
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

4

Petri Net Model Based Implementation of
Hierarchical and Distributed Control for Discrete

Event Robotic Manufacturing Cells

Gen’ichi Yasuda
Nagasaki Institute of Applied Science

Japan

1. Introduction

Manufacturing systems, where the materials which are handled are mainly composed of
discrete entities, for example parts that are machined and/or assembled, are called discrete
manufacturing systems. The rapid development of industrial techniques makes the
manufacturing systems larger and more complex, in which system control is divided into a
hierarchy of control levels: planning, scheduling, coordination and local control (Silva,
1990). At the upper level, the global system is considered and its representation is strongly
aggregated. Each low level is a disaggregation of the upper one; the portion of the system
considered is smaller, but more details are taken into account. The time horizon of the low
level is shorter, and real-time constraints are progressively hard. At the coordination level
(shop, cell), the function is to update the state representation of the workshop in real-time, to
supervise it, and make real-time decisions. The decision making system has to schedule and
synchronize the machine utilizations to decide at each instant what has to be done and on
which machine.
Frequently, a flexible manufacturing system is structured into manufacturing cells. A cell is
an elementary manufacturing system consisting of flexible machine tools (or assembly
devices), some local storage facilities for tools and parts and some handling devices such as
robots in order to transfer parts and tools between the cell and the global transport system.
Elementary manufacturing cells are called workstations. In a manufacturing cell, some
devices operate concurrently and cooperatively or interfere to each other. Conventional
representation methods such as time chart and state transition graph can not cope with the
system like this. So a powerful method which can represent a discrete event system
including nondeterministic parallel and concurrent action is desired.
As computer technology has been continuing to be upgraded to higher level year by year,
the control system architecture has changed from centralized processing to distributed
processing in order to reduce the development cost and to improve reliability. In developing
distributed processing systems, major difficulties are that adequate expression methods and
analyzing techniques for control mechanisms have not sufficiently been established. In the
field of manufacturing systems that are typical examples of the event driven system,
demands for the automatic control has diversified and the control logic has become
extremely complicated. To deal with the complexity, a new methodology on control system
design based on the discrete event driven system is necessary.

www.intechopen.com

 Advances in Petri Net Theory and Applications

60

For the flexibility and expandability of the event driven system software, a programming
paradigm based on a network model is considered to be useful, because the network model
can describe the execution order of sequential/parallel processes or works directly without
ambiguity. For this class of problems, Petri nets have intrinsic favorable qualities and it is
very easy to model sequences, choices between alternatives, rendezvous and concurrent
activities by means of Petri nets (Thuriot et al., 1983). Moreover, the formalism allowing a
validation of the main properties of the Petri net control structure (liveness, boundedness,
etc.) guarantees that the control system will not fall in a deadlocked situation. Petri net
based programming technique makes it possible to realize systematic and high-level
description of system specification (Gentina & Corbeel, 1987), (Jockovic et al., 1990), (Wang
& Saridis, 1990). Furthermore, a real-time implementation of the Petri net specification by a
software called the token game player can avoid implementation errors, because the
specification is directly executed by the token game player and the implementation of these
control sequences preserves the properties of the model.
The Petri net has been applied to a variety of system developments such as real-time
systems, manufacturing systems, communication systems, and so on, as an effective tool for
describing control specifications and realizing the control system in a uniform manner.
However, there are some problems to be solved as follows.
1. Although the description capability of the Petri net is very high, in case of flexible

manufacturing systems the network model becomes very complicated and it lacks for
the readability and comprehensibility.

2. Although the specification analysis stage has been supported, the support for the
control software coding stage is insufficient. The flexibility and expandability are not
satisfactory in order to deal with the specification change of the control system.

This paper discusses problems of the system realization by using Petri nets and proposes a
design method for hierarchical and distributed manufacturing control systems. The Petri net
model can be used from the conceptual, the global design of the system to the detailed
design of its partial systems so that the modeling, simulation and control of large and
complex discrete event manufacturing systems can be consistently realized by Petri nets.
The complex control system can be easily designed and realized by using the global Petri net
as an upper controller which controls lower controllers designed by detailed Petri nets. The
cooperation of each controller is implemented so that the aggregated behavior of the
distributed system is the same as that of the original system and the task specification is
completely satisfied. At this point of view, this paper shows the efficiency of the proposed
hierarchical and distributed control method by the simulation experiments of cooperative
transferring tasks with mechanical arm robots.

2. Manufacturing systems and Petri nets

At each level of discrete manufacturing system control, any modeling has to be based on the
concepts of events and states (Fogel & Sebestyenova, 1992), (Holt & Rodd, 1994), (Kasturia &
Dicesare, 1988), (Rogers & Williams, 1988). An event corresponds to a state change. When
using Petri nets, events are associated with transitions. Activities are associated to the firing
of transitions and to the marking of places which represents the state of the system. In
addition to its graphic representation differentiating events and states, Petri nets allows the
modeling of true parallelism and the possibility of progressive modeling by using stepwise
refinements or modular composition. Libraries of well-tested subnets allow components

www.intechopen.com

Petri Net Model Based Implementation of Hierarchical and Distributed Control
for Discrete Event Robotic Manufacturing Cells

61

reusability leading to significant reductions in the modeling effort. The possibility of
progressive modeling is absolutely necessary for flexible manufacturing systems because
they are usually large and complex systems. The refinement mechanism allows the building
of hierarchically structured net models which leads to the implementation of hierarchical
and distributed control.
Formally, a Petri net has two types of nodes, called places and transitions. A place is
represented by a circle and a transition by a bar. The places and transitions are connected by
arcs. The number of places and transitions are finite and not zero. An arc is connected
directly from one place to a transition or a transition to a place. In other words a Petri net is
a bipartite graph, i.e. places and transitions alternate on a path made up of consecutive arcs.

An ordinary Petri net (Murata, 1989) is represented by the 5-tuple { , , , , }oG P T I O M= such
that:

1 2{ , ,..., }nP p p p= is a finite, not empty, set of places;

1 2{ , ,..., }mT t t t= is a finite, not empty, set of transitions;

P T φ∩ = , i.e. the sets P and T are disjointed;

: {1,2,3, }I P T× → A is the input weight function;

: {1,2,3, }O P T× → A is the output weight function;

: {0,1,2,3, }oM P → A is the initial marking;

The pre-incidence matrix of a Petri net is []ijC c− −= where (,)ij i jc I p t− = ; the post–incidence

matrix is []ijC c+ += where (,)ij i jc O p t+ = , then the incidence matrix of the Petri net

C C C+ −= − .

Each place contains some (positive or zero) marks or tokens. The number of tokens in each

place is defined by the marked vector or marking 1 2(, ,...,)T
nM m m m= . The number of

tokens in one place ip is called ()iM p . The marking at a certain moment defines the state of

the Petri net, or the state of the system described by the Petri net. The evolution of the state

therefore corresponds to an evolution of the marking, caused by the firing of transitions.

In an ordinary Petri net, where the current marking is kM , a transition jt is enabled if

, () (,)i k i i jp P M p I p t∀ ∈ ≥ . An enabled transition can be fired reaching a new marking

1kM + which can be computed as 1k kM M C V+ = + ⋅ ; this equation is called state equation of

the Petri net, where 1 2(, ,...,)T
mV v v v= is the transition vector such that jv =1 if transition jt

fires and 0 if not. When a transition is enabled, this does not imply that it will be

immediately fired; this only remains a possibility. The firing of a transition is indivisible; the

firing of a transition has duration of zero.

The firing of an enabled transition will change the token distribution (marking) in a net

according to the transition firability rule. A sequence of firings will result in a sequence of

markings. A marking nM is said to be reachable from a marking 0M if there exists a

sequence of firings that transforms 0M to nM . The set of all possible markings reachable

from 0M is denoted 0()R M . A Petri net is said to be k -bounded or simply bounded if the

number of tokens in each place does not exceed a finite number k for any marking

reachable from 0M , i.e., ()iM p k≤ for every place ip and every marking 0()M R M∈ . A

Petri net is said to be safe if it is 1-bounded. Bumping occurs when despite the holding of a

condition, the preceding event occurs. This can result in the multiple holding of that

condition. From the viewpoint of discrete event process control, bumping phenomena

should be excluded.

www.intechopen.com

 Advances in Petri Net Theory and Applications

62

The Petri net was modified so that the system is safe. The weight of the input and output

weight functions ,I O is 1 if the arc exists and 0 if not. Because the modified Petri net is safe,

for each place ip , im = 0 or 1, and a transition jt is enabled if the two following conditions

are met:
1. For each place kp , such that (,) 1k jI p t = , 1km =

2. For each place lp such that (,) 1l jO p t = , 0lm =

Besides the guarantee of safeness, considering not only the modeling of the systems but also

the actual manufacturing system control, the additional capability of input/output signals

from/to the machines are required (Hasegawa et al., 1984). So gate arcs are classified as

permissive or inhibitive, and internal or external. An external gate connects a transition with

a signal source, and depending on the signal, it either permits or inhibits the occurrence of

the event which corresponds to the connected transition. An internal signal arc sends the

signal from a place to a machine. Thus a transition is enabled if and only if it satisfies all the

following conditions:

1. It does not have any output place filled with a token.
2. It does not have any empty input place.
3. It does not have any internal permissive arc signaling 0.
4. It does not have any internal inhibitive arc signaling 1.
An enabled transition may fire when it does not have any external permissive arc signaling
0 nor any external inhibitive arc signaling 1.

When an enabled transition jt fires, the marking M is changed to M′ , where

1. For each place kp , such that (,) 1k jI p t = ， 0km′ =

2. For each place lp such that (,) 1l jO p t = ， 1lm′ =

To summarize it, the firing of a transition removes a token from each input place and put a
token in each output place connected to it. As a natural requirement, in any initial marking,
there must not exist more than one token in a place. According to these rules, the number of
tokens in a place never exceeds one. Thus, the Petri net is essentially a safe graph; the system
is free from the bumping phenomenon. The assignment of token into the places of a Petri net
is called marking and it represents the system state.
If a place has two or more input transitions or output transitions, these transitions may be in

conflict for firing. When two or more transitions are firable only one transition should fire

using some arbitration rule. By the representation of the activity contents and control

strategies in detail, features of discrete event manufacturing systems such as ordering,

parallelism, asynchronism, concurrency and conflict can be concretely described through the

extended Petri net.
The extended Petri net is a tool for the study of condition-event systems and used to model
discrete event manufacturing systems through its graphical representation. Analysis of the
net reveals important information about the structure and the dynamic behavior of a
modeled manufacturing system. This information can then be used to evaluate the
manufacturing system and suggest improvements or changes. The flow chart of simulation
to check the dynamic behavior of the system quantitatively is shown in Fig. 1.
Implementation methods to do the real-time control are classified into two kinds (hardware
and software). Hardware implementation realizes the places and transitions by hardware in
a modular form, which are mutually connected in the same way as the Petri net model.

www.intechopen.com

Petri Net Model Based Implementation of Hierarchical and Distributed Control
for Discrete Event Robotic Manufacturing Cells

63

 Start

Input incidence matrix and initial marking
0

M

Extract enabled transitions

Determine firing transitions V considering conflicts

Number of enabled transitions = 0 ?
(deadlock)

Input internal gate conditions

0
MM

n
=

Input external gate conditions

VCMM
nn

⋅+=+1

Output
1+nM

Extract enabled transitions considering gate conditions

1+=
nn

MM

Yes

Fig. 1. Flow chart of extended Petri net simulator

Signals from controlled objects (machines and external sensors) are connected to the
transitions as external gate conditions. When a token exists in a place, the control
information assigned to the place is transmitted to the machine. The simulation is performed
by monitoring the marking. Hardware implementation by decomposing the net model into
several state transition diagrams, which are easily realized using conventional sequential
controllers, and combining them with interlock signals, can be effective in many industrial
applications.
On the other hand software implementation is performed by developing control software
based on the logical structure of the Petri net model (Taubner, 1988). Simulation is
performed by program called a token game player with graphic display, and real-time
control is performed through the computer interface. Centralized schemes can be

www.intechopen.com

 Advances in Petri Net Theory and Applications

64

sequentially or concurrently implemented (Silva, 1990). Practically centralized sequential
schemes are employed at the local control level frequently in special purpose real-time
computers named Programmable Logic Controller (PLC) (Atabakhche et al., 1986) by means
of converting the Petri net directly into a Boolean equation. Centralized concurrent
implementations are basically composed of many specific tasks (possibly one per transition)
and a coordinator. The coordinator plays the token game on the net model, initiating the
execution of the tasks attached to the fired transitions. When a task ends its activity, it
informs the coordinator to proceed with the next activations. The coordinator is an active
task with a high priority that acts as the kernel of the application multitasking level. It
provides indirect synchronization between the activities of specific tasks associated with the
firing of transitions. The simplicity and easy modification of the
synchronization/communication scheme are among the advantages of centralized
implementation. The basic problems with this kind of solution are relatively inefficient
execution (memory occupation and execution time) and weakness for safety. Decentralized
implementation schemes are usually built by decomposing the net into a set of sequential
processes and the required primitives concerning synchronization/communication between
these processes are directly inserted, where required, in the body of the sequential processes
(Georgeff, 1983), (Yasuda, 1999). The classical synchronization/communication mechanisms
are based on synchronous rendezvous between tasks and asynchronous message passing
implemented by means of buffers or mailboxes. In decentralized implementations,
synchronization and communication between sequential processes are direct; there is no
intermediate active element. In this paper, a hierarchical and distributed implementation is
proposed, where a system controller with the global Petri net model coordinates several
local controllers with detailed Petri net models.

3. Specification of manufacturing tasks using Petri nets

A Petri net model based consistent method for specification and implementation of
hierarchical and distributed control of robotic manufacturing systems is proposed. A
specification procedure for discrete event manufacturing systems based on Petri nets is as
follows. First, the conceptual level activities of the manufacturing system are defined
through a Petri net model considering the task specification corresponding to the aggregate
manufacturing process. To deal with the problems related to the description of discrete
event manufacturing systems using Petri nets, the system specification can be decomposed
into two aspects: manufacturing sequence and resource allocation. A Petri net is associated
to each aspect, and these two nets are strongly synchronized with the mechanism similar to
transitions merging between the nets.
First, activities of manufacturing sequence must be executed to reach a given goal. For
example a part is carried from a machine to another machine because the next operation has
been scheduled on the machine. This activity modifies the physical state of the part
according to the scheduled fabrication. In the Petri net specification, the location of the token
shows the fabrication step of the part. An evolution of the process can be represented by
distinct activities (starting event, effects and finishing event). Second, with respect to
resource allocation, to execute the required activity, the process must be in a special state.
For example, before executing a machining activity, on a given part, a machine must be free,
and the required tool must be available, etc. These constraints depend on the layout and
rules of operation of the process. They must be respected whatever the manufacturing

www.intechopen.com

Petri Net Model Based Implementation of Hierarchical and Distributed Control
for Discrete Event Robotic Manufacturing Cells

65

sequence. In the Petri net specification, the location of the tokens models the state of the
resources. The general representation of conceptual Petri net model by the above procedure
is shown in Fig. 2, where the activity of each equipment as well as each subtask composing
the task specification is represented as a place of the Petri net.

Process2 Process1 Process5 Process3 Process4

A A,B,C C B,C,D D

Process2 Process1 Process5 Process3 Process4

Machine C

Machine A

Machine B Machine D

Machine E

Fig. 2. General representation of conceptual Petri net model

4. Hierarchical representation of Petri nets

The detailed Petri nets are deduced to represent the control activities of associated

machines. The macro representation of the manufacturing process is effectively used for

achieving a top-down interpretation down to the concrete lower level activities using Petri

nets. This procedure is repeated up to an appropriate level corresponding to the control

level of the equipment responsible for the activity execution. At each step of detailed

representation, a place of the Petri net are substituted by a subnet in a manner which

maintains the structural properties such as liveness.

Petri nets for machine activity control are the loop structures because they eventually return

to each home position. As required control strategies between equipment, the following two

are frequently used: cooperative control and selective control. In cooperative control as

shown in Fig. 3, transitions t1 and t2 indicate that two machines 1 and 2 should be

controlled to start their actions synchronously. In selective control as shown in Fig. 4, where

transitions t1and t2 are in conflict, one of two manufacturing processes is selected by an

arbiter program which is substantially executed in the “Test” place.

For an example system of transferring task (Perez & Koutsourelis, 1987) by two robots (work

transfer from the robot R1 to the robot R2), the conceptual Petri net model is shown in Fig. 5.

Then Fig. 6 shows the detailed Petri net model, where places of work reception and work

placement in the conceptual model are made detailed. The “Hand over” operation is

accomplished through cooperative synchronized actions by two robots. The procedure of

machine activity control is as follows. When a workpiece comes up to the initial position,

which is represented as an external gate signal, the robot R1 takes the object, transfers it to the

www.intechopen.com

 Advances in Petri Net Theory and Applications

66

working space of the robot R2, and there waits for the robot R2 to taking the object. When the

robot R1 stops, the robot R2 grasps it, then the robot R1 opens the hand. Then the robot R2

transfers it to the buffer and there releases it, and finally returns to the initial position.

 Machine 1

Machine 2

t1 t2

Machine 1

Machine 2

t1 t2

 (a) Loop structure (b) Parallel structure

Fig. 3. Example representation of cooperative control between two machines

 Return

Return

Waiting Test

t1

t2

Fig. 4. Example representation of selective control between two manufacturing processes

Waiting Placement Hand overReception

Robot R1

Robot R2

Fig. 5. Conceptual Petri net model of work transfer task by two robots

www.intechopen.com

Petri Net Model Based Implementation of Hierarchical and Distributed Control
for Discrete Event Robotic Manufacturing Cells

67

Transfer Waiting Waiting Release

Waiting

TransferReturn

ReturnWaiting
(Robot R1)

(Robot R2)

work sensor on

Release

Hold Waiting

Hold

Fig. 6. Detailed Petri net model of work transfer task by two robots

The more detailed Petri net model at the actuator level of “Hold” and “Transfer” action,
which is composed of opening, grasping and movement of each motor axis to the specified
position, is shown in Fig. 7. In this figure, the “Dummy” place represents that its input and
output transitions are start and end of unit action, respectively. This means that macro
representation of a Petri net model can be achieved by replacing a detailed net with a
dummy place.

Grasp

Wrist+

Dummy

Open

Waiting

−θ

Y+

Waiting

Grasp

Waiting

X-

(Hold)

(Transfer)

Fig. 7. Detailed Petri net model of “Hold” and “Transfer” action

The basic procedure of coordination by the communication between the coordinator and the
local controllers is explained in detail as follows. As shown in Fig. 8, when a place in a Petri
net model represents an “action”, then the coordinator sends a “start” command with the
parameter pointing to the detailed Petri net. The local controllers receive the command and
the corresponding local controller executes the detailed subnet. When the execution is
finished, the local controller returns the “end” signal to the coordinator. When a place

www.intechopen.com

 Advances in Petri Net Theory and Applications

68

represents the “waiting” state, then the coordinator sends a “ready” command with the
parameter pointing to the next detailed Petri net. The local controller receives the command
and executes the corresponding initialization. When the execution is finished, the local
controller returns the “ack” signal to the coordinator.

start

Action Waiting

end

ready

ack

Fig. 8. Communication control between coordinator and local controllers

For the actual control, the operations of each machine are broken down into a series of unit

motions, which is also represented by mutual connection between places and transitions. A

place means a concrete unit motion of a machine. From these places, output signal arcs are

connected to the machines, and external gate arcs from the machines are connected to the

transitions of the Petri net when needed, for example, to synchronize and coordinate

operations. When a token enters a place that represents a unit motion, the machine defined

by the machine code is informed to execute a determined motion with a determined data;

these are defined as the place parameters.

5. Implementation of hierarchical and distributed control

Transferring task by four robots (work transfer from the robot R1 to the robot R2, then

transfer from the robot R2 to the robot R3 or R4 according to the type of workpiece) has been

modeled and implemented as an experimental system. The configuration of the system

contains four robots, one incoming and two outgoing conveyors, and a set of sensors. The

sensor’s set consists of touch sensors on robots, which indicate whether a robot has or has

not grasped a workpiece, and limit switch sensors for robot arm positioning. The layout of

the experimental system is shown in Fig. 9.

The cell works in the following way: Workpieces come on the incoming conveyor CV1 up to

the take up position 1-1. The robot R1 waits in front of the conveyor CV1 in position 1-2

which is defined by the limit switch for positioning the arm, and on conveyor stopping the

robot R1 approaches in position 1-1, grips the workpiece with an energized magnetic hand

and a touch sensor and returns to position 1-2. Then the robot R1 turns to position 1-3, goes

into the working space of the robot R2 and there waits for the robot R2 to taking the

workpiece. When the robot R2 comes to position 2-1, the robot R1 hands over the workpiece

to the robot R2 by deenergizing the hand. The robot R1 detects it with the touch sensor. The

robot R2 tests the workpiece with the touch sensor, transfers it to the robot R3 or R4

according to the result. Then, the robot R2 hands over the workpiece to the robot R3 or R4 in

position 2-2 or 2-3, while the robot R3 or R4 takes it in position 3-1 or 4-1 by energizing the

hand. Finally, the robot R3 or R4 carries the workpiece over to position 3-2 or 4-2 and there

leaves it, while the robot R2 returns to position 2-1. The conceptual Petri net model and the

detailed model are shown in Fig. 10 and Fig. 11, respectively.

www.intechopen.com

Petri Net Model Based Implementation of Hierarchical and Distributed Control
for Discrete Event Robotic Manufacturing Cells

69

Robot R1

Robot R2 Robot R3 Robot R4

1-1 1-2

1-3

2-1

2-2 2-3 3-1

3-2

4-1

4-2

: Limit switch for positioning

Conveyor CV1

Conveyor CV2

Conveyor CV3

Fig. 9. Layout for work transfer task by four robots

Transfer Waiting

Waiting

Hand over

Transfer

Work test Waiting Loading

Hand over Unloading

Hand over Unloading

Robot R1

Robot R2 Robot R3

Robot R4

Fig. 10. Conceptual Petri net model of work transfer task by four robots

It is natural to implement a hierarchical and distributed control system, where one controller is

allocated to each control layer or block. For the manufacturing system, an example structure of

hierarchical and distributed control is composed of one system controller and several local

controllers as shown in Fig. 12. The detailed Petri net is decomposed into subnets, which are

executed by each local controller. The system controller is composed of the Petri net based

controller and the coordinator. The conceptual Petri net model is allocated to the Petri net

based controller in the system controller for management of the overall system. The

coordinator monitors the overall system using external sensors and coordinates the local

controllers by sending the commands and receiving the status. The detailed Petri net models

are allocated to the Petri net based controllers in the local controllers. Each local controller

directly monitors and controls the sensors and actuators of its machine. In the example system,

one local controller is assigned to each robot and conveyor.

www.intechopen.com

 Advances in Petri Net Theory and Applications

70

(Robot R1)

(Robot R2)

(Robot R3)

(Robot R4)

Transfer

Waiting

Return

Transfer Waiting

Waiting

Waiting

Transfer

Work test

Waiting

Hold

Release Waiting

Waiting

Return

Loading

Waiting

Waiting

Hold

Release

Waiting

Waiting

Waiting

Hold

Release

Return

Waiting

Transfer Release Return

Transfer Release Return

Fig. 11. Detailed Petri net model of work transfer task by four robots

System controller

Local controller 1 Local controller 2 Local controller N

Machine 1 Machine 2 Machine N ����

����

Fig. 12. Hierarchical and distributed control structure composed of system controller and
local controllers

www.intechopen.com

Petri Net Model Based Implementation of Hierarchical and Distributed Control
for Discrete Event Robotic Manufacturing Cells

71

In the decomposition procedure, a transition may be divided and distributed into different
local controllers as shown in Fig. 13. The local controllers should be coordinated so that
these transitions fire simultaneously. Decomposed transitions are called global transitions,
and other transitions are called local transitions.
As another example, loading a workpiece necessitates the cooperative or synchronized
activities between the conveyor and the robot as shown in Fig. 14. First, “Carry in” operation
to carry a workpiece is performed by the conveyor. At the end of the operation, when the
robot is free, the “loading” operation is started. The conveyor starts waiting, the robot starts
moving to grasp the workpiece. After holding the workpiece, the robot starts transferring it to
another position and the conveyor is free. To exploit the above results, a coordinator program
for simultaneous firing of decomposed transitions has been introduced so that the aggregate
behavior of decomposed subnets is the same as that of the original Petri net.

Waiting Release

Hold Waiting

(Robot R2)

t1 t3

Waiting Release

Hold Waiting

(Robot R1)

(Robot R2)

t11 t31

t12 t32

(Robot R1)

decomposition

: global transition

t2

t21

t22

Fig. 13. Decomposition of transitions in “Hand over” operation

Grasp Transfer

Waiting

Moving

(Conveyor CV1)

(Robot R1)

Waiting

Carring in t4 t5

 Grasp TransferMoving

(Robot R1)

Waiting

(Conveyor CV1)

: local transition : global transition

t41 t42 t51 t52Waiting Carring in

decomposition

Fig. 14. Decomposition of transitions in the “Loading” operation

www.intechopen.com

 Advances in Petri Net Theory and Applications

72

When some of the transitions in conflict are firable at the same time, only one of them must
fire while the others become disabled. The choice for firing is done arbitrarily using an
arbiter program. If arbitration of the transitions is performed independently in separate
subnets, the results may be inconsistent with the original rule of arbitration. Therefore the
transitions should be arbitrated together as a group by the system controller. On the other
hand, arbitration of local transitions in conflict is performed by local controllers. When a
robot can do several subtasks in cooperation with conveyors and machining tools in a
flexible manufacturing system, transitions connected to the machine activities are found to
be in conflict, in which the input place of the transitions represents the activity of the robot.
In the decomposition of the detailed Petri net, these transitions also are decomposed and
assigned to different machines. The global transitions should be arbitrated together as a
group by the coordinator. Based on the decision of arbitration, the local controllers
determine the firing transitions.
The overall control structure of an example robotic manufacturing system was implemented
on a local area network of microcomputers. Each Petri net based local controller is
implemented on a dedicated microcomputer (Renesas H8/3069) under the real-time OS
ITRON 4.0. The local controller in charge of robot control executes robot motion control
through the transmission of command and the reception of status report with serial interface
to the real robot controller. The upper level coordinator is implemented on another
microcomputer. Communications among the controllers are performed using TCP/IP
protocol. The coordinator sends the commands based on the conceptual, global Petri net
model and coordinates the global transitions, which are accessed by the system and local
controllers as a shared file, such that decomposed transitions fire simultaneously.
In the simulation experiments, the names of global transitions and their conflict relations are
loaded into the upper level controller. The connection structure of a decomposed Petri net
model and conflict relations among local transitions are loaded into the Petri net based local
controller. In the connection structure, a transition of a Petri net model is defined using the
names of its input places and output places; for example, t1-1=b1-1, -b1-11, where the
transition no.1 (t1-1) of controller no.1 is connected to the input place no.1 and the output
place no.11. Using the names of transitions in the controllers, global transitions are defined;
for example, in Fig. 13, global transitions are G1: t1-11, t2-12, G2: t1-21, t2-22, G3: t1-31, t2-32,
and in Fig. 14, global transitions are G4: t5-41, t1-42, G5: t5-51, t1-52.
By executing the coordinator and Petri net based controllers algorithms based on loaded
information, simulation experiments have been performed. The Petri net simulator initiates
the execution of the unit actions attached to the fired transitions through the serial interface
to the robots or other external machines. When the action ends its activity, it informs the
simulator to proceed with the next activations by the external permissive gate arc.
Experimental results show that the decomposed transitions fire at the same time as the
original transition of the detailed Petri net of the whole system task. Firing transitions and
marking of tokens can be directly observed on the display at each time sequence using the
simulator (Yasuda, 2009).

6. Conclusions

A methodology to construct hierarchical and distributed control systems has been proposed.
By introduction of the coordinator, the Petri net based controllers are arranged according to
the hierarchical and distributed nature of the manufacturing system. The coordination

www.intechopen.com

Petri Net Model Based Implementation of Hierarchical and Distributed Control
for Discrete Event Robotic Manufacturing Cells

73

mechanism between the upper level and the lower level controllers is based on firability test
of global transitions, and its software can be easily implemented using the token game
player.
An example robotic work cell containing four industrial robot arms was constructed and
system control experiments including synchronization control and selective task control
were successfully performed. The Petri net model in each Petri net based local controller is
not so large and easily manageable. The local controller provides a common interface for
programming robots and other intelligent machines made by different manufacturers, and
can be implemented using conventional programmable logic controllers (PLC). The control
method can be expanded to large and complex, discrete event manufacturing systems. Thus,
modeling, simulation and control of large and complex manufacturing systems can be
performed consistently using Petri nets. The proposed methodology is now being adapted
to advanced multiple robot applications such as exploration robots, rescue robots and home
assist robots, besides industrial applications.

7. References

Atabakhche, H.; Barbalho, D. S., Valette, R. & Courvoisier, M. (1986). From Petri net based
PLCs to knowledge based control, Proceedings of IEEE International Conference on
Industrial Electronics, Control and Instrumentation (IECON’86), 817-822

Fogel, J. & Sebestyenova, J. (1992). An object oriented conception of a real-time control of
FMS, Proceedings of IFAC Workshop on Algorithms and Architectures for Real-Time
Control, 351-356

Gentina, J. C. & Corbeel, D. (1987). Coloured adaptive structured Petri net : A tool for the
automatic synthesis of hierarchical control of flexible manufacturing systems
(F.M.S.), Proceedings of 1987 IEEE International Conference on Robotics and Automation,
1166-1173

Georgeff, M. (1983). Communication and interaction in multi-agent planning, Proceedings of
International Conference of AAAI-83, 125-129

Hasegawa, K.; Takahashi, K., Masuda, R., & Ohno, H. (1984). Proposal of Mark Flow Graph
for discrete system control. Transactions of SICE, Vol. 20, No. 2, 122-129

Holt, J. D. & Rodd, M. D. (1994). An architecture for real-time distributed AI-based control
systems, Proceedings of IFAC Distributed Computer Control Systems 1994, 47-52

Jockovic, M.; Vukobratovic, M. & Ognjanovic, Z. (1990). An approach to the modeling of the
highest control level of flexible manufacturing cell. Robotica, Vol. 8, 125-130

Kasturia, E. & Dicesare, F. (1988). Real time control of multilevel manufacturing systems
using colored Petri nets, Proceedings of 1988 IEEE International Conference on Robotics
and Automation, 1114-1119

Murata, T. (1989). Petri Nets: Properties, analysis and applications. Proceedings of the IEEE,
Vol.77, No.4, 541-580

Perez, R. A. & Koutsourelis, D. I. (1987). A command language for multiple robot arm
coordination. IEEE Transactions on Education, Vol. E-30, No. 2, 109-112

Rogers, P. & Williams, D. (1988). A knowledge-based system linking to real-time control for
manufacturing cells, Proceedings of 1988 IEEE International Conference on Robotics and
Automation, 1291-1293

www.intechopen.com

 Advances in Petri Net Theory and Applications

74

Silva, M. (1990). Petri nets and flexible manufacturing, In: Advances in Petri Nets 1989,
Lecture Notes in Computer Science, Vol. 424, Rozenberg, G., (Ed.), 374-417,
Springer-Verlag, Berlin

Taubner, D. (1988). On the implementation of Petri nets, In: Advances in Petri Nets 1988,
Lecture Notes in Computer Science, Vol. 340, Rozenberg, G., (Ed.), 418-439,
Springer-Verlag, Berlin

Thuriot, E.; Valette, R., & Courvoisier, M. (1983). Implementation of a centralized
synchronization concept for production systems, Proceedings of IEEE Real-time
Systems Symposium, 163-171

Yasuda, G. (1999). An object-oriented multitasking control environment for multirobot
system programming and execution with 3D graphic simulation. International
Journal of Production Economics, Vol. 60/61, 241-250

Yasuda, G. (2009). Implementation of distributed cooperative control for industrial robot
systems using Petri nets, Preprints of the 9th IFAC Symposium on Robot Control
(SYROCO ’09), 433-438

Wang, F. & Saridis, G. N. (1990). A coordination theory for intelligent machines, Proceedings
of 11th IFAC World Congress, 235-240

www.intechopen.com

Advances in Petri Net Theory and Applications

Edited by Tauseef Aized

ISBN 978-953-307-108-4

Hard cover, 220 pages

Publisher Sciyo

Published online 27, September, 2010

Published in print edition September, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

The world is full of events which cause, end or affect other events. The study of these events, from a system

point of view, is very important. Such systems are called discrete event dynamic systems and are of a subject

of immense interest in a variety of disciplines, which range from telecommunication systems and transport

systems to manufacturing systems and beyond. There has always been an intense need to formulate methods

for modelling and analysis of discrete event dynamic systems. Petri net is a method which is based on a well-

founded mathematical theory and has a wide application. This book is a collection of recent advances in

theoretical and practical applications of the Petri net method and can be useful for both academia and industry

related practitioners.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Gen'ichi Yasuda (2010). Petri Net Model Based Implementation of Hierarchical and Distributed Control for

Discrete Event Robotic Manufacturing Cells, Advances in Petri Net Theory and Applications, Tauseef Aized

(Ed.), ISBN: 978-953-307-108-4, InTech, Available from: http://www.intechopen.com/books/advances-in-petri-

net-theory-and-applications/petri-net-model-based-implementation-of-hierarchical-and-distributed-control-for-

discrete-event-robo

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

