with three pairs of two identical states, one of which can be skipped. 
For the silence model, a single-state hidden Markov Model is used. Each state comprises a 
mixture of maximally 32 Gaussian densities. The phone models have been trained using a 
transcription generated by a straightforward look-up of the phonemic transcriptions of the 
words in a lexicon of 1,415 entries (a superset of the 980 words in the recognition lexicon), 
including entries for background noise and filled pauses. For each word, the lexicon 
contained only the unique canonical (citation) pronunciation. Thus, potential pronunciation 
variation in the training corpus was ignored while training phone models. 
The ‘lexicon’ used for the phone decoding by the APR consists of 37 Dutch phones and one 
entry for background noise, yielding 38 entries in total (in the lexicon, no explicit entry for 
silence is needed). During decoding, the APR uses a bigram phonotactic model trained on 
the canonical phonemic transcriptions of the AM training material.  
The APR converts the acoustic signal into a probabilistic phone lattice without using lexical 
knowledge. The lattice has one root node and one end node. Each edge (i.e., connection 
between two nodes) carries a phone and its bottom-up evidence in terms of negative log 
likelihood (its acoustic cost). This acoustic cost is directly related to the probability P(X|Ph) 
that the acoustic signal X was produced given the phone Ph.  

2.3 The search module 

The input of the search module consists of the probabilistic phone lattice created by the first 
module and a lexicon represented as a lexical tree. In the lexical tree, entries share common 
phone prefixes (called word-initial cohorts), and each complete path through the tree 
represents the pronunciation of a word. The lexical tree has one root node and as many end 
nodes as there are pronunciations in the lexicon. Nodes that are flagged as end nodes but 
also have outgoing edges indicate embedded words. 
Like a conventional ASR system, SpeM searches for the best-scoring or cheapest path 
through the product graph of the input phone lattice and the lexical tree. It is implemented 
using dynamic programming (DP) techniques, and is time-synchronous and breadth-first. 
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SpeM calculates scores for each path (the total cost), and also a score for the individual 
words on a path (the word cost). The total cost of a path is defined as the accumulation 
along the path arcs of the bottom-up acoustic cost (as calculated by the APR) and several 
cost factors computed in the search module.  
During the recognition process, for each node in the input phone graph, SpeM outputs N-
best lists consisting of hypothesised word sequences and word activation scores (see Section 
3) for each of the hypothesised words  on the basis of the phones in the phone graph (thus 
the stretch of the acoustic signal) that have been processed so far. The order of the parses in 
the N-best list is determined by the total cost of the parses (thus not by the word activation 
scores). Each parse consists of words, word-initial cohorts, phone sequences, garbage, 
silence, and any combination of these, except that a word-initial cohort can only occur as the 
last element in the parse. So, in addition to recognising full words, SpeM is able to recognise 
partial words. In the N-best list, no identical parses exist: Word sequences on different paths 
that are identical in terms of phone symbols, but have different start and end time of the 
words, are treated as the same word sequence (thus timing differences are ignored). That is, 
we only take the order and identity of the words into account for pruning the N-best lists. 
The number of hypotheses in the N-best list is set to 10, so that SpeM will output the 10 most 
likely parses for each node in the input phone graph. Subsequently, the N-best list with the 
word sequences and their accompanying word activation scores is sent to the decision 
module that makes decisions about early recognition. 
The current implementation of SpeM supports the use of unigram and bigram LMs, which 
model the prior probability of observing individual words and of a word given its 
predecessor. In the experiments reported in this paper, only a unigram LM is used. SpeM 
has a number of parameters that affect the total cost and that can be tuned individually and 
in combination. Most of these parameters, e.g., a word entrance penalty (the cost to start 
hypothesising a new word) and the trade-off between the weights of the bottom-up acoustic 
cost of the phones and the contribution of the LM, are similar to the parameters in 
conventional ASR systems. In addition, however, SpeM has two types of parameters that are 
not usually present in conventional ASR systems. The first novel parameter type is 
associated to the cost for a symbolic mismatch between the input lattice and the lexical tree 
due to phone insertions, deletions, and substitutions. Insertions, deletions, and substitutions 
have their own weight that can be tuned individually. Because the lexical search in SpeM is 
phone based, mismatches can arise between symbols in the input phone graph and the 
phonemic transcriptions in the lexical tree. It is therefore necessary to include a mechanism 
which explicitly adjusts for phone-level insertions, deletions, and substitutions. In 
mainstream ASR, on the other hand, the search space is usually spanned by a combination 
of the pronunciation variants in the system’s dictionary and the system’s language model, 
so that explicit modelling of insertions, deletions, and substitutions on the phone-level is not 
necessary. The second novel parameter type is associated to the Possible Word Constraint 
(PWC, Norris et al., 1997). The PWC determines whether a (sequence of) phone(s) that 
cannot be parsed as a word (i.e., a lexical item) is phonotactically well formed (being a 
possible word) or not (see also Scharenborg et al., 2003, 2005). The PWC evaluation is 
applied only to paths that do not consist solely of complete words. Word onsets and offsets, 
utterance onsets and offsets, and pauses count as locations relative to which the viability of 
symbol sequences that are no words (i.e., lexical items) are evaluated. If there is no vowel in 
the sequence between any of these locations and a word edge, the PWC cost is added to the 
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total cost of the path. For example, consider the utterance “they met a fourth time”, where 
the last sound of the word fourth is pronounced as [f]. Because fourf is not stored as a word 
in the lexicon, a potential parse by the recogniser is they metaphor f time. Since f is not a 
possible word in English, the PWC mechanism penalises this parse, and if the cost of the 
substitution of [ ] by [f] is less than the PWC cost, the parse yielding the word sequence 
fourth time will win. At the same time, it is worth mentioning that the PWC enables SpeM to 
parse input with broken words and disfluencies, since it provides a mechanism for handling 
arbitrary phone input (see Scharenborg et al., 2005, for more information).
All parameters in SpeM are robust: Even if they are not optimised in combination, SpeM’s 
output does not change significantly if the value of the parameter that was optimised with 
fixed values of other parameters is changed within reasonable bounds. In this study, the 
parameters were tuned on the independent development set (see Section 2.1), and 
subsequently used for processing the test corpus. 

3. The computation of word activation

An essential element for early decision making is the computation of word activation. The 
measure of word activation in SpeM was originally designed to simulate the way in which 
word activations evolve over time in experiments on human word recognition (Scharenborg 
et al., 2005, 2007). In the computation of the word activation, the local negative log-
likelihood scores for complete paths and individual words on a path are converted into 
word activation scores that obey the following properties, which follow from the concept of 
word activation as it is used in HSR: 

• The word that matches the input best, i.e., the word with the smallest word cost (see 
Section 2.3), must have the highest activation.  

• The activation of a word that matches the input must increase each time an additional 
matching input phone is processed.  

• The measure must be appropriately normalised: Word activation should be a measure 
that is meaningful, both for comparing competing word candidates, and for comparing 
words at different moments in time. 

The way SpeM computes word activation is based on the idea that word activation is a 
measure related to the bottom-up evidence of a word given the acoustic signal: If there is 
evidence for the word in the acoustic signal, the word should be activated. Activation 
should also be sensitive to the prior probability of a word (even if this effect was not 
modelled in the original version of Shortlist (Norris, 1994)). This means that the word 
activation of a word W is closely related to the probability P(W|X) of observing a word W, 
given the signal X and some kind of (probabilistic) LM, which is precisely the cost function 
that is maximised in conventional ASR systems. Thus, it is reasonable to stipulate that the 
word activation Act(W|X) is equal to P(W|X), and apply the same Bayesian formulae that 
form the basis of virtually all theories in ASR to estimate P(W|X). This is why we refer to 
Act(W|X) (or P(W|X)) as the ‘Bayesian activation’.  It is important to emphasise that the 
theory underlying word activation does not require that the sum of the activations of all 
active words should add to some constant (e.g., 1.0, as in probability theory). For the 
purpose of early recognition it suffices to normalise the activation value in such a manner 
that (possibly context dependent) decisions can be made. This too is reminiscent of what 
happens in conventional ASR systems.  
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Since we also want to deal with incompletely processed acoustic input (for early recognition 
of words), Bayes’ Rule is applied to Act(W|X) in which both W and X are evolving over 
time t, and t-steps coincide with phone boundaries:   

))((

))(())(|)((
))(|)((

tXP

nWPnWtXP
tXnWAct =  (2) 

where W(n) denotes a phone sequence of length n, corresponding to the word-initial cohort 
of n phones of W. So, W(5) may, for example, be /Amst@/, i.e., the prefix (or word-initial 
cohort) of the word ‘amsterdam’ (but also of other words that begin with the same prefix). 
X(t) is the gated signal X from the start of W(n) until time t (corresponding to the end of the 
last phone included in W(n)). P(X(t)) denotes the prior probability of observing the gated 
signal X(t). P(W(n)) denotes the prior probability of W(n).  
As said before, in the experiments reported in this chapter, P(W(n)) is exclusively based on 
the unigram probability of the words and the word-initial cohorts (the unigram probabilities 
for word-initial cohorts are determined by summing over the unigram probabilities of all 
words in the cohort). The (unnormalised) conditional probability P(X(t)|W(n)) in equation 
2, is calculated by SpeM as: 

aTC
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where TC is the total bottom-up cost associated with the word starting from the beginning 
of the word up to the node corresponding to instant t. TC includes not only the acoustic 
costs in the phone lattice, but also the costs contributed by substitution, deletion, and 
insertion of symbols (like the acoustic cost calculated by the APR, TC is a negative log 
likelihood score). The definition of the total bottom-up cost is such that TC > 0. The value of 
a determines the contribution of the bottom-up acoustic scores to the eventual activation 
values. The a weights the relative contribution of TC to Act(W(n)|X(t)), and therefore 
balances the contribution of P(X(t)|W(n)) and P(W(n)). Thus, a is similar to the ‘language 
model factor’ in standard ASR systems. a is a positive number; it’s numerical value is 
determined such that the three properties of word activation introduced at the start of this 
section hold (for a more detailed explanation of a, see Scharenborg et al., 2007). 
In contrast to conventional ASR systems, in SpeM, the prior P(X(t)) in the denominator of 
equation 2 cannot be discarded, because hypotheses covering different numbers of input 
phones must be compared. The problem of normalisation across different paths is also 
relevant in other unconventional ASR systems (e.g., Glass, 2003). Furthermore, the 
normalisation needed in SpeM is similar to the normalisation that has to be performed in the 
calculation of confidence measures (e.g., Bouwman et al., 2000; Wessel et al., 2001). In order 
to be able to compare confidence measures of hypotheses with unequal length, the 
normalisation must, in some way, take into account the duration of the hypotheses. In 
normalising equation 2, we followed the procedure for normalising confidence measures. 
However, instead of the number of frames, the number of phones is the normalising factor, 
resulting in a type of normalisation that is more phonetically oriented. The denominator of 
equation 2, then, is approximated by 
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)(#))(( tnodes
DtXP =  (4) 

where D is a constant (0 < D < 1) and #nodes(t) denotes the number of nodes in the cheapest 
path from the beginning of the word up to the node associated with t in the input phone 
graph. In combination with a, D plays an important role in the behaviour over time of 
Act(W(n)|X(t)). Once the value of a is fixed, the value of D follows from two constraints: 1) 
the activation on a matching path should increase; 2) the activation on any mismatching 
path should decrease (for a more detailed explanation of D, see Scharenborg et al., 2007).  
Our choice to normalise the Bayesian activation by the expression given by equation 4 is 
also based on another consideration. Given the Bayesian paradigm, it seems attractive to use 
a measure with the property that logarithmic scores are additive along paths. If X1 and X2 
are two stretches of speech such that X2 starts where X1 ends, associated with two paths P1 
and P2 in the phone lattice (such that P2 starts where P1 ends), then log(P(X1)) + log(P(X2)) 
= log(P(X1 : X2)) (where ‘:’ means ‘followed by’). By doing so the lengths of X1 and X2 are 
assumed to be independent, which is a plausible assumption.  

4. Early recognition in SpeM

4.1 The performance of SpeM as a standard speech recognition system 

In order to assess SpeM’s ability for early decision, it is essential to know the upper-bound 
of its performance: First of all, if a word is not correctly recognised, it will be impossible to 
analyse its recognition point (RP); secondly, only if the RP of a word lies before the end of 
that word, it can, in principle, be recognised before its acoustic offset during the recognition 
process.  In this paper, the RP is defined as the node after which the activation measure of a 
correct focus word exceeds the activation of all competitors, and remains the highest until 
the end of the word (after the offset of a word, the word’s activation does not change). The 
RP necessarily lies after the UP (since prior to the UP, multiple words (in the word-initial 
cohort) share the same lexical prefix, and therefore cannot be distinguished on the basis of 
the acoustic evidence), and is expressed as the position of the corresponding phone in the 
phonemic (lexical) representation of the word. 
In a first step, the performance of SpeM as a standard ASR system was investigated. The 
WER on the full test set and on the focus words was calculated by taking the best matching 
sequence of words as calculated by SpeM after processing the entire input and comparing it 
with the orthographic transcriptions of the test corpus. The WER obtained by SpeM on all 
words in the test material was 40.4%. Of the 1,463 focus words, 64.0% (936 focus words) 
were recognised correctly at the end of the word. Despite the mediocre performance of 
SpeM as an ASR system, we believe it is still warranted to investigate SpeM on the task of 
early decision, since there is a sufficiently large number of correctly recognised focus words. 
It should be noted that in this study no attempt has been made to maximise the performance 
of the acoustic model set of the APR. However, the results presented in Scharenborg et al. 
(2003, 2005) show that SpeM’s performance is comparable to that of an off-the-shelf ASR 
system (with an LM in which all words are equally probable) when the acoustic model set 
used to construct the phone graph is optimised for a specific task. It is thus quite probable 
that improving the performance of the APR should allow SpeM to reach an ASR 
performance level comparable to a conventional ASR system on the VIOS data set (see 
Scharenborg et al., 2007). 
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Length-UP #Types #Tokens Cumulative 

0 10 30 1,463 

1 44 190 1,433 

2 50 182 1,243 

3 63 450 1,061 

4 50 271 611 

5 39 186 340 

6 38 82 154 

7 17 57 72 

8 3 11 15 

9 2 4 4 

Table 1. The distribution (in #types and #tokens) in number of phones between the UP and 
the length of a word (Length-UP); Cumulative: #focus word tokens that could in principle 
be recognised at position Length-UP. 

4.2 Analysis of the recognition point 

In a second step, to determine SpeM’s upper-bound performance on the task of early 
decision, we investigate how many of the focus words have an RP that lies before the end of 
the word. Table 1 shows the distribution of the distance in number of phones between the 
UP and the end of a focus word. ‘Length-UP’ = 0 means that the UP is at the end of the 
word: Either the word is embedded in a longer word or the words only differ in their last 
phoneme. Columns 2 and 3 show the number of focus word types and tokens with ‘Length-
UP’ phones between the end of the word and the UP. The column ‘Cumulative’ shows the 
number of focus word tokens that could in principle be recognised correctly at ‘Length-UP’ 
phones before the end of a word. For instance, at 8 phones before the end of a word, the 
only words that can in principle be recognised correctly are those that have a distance of 8 or 
more phones between the end of the word and the UP; at 0 phones before the end of a word, 
all words could in principle be identified correctly. From Table 1 it can be deduced that the 
UP of 85.0% of all focus word tokens (1,243/1,463) is at least two phones before the end of 
the word; only 2% of the focus word tokens (30/1,463) have their UP at the end of the word.  
In our analysis of the RP, we only took those focus words into account that were recognised 
correctly, since, obviously, a word that is not recognised correctly does not have an RP. First, 
the path and word hypotheses were ranked using the Bayesian word activation score. 
Subsequently, for each correctly recognised focus word, the node after which the Bayesian 
word activation exceeds the Bayesian word activation of all its competitors, and remains the 
highest until the end of the word is determined. Of the focus words that were recognised 
correctly, 81.1% had their RP before the end of the word (759 of 936 correctly recognised 
focus words; 51.9% of all focus words). 
To understand how much evidence SpeM needs to make an early decision about 
‘recognising’ a word, the RP of all 936 correctly recognised focus words was related to the 
UP and the total number of phones of that word. The results are shown in the form of two 
histograms in Fig. 1. The frequency is given along the y-axis. In the left panel, the x-axis 
represents the distance (in phones) between the UP and the RP of the focus words. N = 0 
means that the word activation exceeded all competitors already at the UP. In the right 
panel, the x-axis represents the position of the RP (in number of phones (N)) relative to the 
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last phone in the canonical representation of the word. Here, N = 0 means that the word 
activation exceeded the competitors only at the last phone of the word. The high frequency 
in the case of N = 3 in the right panel of Fig. 1 is due to an idiosyncratic characteristic of the 
data, which is irrelevant for the task. As can be seen in Table 1, there is a large set of words 
that have their UP three phones before the end of the word (450). 
Combining the information in Fig. 1 and Table 1 shows that although only 2% of the focus 
words have their UP at the end of the word, 19.8% (185/936, see right panel of Fig. 1) of the 
words were only recognised at the end of the word. Apparently, SpeM is not always able to 
recognise a word before its acoustic offset, despite the fact that the UPs in the set of words 
were almost always at least one phone before the end of the word. More interestingly, 
however, from Fig. 1 it can also be deduced that 64.1% (sum of N = 0 and N = 1, see left 
panel of Fig. 1) of the total number of recognised focus words were already recognised at or 
maximally one phone after the UP. Taking into account that 85.0% of the focus words have 
at least two phones after their UP, this indicates that SpeM is able to take advantage of the 
redundancy caused by the fact that many words in the vocabulary are unique before they 
are complete. 
As pointed out at the start of this chapter, psycholinguistic research (Marslen-Wilson, 1987) 
has shown that listeners are able to recognise long and frequent words before their acoustic 
offset. However, this does not imply that this always happens and for all words. There are 
still words (including frequent and long words) that can only be recognised by a listener 
after some of the following context has been heard. The SpeM results showed that the UP 
and RP do not coincide for all focus words that were recognised. SpeM, like listeners, 
occasionally needs information from the following context to make a decision about the 
identity of a word. This can be explained by the fact that a focus word that is correctly 
recognised at the end of an utterance may not match perfectly with the phone sequence in 
the phone graph. An analysis (see Scharenborg et al., 2007) showed that for 34.9% of the 
utterances, the canonical phone transcription of the utterance was not present in the phone 
graph. For these focus words, phone insertion, deletion, and substitution penalties are 
added to the total score of the word and the path. Competing words may have a phonemic 
representation that is similar to the phonemic representation of the correct word sequence. 
In these cases, it may happen that the best matching word can only be determined after all 
information of all competing words is available. 

Figure  1. Left panel: histogram relating the RP to the UP. Right panel: histogram relating the 
RP to the total number of phones in the word for the 936 correctly recognised focus words. 
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5. Predictors for reliable on-line early decision making 

In the previous analyses, the RP and thus SpeM’s ability of early decision was investigated 
after the recognition process had taken place. This was done to determine the upper-bound 
of SpeM’s performance on the task of early decision: 936 focus words were recognised 
correctly, while 2% of the focus words have their UP at the end of the word. It can be 
deduced from the right panel of Fig. 1 that, as an upper-bound, 751 (80.2%) correctly 
recognised focus words can be recognised before the acoustic offset of the word. Of course, 
in order to use the concept of early decision in an operational system in order to speed up 
for instance human-computer interaction, a procedure needs to be developed that accurately 
and reliably decides whether a word is considered as recognised before the end of its 
acoustic realisation.  
As stated above, in comparison to integrated search approaches as used in mainstream ASR 
systems, early decision making introduces an additional decision problem that introduces 
additional errors and thus additional risks. Intermediate results are also computed in 
integrated search and therefore might be made available at the output interface of the search 
module, but because these results can still change later on in the recognition process, this is 
not usually done. One exception to this rule are dictation systems that show word 
hypotheses on the screen that are subsequently revised as the search progressed. In the case 
of early decision making as defined in this study, however, a decision made during the 
recognition process cannot be adapted, and is thus final. Early decision making is thus not 
synonymous with fast decision making; early decision making predicts the future.  
The analyses presented in the previous section showed that the Bayesian word activation of 
many polysyllabic content words exceeds the activation of all competitors before the end of 
the words. However, this does not imply that the Bayesian word activation can be safely 
used to perform early decision. We created a decision procedure on the basis of the Bayesian 
word activation and experimented with a combination of absolute and relative values of the 
Bayesian word activation. Additionally, we investigated whether the reliability of early 
decision making is affected by the number of phones of the word that have already been 
processed and the number of phones that remain until the end of the word. The 
performance of that module will be evaluated in terms of precision and recall: 

• Precision: The total number of correctly recognised focus words, relative to the total 
number of recognised focus words. Thus, precision measures the trade-off between 
correctly recognised focus words and false alarms.

• Recall: The total number of correctly recognised focus words divided by the total 
number of focus words in the input. Thus, recall represents the trade-off between 
correctly recognised focus words and false rejects.

As usual, there is a trade-off between precision and recall. Everything else being equal, 
increasing recall tends to decrease precision, while increasing precision will tend to decrease 
recall. We are not interested in optimising SpeM for a specific task in which the relative costs 
of false alarms and false rejections can be established, since in this paper we are mainly 
interested in the feasibility of early recognition in an ASR system. Therefore, we decided to 
refrain from defining a total cost function that combines recall and precision into a single 
measure that can be optimised.  
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Figure 2. Schematic illustration of the process of early decision making. 
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For the task of early decision making, the SpeM model is expanded with a decision module. 
The input of the decision module consists of the N-best list with the word sequences and 
their accompanying Bayesian word activation scores as created by the search module at each 
point in time when a new symbol is added to the phone graph. The decision module only 
makes a decision about early recognition for focus words. For a focus word to be recognised 
by SpeM, the following three conditions have to be met:  
1. The phone sequence assigned to the focus word is at or beyond the focus word’s UP.  
2. We do not want SpeM to accept a word that happens to have the highest activation 

irrespective of the absolute value of the activation. Therefore, the value of the Bayesian 
word activation of the focus word itself must exceed a certain minimum activation 
(Actmin).  In the experiments described below, various values for Actmin were tested. 

3. Since we do not want SpeM to make a decision as long as promising competitors are 
still alive, the quotient of the Bayesian word activation of the focus word on the best-
scoring path and the Bayesian word activation of its closest competitor (if present) must 
exceed a certain threshold (�). In the experiments, various values for � were tested. 

In the SpeM search, two words are said to be in competition if the paths they are on contain 
an identical sequence of words, except for the word under investigation. Recall that we only 
look at the order and identity of the words (see Section 2.3). Thus, two word sequences on 
two different paths that are identical, but have a different start and end time of the words, 
are treated as the same word sequence, and so do not compete with each other. (Remember 
that we only look at the current word; it does not matter whether the paths on which the 
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not guaranteed that all words always have a competitor, because it is possible that all paths 
in the N-best list are completely disjunct – and so do not share the same history, as is 
required for being competitor in our definition of the term. Absence of a competitor makes 
the computation of � impossible. To prevent losing all words without competitors due to a 
missing value, we accept all focus words without a competitor that appear at least five times 
(at the same position in the word sequence) in the N-best list.   
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Fig. 2 schematically depicts the process of early recognition. The Bayesian activation of 
words grows over time as matching evidence is added. Before the word’s UP, several words 
are consistent with the phone sequence; the difference in activation of the individual words 
in the cohort is caused by the influence of the LM. After a word’s UP, each word has its own 
Bayesian word activation. For the purpose of the experiments in this section, we define the 
decision point (DP) as the point at which a word on the first best path meets the three 
decision criteria described above. 

5.2 � and Actmin as predictors of early recognition 

To determine the effect of the variables introduced in decision criteria 2 and 3, experiments 
were carried out in which their respective values were varied: The value of Actmin was 
varied between 0.0 and 2.0 in 20 equal-sized steps; the value of � was varied between 0.0 
and 3.0 in six equal-sized steps of 0.5. Fig. 3 shows the relation between precision (y-axis) 
and recall (x-axis) for a number of combinations of � and 21 values of Actmin. For the sake of 
clarity, Fig. 3 is limited to three values of �, viz. � = 0.5, 1.5, 2.5; all other values of � show 
the same trend. The left-most symbol on each line corresponds to Actmin = 2.0; the right-most 
one corresponds to Actmin = 0.0. 
The results in Fig. 3 are according to our expectation. Recall should be an inverse function of 
�: The smaller � becomes, the less it will function as a filter for words that have a 
sufficiently high activation, but which still have viable competitors. Similarly for Actmin: For 
higher values of Actmin, fewer focus words will have an activation that exceeds Actmin, and 
thus fewer words are recognised. These results indicate that the absolute and relative values 
of Bayesian activation that were defined as decision criteria seem to work as predictors for 
the early recognition of polysyllabic words.  

5.3 The effect of the amount of evidence for a word on precision and recall 

As pointed out before, in our definition of early recognition a word can only be recognised 
at or after its UP. Thus, words that have an early UP can fulfil the conditions while there is 
still little evidence for the word. This raises the question what the effect is of the amount of 
evidence in support of a word (the number of phones between the start of the word and the 
DP) or of the ‘risk’ (in the form of the number of phones following the DP until the end of 
the word) on precision and recall. In the following analysis this question is investigated. For 
fixed values for Actmin and �, precision and recall are calculated for different amounts of 
evidence, thus different ‘risk’ levels, as a function of the number of phonemes between the 
start of the word and its DP and number of phones between the DP and the end of the word. 
The value for Actmin is set to 0.5, a value that guarantees that we are on the plateau shown in 
Fig. 3; � was set at 1.625 (on the basis of results in Scharenborg et al., 2007). In these 
analyses, we are interested in the number of words that could in principle be recognised 
correctly at a certain point in time. The definitions of precision and recall are therefore 
adapted, such that they only take into account the number of focus word tokens that in 
principle could be recognised. For calculating recall, the total number of correctly 
recognised focus words is divided by the total number of focus words that could in 
principle have been recognised at that position in the word (accumulating to 1,463 focus 
words). Precision is calculated in the same manner: The total number of correctly recognised 
focus words so far is divided by the total number of recognised focus words so far. 
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Figure 3. For three values of �, the precision and recall of 21 values of Actmin are plotted. 
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Figure 4.The x-axes show the number of phones between the DP and the end of the word 
(left panel) and between the start of the word and its DP (right panel); the y-axes show for �
= 1.625 and Actmin =  0.5 the percentage recall (solid lines with crosses +) and precision (solid 
lines with circles o), respectively. 

Fig. 4 shows the results. In the left panel, the x-axis shows the number of phones between 
the DP and the end of the word; the y-axis shows the percentage recall (line with circles o) 
and precision (line with crosses +), respectively. The right panel of Fig. 4 shows on the x-axis 
the number of phones between the start of the word and its DP; the y-axis shows the 
percentage recall (line with circles o) and precision (line with crosses +), respectively. The 
left panel of Fig. 4 clearly shows that precision and recall increase if the number of phones 
remaining after the DP decreases. This is easy to explain, since mismatches in the part of the 
word that is as yet unseen cannot be accounted for in the activation measure, but the risk 
that future mismatches occur will be higher if more phones remain until the end of the 
word. At the same time, recall increases if the DP is later, so that more information in 
support of the hypothesis is available (see right panel of Fig. 4). This too makes sense, since 
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one may expect that a high activation measure that is based on more phones is statistically 
more robust than a similarly high value based on a small number of phones. It should be 
noted, however, that the right panel of Fig. 4 suggests that precision is not dependent on the 
number of phones between the start of a word and its DP: The trade-off between the false 
alarms and the correctly recognised focus words does not change much. 

5.4 Summary 

We investigated a predictor related to the absolute and relative values of the word 
activation, Actmin and �, respectively, for deciding whether a word is considered as 
recognised before the end of its acoustic realisation. The results showed that the predictor 
functions as a filter: The higher the values for the predictor, the fewer words are recognised, 
and vice versa. In this paper, we only presented the results in a form equivalent to ROC 
curves. Selecting the best possible combination of the values of the predictor is 
straightforward once the costs of false alarms and false rejects can be determined. In the 
subsequent analyses, the effect on precision and recall of the amount of evidence for a word, 
in terms of the number of phones of the word that have already been processed and the 
number of phones that remain until the end of the word was investigated. Not surprisingly, 
the results showed that SpeM’s performance increases if the amount of evidence in support 
of a word increases and the risk of future mismatches decreases if there are fewer phones 
left until the end of the word. These results clearly indicate that early recognition is indeed 
dependent on the structure and the contents of the lexicon. If a lexicon contains many (long) 
words that have an early UP, decisions can be made while only little information is known, 
at the cost of increasing the risk of errors. It is left to follow-up research to investigate 
whether the decision thresholds for � and Actmin can be made dependent on the phonemic 
structure of the words on which decisions for early recognition must be made. 
Summarising, we observed that a word activation score that is high and based on more 
phones with fewer phones to go predicts the correctness of a word more reliably than a 
similarly high value based on a small number of phones or a lower word activation score. 

6. Discussion

In the laboratory, listeners are able to reliably identify polysyllabic content words before the 
end of the acoustic realisation (e.g., Marslen-Wilson, 1987). In real life, listeners not only use 
acoustic-phonetic information, but also contextual constraints to make a decision about the 
identity of a word. This makes it possible for listeners to guess the identity of content words 
even before their uniqueness point. In the research presented here, we investigated an 
alternative ASR system, called SpeM, that is able to recognise words during the speech 
recognition process for its ability for recognising words before their acoustic offset – but 
after their uniqueness point – a capability that we dubbed ‘early recognition’. The restriction 
to recognition at or after the uniqueness point allowed us to focus on acoustic recognition 
only, and minimise the impact of contextual constraints. The probability theory underlying 
SpeM makes it possible for an advanced statistical LM to emulate the context effects that 
enable humans to recognise words even before their uniqueness point. Such an LM would 
make SpeM’s recognition behaviour even more like human speech recognition behaviour. 
In our analyses, we investigated the Bayesian word activation as predictor for early 
recognition. The results in Section 5 indicate that the Bayesian word activation can be used 
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as a predictor for on-line early recognition of polysyllabic words if we require that the 
quotient of the activations of the two hypotheses whose scores with first and second rank 
(�) and the minimum activation (Actmin) of the word with the highest activity score both 
exceed a certain threshold. There was, however, a fairly high percentage of false alarms. In 
the subsequent analysis, we found that the amount of evidence supporting a decision affects 
the performance. If the decision point was later in the word, thus based on more acoustic 
evidence in support of a word, the performance in terms of precision and recall improved. 
Furthermore, the risk of future mismatches decreases with fewer phones between the end of 
the word and the decision point, which also improves the performance. The predictor we 
chose has its parallels in the research area that investigates word confidence scores. For 
instance, � is identical to the measure proposed in Brakensiek et al. (2003) for scoring a 
word’s confidence in the context of an address reading system, while � and Actmin are 
reminiscent of the graph-based confidence measure introduced in Wessel et al. (2001). The 
definition of word activation in SpeM resembles the calculation of word confidence 
measures (e.g., Bouwman et al., 2000; Wessel et al., 2001) in that both word activation and 
word confidence require a mapping from the non-normalised acoustic and LM scores in the 
search lattice to normalised likelihoods or posterior probabilities. Conceptually, both word 
activation and word confidence scores are measures related to the ‘probability’ of observing 
a word given a certain stretch of speech (by the human and ASR, respectively). However, in 
contrast to the early decision paradigm presented in this chapter, most conventional 
procedures for computing confidence measures are embedded in an integrated search; 
therefore, they only provide the scores at (or after) a point in an utterance when no new data 
are available that might revise the original scores. 
The capability of recognising words on the basis of their initial part helps listeners in 
detecting and processing disfluencies, such as self-corrections, broken words, repeats, etc. 
(Stolcke et al., 1999). The integrated search used in ASR systems makes it difficult to 
adequately deal with these disfluencies. The incremental search, however, used by SpeM to 
recognise a word before its acoustic offset, in combination with the concept of word 
activation proposed in this study, opens the door towards alternatives for the integrated 
search that is used in almost all current ASR systems. An incremental search combined with 
word activations will be able to detect and process potential problems such as disfluencies 
more accurately and faster. Furthermore, if an incremental search would be incorporated in 
a speech-driven application, the time needed to respond to a speaker can be much shorter. 
This will be beneficial for ease of use of speech-centric interaction applications. 

7. Conclusions and future work

In this chapter, we showed that SpeM, consisting of an automatic phone recogniser, a lexical 
search module, and an early decision mechanism is able to recognise polysyllabic words 
before their acoustic offset. In other words, the results presented in this chapter showed that 
early decision making in an ASR system is feasible. This early decision making property of 
SpeM is based on the availability of a flexible decoding during the word search and on the 
availability of various scores along the search paths during the expansion of the search 
space that can be properly normalised to support decision making. The early recognition 
process is comparable to what human listeners do while decoding everyday speech: Making 
guesses and predictions on the basis of incomplete information.  
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For 81.1% of the 936 correctly recognised focus words (51.9% of all focus words), the use of 
local word activation allowed us to identify the word before its last phone was available, 
and 64.1% of those words were already recognised one phone after the uniqueness point. 
However, the straightforward predictors that we derived from the Bayesian word activation 
appeared to yield relatively many false alarms. Yet, we are confident that the predictive 
power of measures derived from word activation can be improved, if only by making 
decision thresholds dependent on knowledge about the words that are being hypothesised.  
Finally, the reason for starting the research on early recognition to begin with was the 
potential benefits that early recognition promises for improving the speed and naturalness 
of human-system interaction. So far, the results of our work are promising. However, our 
experiments have shown that substantial further research is needed to better understand the 
impact of all the factors that affect and support the ‘informed guessing’ that humans 
perform in day-to-day interaction, and that allows them to predict what their interlocutor is 
going to say and when (s)he will reach a point in an utterance where it is safe to take the 
turn.
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