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1.	Introduction  
 

The recent trend in the design of a robot system towards to increase the capibility of a single 
robot for the increasing demand in different applications at home, industry or 
military(Murry 2007). However, it greatly increases not only the unit production cost but 
also the design complexity. One of the best solution for this problem is certainly identified 
as using many of the low cost robots in terms of the cooperative manner. Accordingly, the 
formation system may constitute a more effective achievement than a single robot in regard 
to the union of the different functions in the different Wheeled Mobile Robots(WMRs) of a 
team such that the cooperative system tends to the better signal resolution and the higher 
performance of the information system etc. Sometimes we could also suffer the task which is 
very diffcult to be achieved with a single robot, i.e., move a large size object from one place 
to another one or deal with the highly flexible tasks. 
The Multi-Robot Formation System (MRFS) is generally defined as a system contains a 
collection of the robotic subsystems which is able to be cooperation/competition with each 
other. The interconnected structure of the MRFS represents the physical or nonphysical 
interconnected relationship between any robots based on the specific robot in the formation 
team. Usually, the interconnected structure of the MRFS can be regarded as a topological 
structure with the communication system(Fax and Murray 2004; Olfati-Saber and Murray 
2004). In other words, the topological structure is the foundation of the information system 
of the MRFS that is used to exchange their state information for the centralized 
coordinator(Matinez, Cortes et al. 2007). From geometrical persepective, the topological 
structure governs the shape stability or equivalently the graph rigidity(Lin, Francis et al. 
2005) of the MRFS.  
Reviewing with the information aspect, the interconnected structure is naturally constructed 
with respect to the physical limitation of the sensors or the communication power of the 
WMRs, i.e., the resolution of the range sensor or the communication range etc. Sometimes, 
the interconnected structure may be assigned autonomously by the task manager who 
receives the global information of the systems and manages the performance of the task. The 
MRFS could surely be explained through the hierarchical system, ref. (Singh 1977). We 
emphasize that the MRFS is topologically constructed by the two hierarchy with 
low(subsystem) and high(interconnected system) level in this research. In most of the 
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applications, the hierarchical system is diffeomorphic from low to high level or vice versa, 
see (Pappas, Lafferriere et al. 2000). However, in our research, it is complex beyond that: for 
the proposed hierarchical system, if we define an injective map: : m n

Mf   , it is said 
that Mf  is a smooth map or, furthermore we said that the interconnected system is locally 
submersion to the subsystems of the MRFS.  
The field of the nonholonomic system has been extensively studied since it is founded from 
Euler and Lagrange’s research result in the rolling without sliding mechanical system on a 
plane. Recently, the related control issues in the nonholonomic system are still an active 
research area either in the mathematics or in the engineering field, see (BLOCH, 
DRAKUNOV et al. 2000; Monforte 2002; Fernandez and Bloch 2008). Without loss of 
generality, the subject of the subsystem in this research can be practically restricted to a 
Wheeled Mobile Robot (WMR) so that the subsystem belongs to the nonholonomic system 
which statisfies both no sliding and no slipping constraints. More precisely, the motion of 
the nonholonomic system is physically subject to the nonholonomic constraints. Hence, we 
say that the MRFS is again the nonholonomic system so that the unreachable region locally 
varied with the instant of the velocity of the WMRs in a team. With this aspect, the research 
in (Brokett 1983) has indicated that there doesn’t exist smooth feedback controller for a 
single WMR. Fortunately, the later works in (Koiller 1992; Murry and Sastry 1993) proposed 
that the periodic solution can be adopted for the control of the nonholonomic system. For 
instance, the asymptotically stable of the WMR is guaranteed. 
Therefore, we consider the ways of relating the interconnected stability(or so-called the 
graph rigidity) to the stability of the interconnected nonholonomic subsystems. More 
prcisely, the task of the MRFS is generally classified as formation maintain and the 
formation switch. The task of the formation maintain is simply to maintain the formation 
shape when moves from the start point to the end point so that the control goal is to 
stabilize the formation variables and the subsystem variables simetinuously by the given 
trajectory, see (Chang and Fu 2008). Several elegant researches have been proposed in terms 
of the issue. The disctribute formation control architecture with respect to the consensus 
problem of the communication system is experimentally implemented and valited on the 
neighbour to neighbour information exchange in (Ren and Sorensen 2008). The control 
strategy with the input constraint in associated with the leader-follower control architecture 
of the MRFS has been obtained (Consolinia, Morbidib et al. 2008). A game theoretic 
modelling approach for the MRFS is provided by (Harmati and Skrzypczyk 2008). (Kaminka, 
Schechter-Glick et al. 2008) has been proposed the sensor based MRFS to achieve the 
minimal cost sensing system design. In addition, for overcomimg the trade off in the control 
goal between formation system and subsystems, a differential game approach has been used 
to model such the problem and a differential game based controller has been derived in 
(Kaminka, Schechter-Glick et al. 2008). Moreover, the construction for the MRFS can be 
additionally identified as virtual structure approach, leader-follower approach and the 
behaviour approach. 
Also. the task of the formation switch is naturally defined that the swithing topology of the 
MRFS is physically performed while executing the task. Comparing to the proceed problem 
in the formation maintain, the switching stability has to be additionally cared particullarly 
in the nonholonomic system. Namely, it is lead to the topological structure switch of the 
formation system such that two main issues have to be concerned: the structure stability of 
the MRFS and the subsystem stability under the impluse response. Additionally, the 

 

impulse response of the nonholonomic system may lead to relase the nonholonomic 
constrains due to the desired state of the subsystem may locally stay on the unreachable 
region. The decentralized receding horizen controllers has been proposed in (Keviczky, 
Borrelli et al. 2008) that reside on each vehicle to achieve coordination among team members.  
The control of the MRFS which considered the changing formation has been studied in 
(Desai, Ostrowski et al. 2001). (Das, Fierro et al. 2002) has developed a framework for 
cooperative control of the MRFS that has been applied in the vision-based formation system.  
We do not have a study to the overall problem in the MRFS but we focus the problem of the 
formation stability analysis and the nonholonomic multi-robotic formation control design 
with respect to the capacity of the switching formation topology on-line which extends from 
the previous work(Chang and Fu 2008). This chapter is organized as follows: the general 
modelling of the MRFS is presented in Section 2. Additionally, the interconnected stability 
and formation control design is examined in Section 3. In Sections 4, the simulation are 
presented. Finally, in Section 5, the conclusions are made. 

 
2. General Modelling of the MRFS 
 

Consider a MRFS with the formation state :  2 ;1 ,ijz z i j i j n     . The MRFS is 

composed by n  WMRs whose state can be described as a vector matrix: 
  3 2

1
n

nq q q    . More precisely, the ith WMR with the jth interconnection in a MRFS 
implies ijz   if the ith WMR connects to the jth WMR. Suppose that the desired 

interconnected structure and a desired formation state  2 ;1 ,d dijz z i j i j n      are 

given and a virtual formation center 2
cq   which locates inside the closed region of the 

formation shape is chosen.  The kinematics of the WMR can be generally regarded as an 

driftless affine control system:  
1

k

i j i j
j

q g q u


  with ju  being the control;  k  being a 

constant number of the control variables.  
Now the virtual center of the MRFS moves along a desired trajectory  dc t  so that the MRFS 

is driven from an initial state  0 0c dq c t  to a final state  cf d fq c t  where 0t  and ft  denote 

the initial and final time respectively in addition to maintain the given formation shape 
derived from the desired formation state simultaneously. It is obviously that the set of the 
desired state  1 2, , ,d d dnq q q  of the WMRs in the formation team could be obtained with the 

well-known  dc t  and dz , i.e.,  di d dq c f z   where f  denotes a differentiable function. 

For all positive ,z q  , there exists positive ,z    such that  sup zi z ziB r   and 

 sup qi q qiB r   where  zi zB   and  qi qB   denote small enough balls ; zir  and qir  are the 

radius of the balls respectively;. Now we set  min ,z z ir  , and the following definitions 
can be made: 
Definition 2.1(Interconnection stable): Consider a nonholonomic MRFS with its 
interconnected structure. Initially, we set    0 0ij dij z

j
z t z t    . If there exists the 
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applications, the hierarchical system is diffeomorphic from low to high level or vice versa, 
see (Pappas, Lafferriere et al. 2000). However, in our research, it is complex beyond that: for 
the proposed hierarchical system, if we define an injective map: : m n

Mf   , it is said 
that Mf  is a smooth map or, furthermore we said that the interconnected system is locally 
submersion to the subsystems of the MRFS.  
The field of the nonholonomic system has been extensively studied since it is founded from 
Euler and Lagrange’s research result in the rolling without sliding mechanical system on a 
plane. Recently, the related control issues in the nonholonomic system are still an active 
research area either in the mathematics or in the engineering field, see (BLOCH, 
DRAKUNOV et al. 2000; Monforte 2002; Fernandez and Bloch 2008). Without loss of 
generality, the subject of the subsystem in this research can be practically restricted to a 
Wheeled Mobile Robot (WMR) so that the subsystem belongs to the nonholonomic system 
which statisfies both no sliding and no slipping constraints. More precisely, the motion of 
the nonholonomic system is physically subject to the nonholonomic constraints. Hence, we 
say that the MRFS is again the nonholonomic system so that the unreachable region locally 
varied with the instant of the velocity of the WMRs in a team. With this aspect, the research 
in (Brokett 1983) has indicated that there doesn’t exist smooth feedback controller for a 
single WMR. Fortunately, the later works in (Koiller 1992; Murry and Sastry 1993) proposed 
that the periodic solution can be adopted for the control of the nonholonomic system. For 
instance, the asymptotically stable of the WMR is guaranteed. 
Therefore, we consider the ways of relating the interconnected stability(or so-called the 
graph rigidity) to the stability of the interconnected nonholonomic subsystems. More 
prcisely, the task of the MRFS is generally classified as formation maintain and the 
formation switch. The task of the formation maintain is simply to maintain the formation 
shape when moves from the start point to the end point so that the control goal is to 
stabilize the formation variables and the subsystem variables simetinuously by the given 
trajectory, see (Chang and Fu 2008). Several elegant researches have been proposed in terms 
of the issue. The disctribute formation control architecture with respect to the consensus 
problem of the communication system is experimentally implemented and valited on the 
neighbour to neighbour information exchange in (Ren and Sorensen 2008). The control 
strategy with the input constraint in associated with the leader-follower control architecture 
of the MRFS has been obtained (Consolinia, Morbidib et al. 2008). A game theoretic 
modelling approach for the MRFS is provided by (Harmati and Skrzypczyk 2008). (Kaminka, 
Schechter-Glick et al. 2008) has been proposed the sensor based MRFS to achieve the 
minimal cost sensing system design. In addition, for overcomimg the trade off in the control 
goal between formation system and subsystems, a differential game approach has been used 
to model such the problem and a differential game based controller has been derived in 
(Kaminka, Schechter-Glick et al. 2008). Moreover, the construction for the MRFS can be 
additionally identified as virtual structure approach, leader-follower approach and the 
behaviour approach. 
Also. the task of the formation switch is naturally defined that the swithing topology of the 
MRFS is physically performed while executing the task. Comparing to the proceed problem 
in the formation maintain, the switching stability has to be additionally cared particullarly 
in the nonholonomic system. Namely, it is lead to the topological structure switch of the 
formation system such that two main issues have to be concerned: the structure stability of 
the MRFS and the subsystem stability under the impluse response. Additionally, the 

 

impulse response of the nonholonomic system may lead to relase the nonholonomic 
constrains due to the desired state of the subsystem may locally stay on the unreachable 
region. The decentralized receding horizen controllers has been proposed in (Keviczky, 
Borrelli et al. 2008) that reside on each vehicle to achieve coordination among team members.  
The control of the MRFS which considered the changing formation has been studied in 
(Desai, Ostrowski et al. 2001). (Das, Fierro et al. 2002) has developed a framework for 
cooperative control of the MRFS that has been applied in the vision-based formation system.  
We do not have a study to the overall problem in the MRFS but we focus the problem of the 
formation stability analysis and the nonholonomic multi-robotic formation control design 
with respect to the capacity of the switching formation topology on-line which extends from 
the previous work(Chang and Fu 2008). This chapter is organized as follows: the general 
modelling of the MRFS is presented in Section 2. Additionally, the interconnected stability 
and formation control design is examined in Section 3. In Sections 4, the simulation are 
presented. Finally, in Section 5, the conclusions are made. 

 
2. General Modelling of the MRFS 
 

Consider a MRFS with the formation state :  2 ;1 ,ijz z i j i j n     . The MRFS is 

composed by n  WMRs whose state can be described as a vector matrix: 
  3 2

1
n

nq q q    . More precisely, the ith WMR with the jth interconnection in a MRFS 
implies ijz   if the ith WMR connects to the jth WMR. Suppose that the desired 

interconnected structure and a desired formation state  2 ;1 ,d dijz z i j i j n      are 

given and a virtual formation center 2
cq   which locates inside the closed region of the 

formation shape is chosen.  The kinematics of the WMR can be generally regarded as an 

driftless affine control system:  
1

k

i j i j
j

q g q u


  with ju  being the control;  k  being a 

constant number of the control variables.  
Now the virtual center of the MRFS moves along a desired trajectory  dc t  so that the MRFS 

is driven from an initial state  0 0c dq c t  to a final state  cf d fq c t  where 0t  and ft  denote 

the initial and final time respectively in addition to maintain the given formation shape 
derived from the desired formation state simultaneously. It is obviously that the set of the 
desired state  1 2, , ,d d dnq q q  of the WMRs in the formation team could be obtained with the 

well-known  dc t  and dz , i.e.,  di d dq c f z   where f  denotes a differentiable function. 

For all positive ,z q  , there exists positive ,z    such that  sup zi z ziB r   and 

 sup qi q qiB r   where  zi zB   and  qi qB   denote small enough balls ; zir  and qir  are the 

radius of the balls respectively;. Now we set  min ,z z ir  , and the following definitions 
can be made: 
Definition 2.1(Interconnection stable): Consider a nonholonomic MRFS with its 
interconnected structure. Initially, we set    0 0ij dij z

j
z t z t    . If there exists the 
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following condition:    
0 ,

lim
f

ij dij z
t t t j

z t z t 
  

   for all i , the MRFS is said to be 

interconnection stable. 
Definition 2.2(Formation system stable): Let ijz  be continuous in  t . The equilibrium point 

 0 0ijz   and  0 0iq   information variable and individual variable respectively for all ,i j  
is 
 formation system stable: Definition 2.1 holds and if there exists 

   0 0ij dij z
j
z t z t   ;    0 0i di qq t q t     then    

0 ,
lim

f
i di q

t t t
q t q t 

  
  , for all i ; 

 asymptotically formation system stable: Definition 2.1 holds and if there exists 
    0 0ij dij z

j
z t z t   ;    0 0i di qq t q t    then    lim 0i dit

q t q t


  , for all i ; 

 formation system unstable: if it is not formation system stable. 
According to Definition 2.2, if the MRFS has the formation system stable, one of the 

necessary condition is that the interconnection sable has to be held. On the contrary, the 
interconnection stable cannot be the necessary condition for the formation system stable. In 
other words, the interconnection stability is clearly defined as the sufficient condition for 
achieving the formation stable. The formation system stability, no doubt, is thus based on 
the interconnection stable and the subsystem stable simeltineously. In addition, we have 
proved that if the Definition 2.2 is commitment, then the final state of the WMRs in the 
MRFS will be reached:  df d fq c t , in section IV. 

Remark 2.3: Considering the Definition 2.2, the following condition yields: 
 if there exists    

0 ,
lim

f
i di q

t t t
q t q t 

  
    then     

0 ,
lim

f
ij dij z

t t t j
z t z t 

  
  ; 

 if there exists    lim 0i dit
q t q t


    then    lim 0ij dijt j

z t z t


  .
 
 

Thus, the formation system stable can be guaranteed by evaluating the convergence 
property of the individual states while performing the full state formation tracking. 
As we know, the formation variables: the relative length and the relative heading angle, is 
abstracted from a collection of the states of nonholonomic WMRs. Also, the formation states 
can be written by general functions: 

 
 

,

, , ,

pij pi pjij
ij

ij ij pi pj i j

f q ql
z Q

f q q q q 


            
 

with 
T

i pi i iq q q N     and 
T

j pj j jq q q N     where ,m k
iQ N   and k

jN   

denote the compact and differentiable manifolds.  
Suppose the desired formation states are given and the formation system satisfies the 
condition of interconnection stable such that the solution of the individual states may not 
unique. For example,    1,pi pj pij ijq q f l  and    1, , ,pi pj i j ij ijq q q q f   , there are two 

equations but more than two unknown variables in both of the equations. Figure  1 shows 
the illustrated scenario with three WMRs in the MRFS. 

 

 

Fig. 1. A MRFS with three WMRs. 
 
In Figure  1, the interconnected structures: 1sF  and 2sF , are both the solutions. If the 
additional nonholonomic constraints in each of the WMRs are called the nonholonomy, the 
design challenge of the MRFCS immediately arises that there may be infinite solutions or 
conversely no solutions. Thus we can conclude that the conditions of the solution depends 
on the nonholonomy. We can further explain that the nonholonomic constraint always 
forbids locally to reach some of the neighborhood of the WMR so that the nonholonomic 
system with redundent nonholonomy or holonomy equations(ususally the total equation 
number is over or equal to the dimension of the system) may not have physical solution.  
Now we set oriented direction of the MRFS from cq  to 1q  tangent to the desired path  c t , 
see Figure  1. With respect to the interconnection stability and the subsystem stability, 
Definition 2.2 shall be further modified. 
Definition 2.4: Let ijz  be piecewise continuous in t . The equilibrium point  0 0ijz   and 

 0 0iq   in formation variable and individual variable respectively for all ,i j  is 

 formation system stable: Definition 2.1 holds and if there exist    0 0ij dij z
j
z t z t    and 

   0 0i di qq t q t     then    
0 ,

lim
f

ij dij z
t t t j

z t z t 
  

   and    
0 ,

lim
f

i di
t t t

q t q t 
  

  , for all 

i ; 
 asymptotically formation system stable: Definition 2.1 holds and if there exist  

   0 0ij dij z
j
z t z t  

 
and    0 0i di qq t q t    then    

0 ,
lim

f
i di q

t t t
q t q t 

  

    and 

   lim 0i dit
q t q t


  , for all i ; 

 formation system unstable: if it is not formation system stable. 
No doubt, Definition 2.4 is more rigorous than Definiton 2.2 particularly it can be put on the 
condition after releasing the constraints on the formation state. So far, we got two unsolved 
problems in the design of the MRFS: first, the the uniqueness of the solution; second, the 
subsystem stability with respect to the interconnection stability. 
For the first point, coneptually, the key step is how to select the adequate stable 
interconnected structure which corresponds to the number of the additional constraints. 
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following condition:    
0 ,

lim
f

ij dij z
t t t j

z t z t 
  

   for all i , the MRFS is said to be 

interconnection stable. 
Definition 2.2(Formation system stable): Let ijz  be continuous in  t . The equilibrium point 

 0 0ijz   and  0 0iq   information variable and individual variable respectively for all ,i j  
is 
 formation system stable: Definition 2.1 holds and if there exists 

   0 0ij dij z
j
z t z t   ;    0 0i di qq t q t     then    

0 ,
lim

f
i di q

t t t
q t q t 

  
  , for all i ; 

 asymptotically formation system stable: Definition 2.1 holds and if there exists 
    0 0ij dij z

j
z t z t   ;    0 0i di qq t q t    then    lim 0i dit

q t q t


  , for all i ; 

 formation system unstable: if it is not formation system stable. 
According to Definition 2.2, if the MRFS has the formation system stable, one of the 

necessary condition is that the interconnection sable has to be held. On the contrary, the 
interconnection stable cannot be the necessary condition for the formation system stable. In 
other words, the interconnection stability is clearly defined as the sufficient condition for 
achieving the formation stable. The formation system stability, no doubt, is thus based on 
the interconnection stable and the subsystem stable simeltineously. In addition, we have 
proved that if the Definition 2.2 is commitment, then the final state of the WMRs in the 
MRFS will be reached:  df d fq c t , in section IV. 

Remark 2.3: Considering the Definition 2.2, the following condition yields: 
 if there exists    

0 ,
lim

f
i di q

t t t
q t q t 

  
    then     

0 ,
lim

f
ij dij z

t t t j
z t z t 

  
  ; 

 if there exists    lim 0i dit
q t q t


    then    lim 0ij dijt j

z t z t


  .
 
 

Thus, the formation system stable can be guaranteed by evaluating the convergence 
property of the individual states while performing the full state formation tracking. 
As we know, the formation variables: the relative length and the relative heading angle, is 
abstracted from a collection of the states of nonholonomic WMRs. Also, the formation states 
can be written by general functions: 

 
 

,

, , ,

pij pi pjij
ij

ij ij pi pj i j

f q ql
z Q

f q q q q 


            
 

with 
T

i pi i iq q q N     and 
T

j pj j jq q q N     where ,m k
iQ N   and k

jN   

denote the compact and differentiable manifolds.  
Suppose the desired formation states are given and the formation system satisfies the 
condition of interconnection stable such that the solution of the individual states may not 
unique. For example,    1,pi pj pij ijq q f l  and    1, , ,pi pj i j ij ijq q q q f   , there are two 

equations but more than two unknown variables in both of the equations. Figure  1 shows 
the illustrated scenario with three WMRs in the MRFS. 

 

 

Fig. 1. A MRFS with three WMRs. 
 
In Figure  1, the interconnected structures: 1sF  and 2sF , are both the solutions. If the 
additional nonholonomic constraints in each of the WMRs are called the nonholonomy, the 
design challenge of the MRFCS immediately arises that there may be infinite solutions or 
conversely no solutions. Thus we can conclude that the conditions of the solution depends 
on the nonholonomy. We can further explain that the nonholonomic constraint always 
forbids locally to reach some of the neighborhood of the WMR so that the nonholonomic 
system with redundent nonholonomy or holonomy equations(ususally the total equation 
number is over or equal to the dimension of the system) may not have physical solution.  
Now we set oriented direction of the MRFS from cq  to 1q  tangent to the desired path  c t , 
see Figure  1. With respect to the interconnection stability and the subsystem stability, 
Definition 2.2 shall be further modified. 
Definition 2.4: Let ijz  be piecewise continuous in t . The equilibrium point  0 0ijz   and 

 0 0iq   in formation variable and individual variable respectively for all ,i j  is 

 formation system stable: Definition 2.1 holds and if there exist    0 0ij dij z
j
z t z t    and 

   0 0i di qq t q t     then    
0 ,

lim
f

ij dij z
t t t j

z t z t 
  

   and    
0 ,

lim
f

i di
t t t

q t q t 
  

  , for all 

i ; 
 asymptotically formation system stable: Definition 2.1 holds and if there exist  

   0 0ij dij z
j
z t z t  

 
and    0 0i di qq t q t    then    

0 ,
lim

f
i di q

t t t
q t q t 

  

    and 

   lim 0i dit
q t q t


  , for all i ; 

 formation system unstable: if it is not formation system stable. 
No doubt, Definition 2.4 is more rigorous than Definiton 2.2 particularly it can be put on the 
condition after releasing the constraints on the formation state. So far, we got two unsolved 
problems in the design of the MRFS: first, the the uniqueness of the solution; second, the 
subsystem stability with respect to the interconnection stability. 
For the first point, coneptually, the key step is how to select the adequate stable 
interconnected structure which corresponds to the number of the additional constraints. 
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Actually, this idea is simple but it is much complex than we expect in the design process 
resulted by the nonholonomic system of the WMR. As we know, the choice of the state of 
the MRFS can be either the relative length or the relative angle or even mix both of them and 
they are all capable to be the abstractive variables which are abstracted from the states of the 
nonholonomic subsystems. There also exists the nonlinear transfomation between the 
position and the oriented angle of the WMR so that, in the MRFS, the relative length couples 
the relative angle or vice versa. We, therefore, usually select one of them as the abstractive 
variables for simplifing the design complexity. With this aspect, if the minimal 
interconnected structure of the MRFS is performed, the process is the way regarded as to 
release some redundent abstracted equations. In this research, for this issue, we have 
proposed the minimal relization with respect to the stable interconnected structure in the 
controller design of the MRFS. 
The second issue requires more detail study on the nonholonomic system. The 
nonholonomic constraints are assumed to be strictly satisfied in this research for applying 
the kinematics of the WMR. Hence, the output of the control velocity and the angular 
velocity is limited for avoiding to generate the large torque of the WMR. It immediately 
implies us that the unreachable region of the nonholonomic system is locally restricted by 
the limited torque. In real application of the MRFS, the desired state is usually given in the 
abstracted space. When we switch the interconnected topology, following the Remark 2.3, 
the nonholonomic subsystem may not be stable if    lim 0ij dijt j

z t z t


  . In this research, 

the Lyapunov based approach is proposed for dealing with this design issue. 

 
3. Interconnected Stability and Formation Control Design 
 

Formally, considering the nonholonomic constraints in a differential type WMR, the 
kinematics is able to be written by 

i i iq S u  (1) 

where 3T

i pi iq q q      denote the state of the WMR; 
0 0 1

cos sin 0

T

i
i i

S
q q 

 
  
 

 denotes 

the distribution;   2T
i i iu v w   denotes the control input. The formation state between 

two WMRs is distinctly defined as 

pj piij
ij

ij j i

q ql
z

q q 


           
  (2) 

In contrast to the relative formulation with two WMRs, the formation state to the ith WMR 
with respect to all jth connection without regarding with the interconnection structure is 
simply defined as the sum of the relative state: 

1

1

p pi pn pi
i ij

j i n i

q q q q
z z

q q q q   

    
      

       
   (3) 

and if i j , 0ijz  . Taking partial derivative to Eq. (3), we have the following equation: 

 

ij
j i i

i
j i jij

j

l
z zz
q q

 
   

         
 









 (4) 

For a MRFS, the neighbours of the ith WMR is noted as j iq q  which corresponds to the 
interconnected structure and can be equivalently interpreted as an adjacency matrix. The 
adjacency matrix(Chung 1949) (or so-called interconnection matrix), GA  , is represented as a 
binary matrix which is one-one maps from the interconnected structure to the elements of 
the matrix, i.e.,  jq  acts on iq  if the element in ith row and jth column of the matrix equals “1”, 

 , 1GA i j   but if i j ,  , 0GA i j  . It is the fact that all of the connections of the ith WMR to 

the neighbour ones are a set:   , 1ij Ga A i j j n    where i  and j  denotes the ith raw and 

jth column in the adjacency matrix. Therefore Eq. (4) could be naturally rewritten as 

2

2

T T I
ij pij pij pij ij pij

i T T J
j jpij pij pij ij pijij

a q I q q q
z

q J q q ql
   

          
 

 


 
 (5) 

with 3T

ij pij ijq q q     ;
 

2ijI
ij

ij

a I
l

  ; 2ijJ
ij

ij

a J
l

  ; 2

1 0
0 1

I  
  
 

; 2

0 1
1 0

J
 

  
 

.  

Now we summarize the result to the general formation dynamics form Eq. (1) and Eq. (5): 

1 1
1 1

2

j
j i j

n n
n nj

j i j

z zz a
q q

n

z zz a
q q

  
       



        











 (6) 

1 1 1

3

n n n

q S u
n

q S u

 


 





 (7) 

There are totally 5n  equations in Eq. (6-7). Obviously, a number of 3n  physical variables 
need to be solved so that we can freely choose 2n  equations as a constraints, for example, 
minimizing Eq.(7) subject to Eq.(6) or minimizing the position subject to the heading angle 
of each WMRs and Eq.(6) and so forth. However, regarding with the interconnected 
structure, two problems yield: first, how to determine the minimal stable interconnected 
structure; second, how to guarantee the existence of the solution. For the first question, the 
following lemma will help us to make such a design: 
Lemma 3.1: Considering the MRFS with a selective interconnection structure with totally p  
connections, the stable minimal connection number of p  is 2 3n  . 
The proof follows the rigidity condition of the two dimensional graph, see (Laman 1970).  
Now we begin with the second question for the existence of the MRFS. The existence of the 
solution is somehow linked to the subsystem stability if the designed nonholonomic control 
can derive the WMR to the admissible region within the control time. In other words, the 
existence of the solution is in the sense that there locally exist the reachable states of the 
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Actually, this idea is simple but it is much complex than we expect in the design process 
resulted by the nonholonomic system of the WMR. As we know, the choice of the state of 
the MRFS can be either the relative length or the relative angle or even mix both of them and 
they are all capable to be the abstractive variables which are abstracted from the states of the 
nonholonomic subsystems. There also exists the nonlinear transfomation between the 
position and the oriented angle of the WMR so that, in the MRFS, the relative length couples 
the relative angle or vice versa. We, therefore, usually select one of them as the abstractive 
variables for simplifing the design complexity. With this aspect, if the minimal 
interconnected structure of the MRFS is performed, the process is the way regarded as to 
release some redundent abstracted equations. In this research, for this issue, we have 
proposed the minimal relization with respect to the stable interconnected structure in the 
controller design of the MRFS. 
The second issue requires more detail study on the nonholonomic system. The 
nonholonomic constraints are assumed to be strictly satisfied in this research for applying 
the kinematics of the WMR. Hence, the output of the control velocity and the angular 
velocity is limited for avoiding to generate the large torque of the WMR. It immediately 
implies us that the unreachable region of the nonholonomic system is locally restricted by 
the limited torque. In real application of the MRFS, the desired state is usually given in the 
abstracted space. When we switch the interconnected topology, following the Remark 2.3, 
the nonholonomic subsystem may not be stable if    lim 0ij dijt j

z t z t


  . In this research, 

the Lyapunov based approach is proposed for dealing with this design issue. 

 
3. Interconnected Stability and Formation Control Design 
 

Formally, considering the nonholonomic constraints in a differential type WMR, the 
kinematics is able to be written by 

i i iq S u  (1) 

where 3T

i pi iq q q      denote the state of the WMR; 
0 0 1

cos sin 0

T

i
i i

S
q q 

 
  
 

 denotes 

the distribution;   2T
i i iu v w   denotes the control input. The formation state between 

two WMRs is distinctly defined as 

pj piij
ij

ij j i

q ql
z

q q 


           
  (2) 

In contrast to the relative formulation with two WMRs, the formation state to the ith WMR 
with respect to all jth connection without regarding with the interconnection structure is 
simply defined as the sum of the relative state: 

1
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q q q q
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q q q q   
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      

       
   (3) 

and if i j , 0ijz  . Taking partial derivative to Eq. (3), we have the following equation: 
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




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 (4) 

For a MRFS, the neighbours of the ith WMR is noted as j iq q  which corresponds to the 
interconnected structure and can be equivalently interpreted as an adjacency matrix. The 
adjacency matrix(Chung 1949) (or so-called interconnection matrix), GA  , is represented as a 
binary matrix which is one-one maps from the interconnected structure to the elements of 
the matrix, i.e.,  jq  acts on iq  if the element in ith row and jth column of the matrix equals “1”, 

 , 1GA i j   but if i j ,  , 0GA i j  . It is the fact that all of the connections of the ith WMR to 

the neighbour ones are a set:   , 1ij Ga A i j j n    where i  and j  denotes the ith raw and 

jth column in the adjacency matrix. Therefore Eq. (4) could be naturally rewritten as 
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with 3T

ij pij ijq q q     ;
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Now we summarize the result to the general formation dynamics form Eq. (1) and Eq. (5): 

1 1
1 1
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j
j i j
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n nj

j i j
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
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



 (7) 

There are totally 5n  equations in Eq. (6-7). Obviously, a number of 3n  physical variables 
need to be solved so that we can freely choose 2n  equations as a constraints, for example, 
minimizing Eq.(7) subject to Eq.(6) or minimizing the position subject to the heading angle 
of each WMRs and Eq.(6) and so forth. However, regarding with the interconnected 
structure, two problems yield: first, how to determine the minimal stable interconnected 
structure; second, how to guarantee the existence of the solution. For the first question, the 
following lemma will help us to make such a design: 
Lemma 3.1: Considering the MRFS with a selective interconnection structure with totally p  
connections, the stable minimal connection number of p  is 2 3n  . 
The proof follows the rigidity condition of the two dimensional graph, see (Laman 1970).  
Now we begin with the second question for the existence of the MRFS. The existence of the 
solution is somehow linked to the subsystem stability if the designed nonholonomic control 
can derive the WMR to the admissible region within the control time. In other words, the 
existence of the solution is in the sense that there locally exist the reachable states of the 
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nonholonomic subsystem such that the WMR moves within the reachable region such that 
the sufficient condition of the subsystem stability is achieved.  
Moreover, the coupling effect of the states in the WMR has to be considered. The state 
equation in Eq. (1) can be generally rewritten as 

 pi pi i i

i i

q f q v
q w












 (8) 

where 2:pif    denotes a continuous and differentiable function; iv  and iw  denote the 
velocity and angular velocity respectively. Eq. (8) clearly represents the coupled effect 
between piq  and iq  in the nonholonomic system. It may be safety to assume that the 
velocity is a constant in the practical control design, the position and oriented angle can be 
derived by the assigned angular velocity simultaneously due to non-invloutive 
characteristic from Frobenious Thorem(Abraham and Marsden 1967). Conversely, if we set 
the angular velocity as a constant, the WMR is restricted to move along a line for the 
constrained oriented angle in the abstracted space. (BLOC and CROUC 1998) has indicated 
the general design rule of the nonholonomic control design which is stated in the following 
Remark: 
Remark 3.2: Consider the nonholonomic system in Eq. (8). The system stability holds if the 
controller is designed for the WMR whose convergence rate of iq  is always faster than the 
one of piq . 
Remark 3.2, for the MRFS, implies us that the subsystem stability is able to be designed by 
choosing the interconnected structure with respect to the relative length which is the 
function of piq . Through the way, another variable iq  is set free and is configurable. 
Therefore, the MRFS will be stable if the controller of the MRFS is carefully designed for 
satisfying Remark 3.2. Hence the formation dynamics for the ith WMR in Eq.(5) could be 
further reduced: 
 

 2
1 T T I

i ij pij pij pij ij pij
j jij

z a q I q q q
l

      (9) 

Rearranging the equation, the canonical form of the MRFS is further obtained with Eq. (6): 
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

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





 (10) 

Corollary 3.3: Consider the formation dynamics in Eq. (10), the state flow of the MRFS is 
equivalent to the state flow of the nonholonomic WMR. It can generally be written as the 
following formula: 
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1 1

, , , , , , , ,i i ij ij pi pj j i ij ij pi pj i i
j j

n n

z f a z q q q f a z q q q v

q w

q w

 





 
   

 




 





 (11) 

Figure 2. shows the nonholonomic hierarchical structure in the nonholonomic formation 
dynamics in Eq. (11). 
 

 

Fig. 2. the system structure of the nonholonomic formation dynamics. 
 
Remark 3.4: Considering the MRFS, the interconnection matrix can be regarded as a linear 
operator of the formation dynamics. 
For the Remark 3.4, an immediately result can be observed in Eq. (10). Hence, once the 
interconnected structure of the MRFS changes on-line so as to the interconnection matrix, 
the formation shape is able to be dynamically modified by applying the operator with the 
refreshed interconnection matrix. It is helpful in the implementation of the MRFS. 
Now we shall prove the following statement: the interconnection stable is hold if and only if 
all of the eigenvalues of the interconnection matrix is positive. Purposely, the Lyapunov 
approach is adopted for minimizing the energy generated from the individual WMRs and 

the formation system. We select the Lyapunov function: 1
2

T
i ii i iL a q q , in each of the 

subsystem. This leads into the convergence rate of the heading angle of the WMR could be 
under our control. For helping the judgement, we also define the interconnection Lyapunov 

function: 
:

1
2

T
ij ij ij ij

j j i
L a z z



  . Following these definitions, the formation Lyapunov function 

F
iL  can be simply split into two parts: the individual Lyapunov function of the ith WMR and 

the interconnection Lyapunov functions of the jth WMR which acts on the ith WMR: 
 

F
i i ij

j
L L L   (12) 
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nonholonomic subsystem such that the WMR moves within the reachable region such that 
the sufficient condition of the subsystem stability is achieved.  
Moreover, the coupling effect of the states in the WMR has to be considered. The state 
equation in Eq. (1) can be generally rewritten as 

 pi pi i i

i i

q f q v
q w






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


 (8) 

where 2:pif    denotes a continuous and differentiable function; iv  and iw  denote the 
velocity and angular velocity respectively. Eq. (8) clearly represents the coupled effect 
between piq  and iq  in the nonholonomic system. It may be safety to assume that the 
velocity is a constant in the practical control design, the position and oriented angle can be 
derived by the assigned angular velocity simultaneously due to non-invloutive 
characteristic from Frobenious Thorem(Abraham and Marsden 1967). Conversely, if we set 
the angular velocity as a constant, the WMR is restricted to move along a line for the 
constrained oriented angle in the abstracted space. (BLOC and CROUC 1998) has indicated 
the general design rule of the nonholonomic control design which is stated in the following 
Remark: 
Remark 3.2: Consider the nonholonomic system in Eq. (8). The system stability holds if the 
controller is designed for the WMR whose convergence rate of iq  is always faster than the 
one of piq . 
Remark 3.2, for the MRFS, implies us that the subsystem stability is able to be designed by 
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Rearranging the equation, the canonical form of the MRFS is further obtained with Eq. (6): 
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Corollary 3.3: Consider the formation dynamics in Eq. (10), the state flow of the MRFS is 
equivalent to the state flow of the nonholonomic WMR. It can generally be written as the 
following formula: 
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Figure 2. shows the nonholonomic hierarchical structure in the nonholonomic formation 
dynamics in Eq. (11). 
 

 

Fig. 2. the system structure of the nonholonomic formation dynamics. 
 
Remark 3.4: Considering the MRFS, the interconnection matrix can be regarded as a linear 
operator of the formation dynamics. 
For the Remark 3.4, an immediately result can be observed in Eq. (10). Hence, once the 
interconnected structure of the MRFS changes on-line so as to the interconnection matrix, 
the formation shape is able to be dynamically modified by applying the operator with the 
refreshed interconnection matrix. It is helpful in the implementation of the MRFS. 
Now we shall prove the following statement: the interconnection stable is hold if and only if 
all of the eigenvalues of the interconnection matrix is positive. Purposely, the Lyapunov 
approach is adopted for minimizing the energy generated from the individual WMRs and 

the formation system. We select the Lyapunov function: 1
2

T
i ii i iL a q q , in each of the 

subsystem. This leads into the convergence rate of the heading angle of the WMR could be 
under our control. For helping the judgement, we also define the interconnection Lyapunov 

function: 
:
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  . Following these definitions, the formation Lyapunov function 

F
iL  can be simply split into two parts: the individual Lyapunov function of the ith WMR and 

the interconnection Lyapunov functions of the jth WMR which acts on the ith WMR: 
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In Eq. (12), iL  is generated from the ith subsystem and ij
j
L  is produced by the 

interconnection of the MRFS for the ith subsystem. In the component form, it is able to be 
written as 
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where 3 3
iP

  denotes the positive diagonal matrix of the ith WMR; GiA  denotes the ith raw 
of the interconnection matrix. Hence the necessary condition for the asymptotically 
formation stable is established via the following theorem: 
Theorem 3.5: Considering the MRFS described in Eq. (11), the system, follows Definition 2.2, 
is said to be asymptotically interconnection stable. 
 
Proof.  Using Eq. (9), the time derivative of the Eq. (12) can be written as: 
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where i pi iF f q    denotes a linearized matrix from the nonlinear function pif  in Eq. (8). In 
order to state the stability condition on the MRFS, the Lyapunov function can be reproduced 
by Eq. (14) from single WMR to all WMRs in a formation team. Thus we reformulate the 
result in Eq. (14) in associated with a matrix formula: 

I IF F Q     (15) 
where iQ  are positive matrix. According to the Lyapunov stability theorem, if I  and iQ  
are positive definite, then the MRFS in Eq. (11) is asymptotically stable. Q. E. D. 
So far, the analysis result of the interconnection stability reveals us that the sufficient 
condition of the formation stable satisfies not only the existence of the positive definite 
interconnection matrix but also the subsystem stable by the Definition 2.4. Namely, if the 
formation stable holds, the necessary condition is that the interconnection matrix has to be 
positive definite. Note that the formation dynamics can be identified without driving  the 
formation dynamics via Theorem 3.5. Practically, let us now consider the design of the 
control of the MRFS. The Lyapunov function in Eq. (12) can be further taken the partial 
derivative: 
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Therefore, the formation control can be chosen by the following Theorem: 
Theorem 3.6: Considering the MRFS follows Eq. (11), if the velocity and angular velocity is 
chosen by: 
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then the MRFS is exponentially stable where 0pi iK K   denote the constant real number. 
Proof: After taking the controller in Eq. (17) into Eq. (16), the Lyapunov equation is 
obtained: 

  2F F F
i pi i pi i i pi iL K L K K q K L        (18) 

Consequently, the system is exponentially stable. 
Remark 3.7 According to Theorem 3.6, the controller is capable of switching the 
interconnection structure in real-time by modifying the parameter: ija . 
Finally, the proposed formation stability theories and control design process in this section 
can be regarded as a useful tool.  

 
4. Simulation 
 

In this section, a simulation is performed for demonstrating the performance of the 
proposed nonholonomic multi-robotic formation control with respect to the formation 
stability. Figure 3 shows the simulation scenario with four WMRs in the MRFS. The team 
begins with the triangular shape and moves along a curve to the target with a square shape 
that shall change the interconnected structure on the middle way of the motion curve drawn 
as the solid line in Figure 3. Observing the interconnected structures, they satisfy the rigid 
condition which implies the interconnection stable of the MRFS in Lemma 3.1 so that the 
interconnection stability is promised by Definition 2.2. 
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Fig. 3. the simulation scenario: from triangular to square structure of the MRFS. 
 
In this simulation, we suppose that each of the WMRs is able to know the states from rest of 
the WMRs within the control time. Also, the physical configurations for the simulation are 
listed: the desired relative length is  12 13 14 5l l l m   ;  23 34 24 5 3l l l m    and the initial 

relative length is  12 13 14 4l l l m   ;  23 34 24 4 3l l l m    in the triangular shape and 

 12 24 34 13 5l l l l m    ;  14 5 2l m  in the squire shape respectively. Considering the 

configuration of the single WMR, the initial oriented angles of the WMRs set to zero. The 
radius of the active wheels are 0.3( )m  and the length of the axis of the active wheels is 
0.5( )m .  Practically, the control time is set to  0.01 sec  in each of the WMRs. 

 

 

Fig. 4. The trajectory error of the relative length: 23 13 23 14; ; ;l l l l . 

 

Fig. 5. The error trajectories on the X(red)-Y(blue) Plane from WMR 1-4. 
 
The simulation results are drawn in Figure  4-5 where Figure  4 describes the relative lengths 
of the WMRs in the MRFS; Figure  5 draws the tracking error of the WMRs respectively. The 
diagrams indicate that the there exists impulse responses on each of the states of the 
subsystems when the interconnected structure is changed. In our proposed design, the 
subsystem stability can easily be handled. 
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5. Conclusion 
 

The research reveal several important results: first, the formation stability could be 
hierarchically decoupled with the interconnection stability and the subsystem stability; 
second, the general framework of the MRFS with respect to the nonholonomic subsystems is 
obtained; third, the practical exponentially stable formation control is derived with respect 
to the minimal interconnection structure of the MRFS that can guarantee the subsystem 
stability. Clearly, our study provides a framework for designing and studying the modelling 
and the control problem in the nonholonomic MRFS. Finally, the simulation result shows 
the control performance so that the approach can be practically used in the switching 
interconnected structure of the MRFS on-line without adjusting any control parameters. 
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