
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



2 

Synthesis of Coloured Petri Nets from Natural-
like Language Descriptions 

Enrique Arjona1, Graciela Bueno1 and Ernesto López-Mellado2 
1Colegio de Postgraduados Campus Montecillo 

 2CINVESTAV-IPN Unidad Guadalajara 
México 

1. Introduction 

Coloured Petri nets (CPN) (Jensen, 1981) have been widely used for the modelling of tasks 
in flexible manufacturing systems at different levels of functioning (Aized et al., 2007; Da 
Silva et al., 2008; Diaz, 2009). Since their conception, there have been several attempts to take 
advantage of the formalism of CPN to adapt them as a universal, discrete-event modelling 
language by extending their original definition (Jensen, 1991; Yeung et al., 1999; MengChu, 
2009). Despite these attempts, however, complex and large-scale models are very hard to 
build using CPN or their extensions. 
In order to ease the modelling of complex systems using Petri nets, some synthesis methods 
have been proposed, both for ordinary Petri nets (Der Jeng & Di Cesare, 1990; Zhou et al., 
1992; He et al., 2000; Badouel & Darondeau, 2004; Zhi-Jun et al., 2008; etc.) and for CPN 
(Micovsky et al., 1990; Baldassari & Bruno, 1991; Ezpeleta, 1993; Shang et al., 2004; Khadka, 
2007; etc.). These methods can be classified into two groups. 
The first group (Der Jeng & Di Cesare, 1990; Zhou et al., 1992; Ezpeleta, 1993; He et al., 2000; 
Badouel & Darondeau, 2004; Khadka, 2007) includes those methods that preserve the formal 
nature of Petri nets. In order to achieve this, the methods impose restrictions on the type of 
situations that can be modelled and do not include the indiscriminate use of shared 
resources and complex ordering and selecting criteria (AND's, OR's, NOT's, and their 
combinations). Therefore, the range of applicability of the methods is very limited. Der Jeng 
& Di Cesare (1990) review some representative methods, all of them are of low level and do 
not allow the modelling of shared resources or the modelling of ordering and selecting 
criteria. Zhou et al. (1992) present a method that allows the modelling of some particular 
types of shared resources but does not allow the modelling of ordering and selecting 
criteria. Ezpeleta (1993) includes a method for the synthesis of models expressed by a 
restricted class of CPN called simple sequential processes; in this method, ordering and 
selecting criteria are limited to the use of FIFO policies. The other methods included in this 
group use an interface to facilitate the modeling of the systems and a fixed catalogue of 
subnets for the synthesis of the corresponding Petri net; in none of these methods is allowed 
the modelling of ordering and selecting criteria. He et al. (2000) define manufacturing 
processes in an interface called IDEF3 (Integrated Definition 3) and transform the model 
obtained to a Petri net using a sequential cluster identification algorithm. Badouel & 
Darondeau (2004) establish relations that the system to model has with a predefined set of 

www.intechopen.com



 Advances in Petri Net Theory and Applications 

 

22 

paths and use a bijection to construct a Petri net of the system. Khadka (2007) uses a 
sequence chart to represent the system and transforms the chart to a CPN using a tool called 
LSCTOCPN (Live Sequence Charts to CPN). 
The second group (Micovsky et al., 1990; Baldassari & Bruno, 1991; Shang et al., 2004; Zhi-
Jun et al., 2008) comprises those methods that do not preserve the nature of Petri nets. They 
use Petri net extensions that include facilities of procedural nature that allow great flexibility 
with respect to the situations that can be modelled, but the models obtained cannot be 
formally analyzed because these models are hybrids composed of subnets and/or computer 
procedures. Micovsky et al. (1990)  propose a method that uses modified CPN that are 
interpreted using a proprietary language called DOOR that is implemented in a TPL 
(typeless procedural language); the programs obtained are used as input of a simulator.  
Baldassari & Bruno (1991) present a method that obtains computer programs to the 
situations that can be modelled, but the models obtained cannot be formally analyzed 
because these models are hybrids composed of modified CPN subnets called PROT nets and 
computer object-oriented concepts.  Shang et al. (2004) synthesize system behavioural 
specifications into a mixture of labeled Petri nets and CPN.  Finally, Zhi-Jun et al. (2008)  
present a method to combine existing web service models and synthesize them into a 
mixture of control flow nets and Petri nets. 
This chapter presents a method of synthesis of CPN for the formal specification of simple 
and complex tasks in flexible manufacturing systems. The method differs significantly from 
other published methods in that it preserves the formalism of CPN without imposing 
restrictions on the system modelled, and therefore it allows the modelling of shared 
resources and complex ordering and selecting criteria. The proposed method allows one to 
systematically obtain CPN models from declarative descriptions of a very high level of 
abstraction. These descriptions are activity models (ABAM) expressed in a natural-like 
language. The language is not extensive and it is easy to master. In the language, the 
stochastic occurrence of many events is implicitly embedded in exogenous and endogenous 
variable conditions, and material and resource flows can be easily modelled using a single 
flow statement. ABAM are built using the activity-based approach, a non formal modelling 
tool for discrete event systems, which has proven to be valuable for the modelling of 
complex systems and also to be user friendly, to such an extent that some event- and 
process-based simulation languages have input interfaces that use this approach. 
The CPN generated can be structurally validated, analyzed, and used for control or 
simulation.  
The remainder of the chapter is divided in 6 sections and an appendix. Section 2 is a brief 
account of similarities and differences between ABAM and CPN. Section 3 presents basic 
support modules for the CPN synthesis and the mathematical proofs of their validity. 
Section 4 discusses the main features of the natural-like language. Section 5 gives an outline 
of the proposed method to build CPN. Section 6 illustrates the synthesis method through an 
example of an automotive workshop, its complete specification in the natural-like language 
and the CPN synthesized. Section 7 discusses some conclusions. Finally, an appendix 
includes the formal grammar of the language. 

2. ABAM and CPN 

Formally, both ABAM and CPN can be defined as directed bipartite graphs (Jensen, 1981; 
Kreutzer, 1986) that include two kinds of nodes (ABAM have activities and waiting lines, 

www.intechopen.com



Synthesis of Coloured Petri Nets from Natural-like Language Descriptions   

 

23 

CPN have places and transitions), sets of objects associated to those nodes (admissible 
entities in the case of ABAM, colours in the case CPN), input and output functions, and time 
functions (these are included only in temporized models). Pictorially, nodes are represented 
with circles and rectangles and functions as directed arcs that have associated symbolic 
expressions (see figs. 1 and 4). 
At first glance it may appear that by associating waiting lines to places and activities to 
transitions ABAM and CPN are equivalent, nevertheless there are fundamental differences 
between them. (1) The expressive power (level of abstraction) of CPN is lower than that of 
ABAM because the former does not allow all kinds of input and output functions. (2) 
Transitions in CPN may represent events or activities, depending on the interpretation of 
the model. (3) In CPN there is no explicit association of objects to colours. (4) When the CPN 
definition includes time, temporization can be carried out indistinctly in the places or in the 
transitions. (5) Input and output functions in CPN are always expressed in mathematical 
and not in declarative form (despite the fact that functions in a CPN can be temporarily 
stated in declarative form, they must be able to be expressed as linear functions). 

3. Modules for CPN synthesis 

As was stated before, CPN definition does not allow for direct specification of all kinds of 
input and output functions. To facilitate the building of CPN, for systems where complex 
situations arise, a bottom-up synthesis process is proposed. CPN models are built using a set 
of CPN predefined modules, each one of them representing a particular situation. 
Predefined modules can be embedded between them to represent two or more particular 
situations simultaneously. 
To determine a partition of the situations that can arise when modelling discrete event 
systems with CPN, and thus define the necessary modules for the synthesis, we performed 
an analysis of the models that can be obtained using the activity-based approach. This does 
not impose any restrictions because if on the one hand we cannot assume that in general 
ABAM are CPN, the reverse is true. Complex situations in CPN arise when we try to 
associate ordering criteria to places and individual or multiple selecting criteria to input-
output functions of transitions (for example, when we want to include in a CPN an input 
function that has priorities in the selection of colours, and the number of these is not fixed 
but variable). 
In total, 13 CPN modules were defined for the synthesis process, and their validity was 
proved using induction. Two of the simplest modules are the CPN that correspond to a 
FIFO and a LIFO waiting lines. Their pictorial representations are given in figs. 1 and 2.  
Figure 1 depicts a CPN module that simulates a FIFO ordering of entities in a place P that 
has a capacity of n. Transitions TIN and TOUT are used to store/remove entities in/from 
the place. Transition TMOVE is used to move entities in the place. The colour sets used in 
the module are: 
 

  E = { <e,i> ; i=1,...,m } 
  S = { <s,j> ; j=1,...,n } 

  ES = E×S 
 

Colour set E represents the entity types that can be admitted in the place, colour set S 
represents numbered spaces in the place, and colour set ES represents entities stored in 
numbered spaces. The colour sets associated to the place and the transitions are: 

www.intechopen.com



 Advances in Petri Net Theory and Applications 

 

24 

  C(P) = ES ∪ S 
  C(TIN) = C(TOUT) = E 
  C(TMOVE) = ES - { <<e,i>,<s,1>> ; i=1,...,m } 
 

 

Fig. 1. A CPN module for FIFO ordering of entities in a place 

The input/output functions of the transitions are given in Figure 1. Place P must be 
initialized with a set of n tokens (colour instances) taken from S and ES. All the elements of S 
that appear in these tokens must be different. That is, all the spaces of the place, occupied or 
unoccupied, must be included in the initialization. At any moment, the cardinality of the set 
of tokens in place P is equal to the maximum length of the waiting line. 
The module execution is as follows: transition TIN stores an entity in the last position of the 
place (space n). Transition TMOVE moves an entity from its actual position to the previous 
one whenever possible. Transition TOUT removes the entity stored in the first position of 
the place. 
A proof of the proper execution of the module using mathematical induction is the following: 
Assume that the place contains k (k<n) ordered entities according to a FIFO criterion, and that 
an entity arrives and is not properly ordered. This means that the entity was moved by 
transition TMOVE from the position n to a position p such that p>k+1 or p<=k. In the first 
case, transition TMOVE ceased firing in spite that the position p-1 was empty (by the 
induction hypothesis only the first k positions were occupied and p-1>k). In the second case, 
transition TMOVE moved the arriving entity to an occupied position (by the induction 
hypothesis first k positions were occupied and p<=k). Both cases lead to contradictions 
because transition TMOVE moves an entity if, and only if, the previous position is empty. 
Figure 2 depicts a CPN module that simulates a LIFO ordering of entities in a place P that 
has a capacity of n. Transitions TIN and TOUT are used to store/remove entities in/from 
the place. Transition TMOVE is used to move entities in the place. The colour sets used in 
the module are: 
 

  E = { <e,i> ; i=1,...,m } 
  S = { <s,j> ; j=1,...,n } 
  DS= { <s,n+1> } 

  ES = E×S 

www.intechopen.com



Synthesis of Coloured Petri Nets from Natural-like Language Descriptions   

 

25 

 

Fig. 2. A CPN module for LIFO ordering of entities in a place 

Colour set E represents the entity types that can be admitted in the place, colour set S 

represents numbered spaces in the place, and colour set ES represents entities stored in 

numbered spaces. Colour set DS represents a dummy extra space used by transition TOUT 

when the place is full. The colour sets associated to the place and the transitions are: 
 

  C(P) = ES ∪ S ∪ DS 
  C(TIN) = C(TOUT) = E 
  C(TMOVE) = ES - { <<e,i>,<s,1>> ; i=1,...,m } 
 

The input/output functions of the transitions are given in Figure 2. Place P must be 

initialized with a set of n+1 tokens. One token is taken from DS. The other n tokens are 

taken from S and ES. All the elements of S that appear in these n tokens must be different. 

That is, all the spaces of the place, including the dummy space, must be included in the 

initialization. At any moment, the cardinality of the set of tokens in place P is equal to the 

maximum length of the waiting line plus one. 

The module execution is as follows: Transition TIN stores an entity in the last position of the 

place (space n). Transition TMOVE moves an entity from its actual position to the previous 

one whenever possible. Transition TOUT takes the entity stored in the last non-empty 

position of the place. This entity is easily recognized because the position next to it is always 

empty, even when the place is full. In this case, the empty position is the dummy space. 

Note that priority of transition TMOVE must be higher than the priority of transition TOUT. 

The proof of the proper execution of the module is similar to the proof given for the FIFO 
module. 
The other modules deal with more complex situations, namely ascendant/descendent 

ordering criteria with respect to a given attribute, extraction of m items, contained from 

position i, of a n-position waiting line (0 <= i <= n — m; m <= n; m predefined or variable), 

and accessing of a specific position of a FIFO/LIFO waiting line. In (Arjona & Bueno, 2007) 

are included two of the CPN modules for the modelling of complex selecting criteria (the 

selection of a constant and a variable number of entities from a set of places), mathematical 

proofs of their validity, and an example of their application to a real life  simulation model 

of a sugarcane plantation. 

www.intechopen.com



 Advances in Petri Net Theory and Applications 

 

26 

4. Specification of models in a natural-like language 

The specification of a model in the natural-like language consists of definition of entities, 
waiting lines, variables, and activities. Definition of entities and variables can include 
attributes, and definition of waiting lines can include ordering criteria. Activity definitions 
consist of the specification of starting and ending conditions, flows, and attribute 
modifications. Besides declarations, the language only uses two types of statements: the first 
one is for flow specifications and the second one for explicit state change specifications 
when events occur. These statements can model all individual and multiple flows 
mentioned in the preceding section. 
Although the purpose of the natural-like language developed was to model flexible 
manufacturing systems, as a matter of fact, it is domain independent and was designed 
taking into consideration all kinds of possible material and resource flows in discrete event 
systems. This proved to be very useful for modelling very complex situations in real 
systems. In the appendix it is included the complete formal grammar of the language with 
an explanation of the symbols used to define it. In section 6 it is included an example of the 
language usage.  

5. CPN synthesis from models specified in a natural-like language 

The CPN modules and the natural-like language mentioned above have been utilized as the 
basis of a method for CPN synthesis. In this method, instead of using a bottom-up approach 
as before, a top-down technique is utilized. The CPN are synthesized by successive 
refinements of analysis of ABAM specified in the language. 
The CPN synthesis process comprises six steps. The first five steps do not take into 
consideration complex situations in the input model and determine successively the place 
set, transition set, place  set, transition colour set, and input and output functions. The sixth 
step performs refinements to the CPN already obtained in order to take into account 
complex situations. 
Step 1. Determination of the Place Set. For the determination of the place set, entities and 

their attribute values in the input model are analyzed. There will be as many places 
as different states of the entities are actually used in the activities of the model. This 
avoids, to the extent possible, combinatorial explosion of the number of places and 
comprises a reduction process that unifies states, makes implicit some information 
(information that is not fundamental for the real-time execution of the model), and 
eliminates superfluous information (entities and attribute values that were defined 
but never used in the activities). 
In the reduction process, entities and attributes are classified internally according to 
their use in the input model. Entities can be individual or multiple, depending on 
whether they represent a single resource of the system or a set of resources that 
have some logical or physical association. Attributes can be of constant or variable 
value. Attributes of constant value distinguish only members of the same family of 
resources and never represent the state of an entity. Attributes of variable value can 
be used to indicate contents, position, or physical characteristics. Attributes that 
indicate contents, independently of their values, can represent only two states of the 
entity to which they belong. Other attributes of variable value can represent as 
many states as values of the former are used in the activities. The number of places 

www.intechopen.com



Synthesis of Coloured Petri Nets from Natural-like Language Descriptions   

 

27 

corresponding to an entity will be the product of the number of states that its 
attributes represent. When an entity has no attributes, it will be modelled with one 
place that represents its availability. 

Step 2. Determination of the Transition Set. Transitions in a CPN correspond to state changes, 
and therefore there will be one transition in the transition set for each possible 
configuration of the system that allows the start of an activity. The number of input 
places of the transition will be the number of concurrent entities that the activity 
requires to start. The number of output places of the transition will be the number 
of entities that go out from the activity when it ends. 

Step 3. Determination of the Place Colour Set. Because places represent a state of an entity, the 
colour set associated to a place will take into consideration only attributes of constant 
value, or of variable value that indicate contents and whose values are not uniquely 
represented by the state of the entity. The colour set consists of n-tuples with as many 
components as attributes of these types the entity has defined. 

Step 4. Determination of the Transition Colour Set. The number of ways in which a transition 
can be fired depends on the different colours admissible in its input places. 
Therefore, the colour set associated to a transition will be the set of the n first 
natural numbers where n is the maximum of the cardinalities of the colour sets of 
its input places. 

Step 5. Determination of the Input and Output Functions. Input (output) functions of a 
transition are the sum of individual functions associated to its input (output) places. 
The individual function of a place is the composition of two functions: the first one 
maps the set of colours of the place with the set of colours of the transition, and the 
second one determines which colours of the place are taken for each colour of the 
transition. 

Step 6. Refinements to Include Complex Situations. In the last step of the synthesis process, 
complex situations in the input model are analyzed and the CPN already obtained 
is refined by introducing, one by one, the necessary modules. These refinements do 
not change the basic properties of the net, and its analysis can be done before this 
step is performed. 

6. An example of CPN synthesis 

Next, an example of the application of the synthesis process is included; it is taken from 
(Colom et al., 1990), where a CPN model is presented. The system considered is a puttying 
car body workshop designed and operated by a European automobile firm, whose layout is 
depicted in fig. 3. 
The workshop has 12 working posts divided into two groups of 6. There is a conveying 
system that consists of roller tables where each table can contain one car body. Roller tables 
RT only convey. Roller tables TT in front of stations, in addition to conveying, rotate for 
loading and unloading. Roller tables ST, in addition to conveying, can also slide and allow 
distribution between groups of tables. A working post consists of three tables, one for 
loading (LT), one for processing (puttying) (PT), and one for unloading (UT). Loading and 
unloading tables in each workstation are integrated in a sliding bench that changes position 
for loading and unloading. At any moment a workstation can contain at most two car 
bodies. Car bodies in the conveying system have assigned the workstation number where 
they will be processed. 

www.intechopen.com



 Advances in Petri Net Theory and Applications 

 

28 
 

 
 

Fig. 3. Workshop layout 

In this example, we consider only the section in the dashed rectangle. In general, the model 

will work as follows: car bodies arrive at the section on roller table number 1. Upon arrival, 

a pass with a number that corresponds to the workstation where it will be processed is 

assigned to the car body (in the complete model, passes are assigned elsewhere outside the 

section). Car bodies are moved from one roller table to the next until they arrive at the 

workstation to which they have been assigned. Upon arrival, they are transferred 

successively to the loading, processing, and unloading tables of the workstation, and again 

to the roller table in front of the workstation. After this, the car bodies will be moved from 

one roller table to the next until they arrive at roller table number 6, from where they leave 

the section. 

An activity-based approach input model is depicted in fig. 4; it consists of three entities, 

three waiting lines, and seven activities. Entities considered are: passes (PASS AV), with  

one attribute that represents their number (its admissible values are integers from 1 to 6); 

roller tables (RT) with two attributes, the first represents its number (its admissible values 

are integers from 1 to 6) and the second the workstation number where the car body on the 

roller table will be or was processed and that we will call body destination (its admissible 

values are integers from -6 to 6,  zero indicates that a roller table is free and a negative 

number that the body has already been processed); and workstations (WS) with four 

attributes, the first representing its number (its admissible values are integers from 1 to 6) 

and the others the states of its loading, processing, and unloading tables (its admissible 

values are integers 0 or 1).  The bodies were not considered entities because the passes are 

sufficient to represent them. Also, the numbers of the passes were not considered in the 

attributes of the workstations because, as was stated above, pass numbers always coincide 

with the number of the workstations where the bodies are processed. 

The waiting lines correspond to the inactive states of the entities and are: available passes, 

inactive roller tables, and workstation pool. 

The activities are: body arrival (BA), body conveyance (BC), load from roller table (LFRT), 

load from loading table (LFLT), unload from processing table (UFPT), unload from 

unloading table (UFUT), and body leaving (BL). Following it is given the complete 

description of the model in the natural-like language. 

www.intechopen.com



Synthesis of Coloured Petri Nets from Natural-like Language Descriptions   

 

29 

 

Fig. 4. Activity model of the workshop 

MODEL NAME: 

    AUTOMOTIVE_WORKSHOP. 

ENTITIES: 

    PASS WITH THE FOLLOWING ATTRIBUTES: 

        NUMBER (ADMISSIBLE VALUES 1 TO 6). 

    ROLLER_TABLE WITH THE FOLLOWING ATTRIBUTES: 

        NUMBER (ADMISSIBLE VALUES 1 TO 6) 

        BODY_DESTINATION (ADMISSIBLE VALUES -6 TO 6). 

    WORKSTATION WITH THE FOLLOWING ATTRIBUTES: 

        NUMBER (ADMISSIBLE VALUES 1 TO 6) 

        STATE_OF_LOADING_TABLE (ADMISSIBLE VALUES 0 TO 1) 

        STATE_OF_PROCESSING_TABLE (ADMISSIBLE VALUES 0 TO 1) 

        STATE_OF_UNLOADING_TABLE (ADMISSIBLE VALUES 0 TO 1). 

WAITING LINES: 

    AVAILABLE_PASSES CONTAINS PASSES. 

    INACTIVE_ROLLER_TABLES CONTAINS ROLLER TABLES. 

    WORKSTATION_POOL CONTAINS WORKSTATIONS. 

EXTERNAL VARIABLES: 

    START_OF_BODY_CONVEYANCE. 

    END_OF_BODY_CONVEYANCE. 

    START_OF_LOAD_FROM_ROLLER_TABLE. 

    END_OF_LOAD_FROM_ROLLER_TABLE. 

    START_OF_LOAD_FROM_LOADING_TABLE. 

    END_OF_LOAD_FROM_LOADING_TABLE 

    START_OF_UNLOAD_FROM_PROCESSING_TABLE. 

    END_OF_ UNLOAD_FROM_PROCESSING_TABLE. 

    START_OF_UNLOAD_FROM_UNLOADING_TABLE. 

    END_OF_UNLOAD_FROM_UNLOADING_TABLE. 

www.intechopen.com



 Advances in Petri Net Theory and Applications 

 

30 

    START_OF_BODY_LEAVING. 
    END_OF_BODY_LEAVING. 
ACTIVITY: 
    BODY_ARRIVAL. 
  ENTITY FLOWS: 
    GET A PASS FROM AVAILABLE_PASSES. 
    GET A ROLLER_TABLE WITH NUMBER=1 AND BODY_DESTINATION=0 
      FROM INACTIVE_ROLLER_TABLES AND AT END OF ACTIVITY PUT BACK  
      IN INACTIVE_ROLLER_TABLES. 
  ATTRIBUTE MODIFICATIONS: 
    BODY_DESTINATION OF ROLLER_TABLE := NUMBER OF PASS. 
ACTIVITY: 
    BODY_CONVEYANCE. 
 ENDING_CONDITIONS: 
    END_OF_BODY_CONVEYANCE=1. 
 ENTITY FLOWS ( 1 OF THE FOLLOWING FLOWS): 
    GET A  ROLLER_TABLE  WITH  BODY_DESTINATION >= 
      NUMBER OF  ROLLER_TABLE FROM INACTIVE_ROLLER_TABLES AND 
      AT END OF ACTIVITY PUT  BACK IN INACTIVE_ROLLER_TABLES. 
    GET A ROLLER_TABLE WITH BODY_DESTINATION < 0 
      FROM INACTIVE_ROLLER_TABLES AND AT END OF ACTIVITY PUT BACK  
      IN INACTIVE_ROLLER_TABLES. 
  ENTITY FLOWS:  
    GET A ROLLER_TABLE WITH NUMBER = NUMBER OF  
      ROLLER_TABLE (#1) + 1 AND BODY_DESTINATION = 0 
      FROM INACTIVE_ROLLER_TABLES AND AT END OF ACTIVITY 
      PUT  BACK IN INACTIVE_ROLLER_TABLES. 
  ATTRIBUTE MODIFICATIONS: 
    START_OF_BODY_CONVEYANCE := 1. 
    BODY_DESTINATION OF ROLLER TABLE (#2) := 
      BODY_DESTINATION OF ROLLER TABLE (#1). 
    BODY_DESTINATION OF ROLLER TABLE (#1) := 0. 
ACTIVITY: 
    LOAD_FROM_ROLLER_TABLE. 
  ENDING_CONDITIONS: 
    END_OF_LOAD_FROM_ROLLER_TABLE=1.  
  ENTITY FLOWS (SELECTING BODY_DESTINATION OF ROLLER_TABLE IN  
      INACTIVE_ROLLER_TABLES = NUMBER OF WORKSTATION IN  
      WORKSTATION_POOL) : 
    GET A  ROLLER_TABLE FROM INACTIVE_ROLLER_TABLES AND 
      AT END OF ACTIVITY PUT  BACK IN INACTIVE_ROLLER_TABLES. 
    GET A WORKSTATION WITH STATE_OF_LOADING_TABLE = 0 AND 
      STATE_OF_LOADING_TABLE + STATE_OF_PROCESSING_TABLE + 
      STATE_OF_UNLOADING_TABLE <= 1 FROM WORKSTATION_POOL AND AT  
      END OF ACTIVITY PUT BACK IN WORKSTATION_POOL. 
  ATTRIBUTE MODIFICATIONS: 

www.intechopen.com



Synthesis of Coloured Petri Nets from Natural-like Language Descriptions   

 

31 

    START_OF_LOAD_FROM_ROLLER_TABLE := 1. 
    STATE_OF_LOADING_TABLE OF WORKSTATION := 1. 
    BODY_DESTINATION OF ROLLER_TABLE := 0. 
ACTIVITY: 
    LOAD_FROM_LOADING_TABLE. 
  ENDING_CONDITIONS: 
    END_OF_LOAD_FROM_LOADING_TABLE=1. 
  ENTITY FLOWS: 
    GET A WORKSTATION WITH STATE_OF_PROCESSING_TABLE = 0 
      AND STATE_OF_LOADING_TABLE = 1 FROM WORKSTATION_POOL 
      AND AT END OF ACTIVITY PUT BACK IN WORKSTATION_POOL. 
  ATTRIBUTE MODIFICATIONS: 
      START_OF_LOAD_FROM_LOADING_TABLE := 1. 
      STATE_OF_LOADING_TABLE OF WORKSTATION := 0. 
      STATE_OF_PROCESSING_TABLE OF WORKSTATION := 1. 
ACTIVITY: 
    UNLOAD_FROM_PROCESSING_TABLE. 
  ENDING_CONDITIONS: 
    END_OF_UNLOAD_FROM_PROCESSING_TABLE=1. 
  ENTITY FLOWS: 
    GET A WORKSTATION WITH STATE_OF_PROCESSING_TABLE = 1 
      AND STATE_OF_UNLOADING_TABLE = 0 FROM WORKSTATION_POOL 
      AND AT END OF ACTIVITY PUT BACK IN WORKSTATION_POOL. 
  ATTRIBUTE MODIFICATIONS: 
    START_OF_UNLOAD_FROM_PROCESSING_TABLE := 1.  
    STATE_OF_PROCESSING_TABLE OF WORKSTATION := 0. 
    STATE_OF_UNLOADING_TABLE OF WORKSTATION := 1. 
ACTIVITY: 
    UNLOAD_FROM_UNLOADING_TABLE. 
  ENDING_CONDITIONS: 
    END_OF_UNLOAD_FROM_UNLOADING_TABLE=1. 
  ENTITY FLOWS: 
    GET A WORKSTATION WITH STATE_OF_UNLOADING_TABLE = 1 
      FROM WORKSTATION_POOL AND AT END OF ACTIVITY 
      PUT BACK IN WORKSTATION_POOL. 
    GET A ROLLER_TABLE WITH NUMBER = NUMBER OF  
      WORKSTATION AND BODY_DESTINATION = 0 
      FROM INACTIVE_ROLLER_TABLES AND AT END OF ACTIVITY 
      PUT  BACK IN INACTIVE_ROLLER_TABLES. 
  ATTRIBUTE MODIFICATIONS: 
      START_OF_UNLOAD_FROM_UNLOADING_TABLE := 1.  
      STATE_OF_UNLOADING_TABLE OF WORKSTATION := 0. 
      BODY_DESTINATION OF ROLLER_TABLE := - NUMBER OF WORKSTATION. 
ACTIVITY: 
  BODY_LEAVING. 
  ENDING_CONDITIONS: 

www.intechopen.com



 Advances in Petri Net Theory and Applications 

 

32 

    END_OF_BODY_LEAVING=1. 
ENTITY FLOWS: 
    GET A ROLLER_TABLE WITH NUMBER=6 AND BODY_DESTINATION < 0 
      FROM INACTIVE_ROLLER_TABLES AND AT END OF ACTIVITY PUT BACK  
      IN INACTIVE_ROLLER_TABLES. 
    AT END OF ACTIVITY PUT A PASS IN AVAILABLE_PASSES. 
ATTRIBUTE MODIFICATIONS: 
    END_OF_BODY_LEAVING :=1. 
    NUMBER OF PASS := - BODY_DESTINATION OF ROLLER_TABLE. 
    BODY_DESTINATION OF ROLLER_TABLE := 0. 
END OF MODEL. 
 

Figs. 5 to 8 depict the synthesis process of a CPN corresponding to the above model. 

The result of step 1 is shown in fig. 5. The place set includes only one place for the passes 
because its only attribute is of constant value. 
 

 

Fig. 5. Place set generated 

Only two places were included for the roller tables because, in spite of the fact that the 

attribute corresponding to body destination can take 13 values, the roller table can only be in 

two states: free (RT S1) or occupied (RT S2). Workstations have seven different states (WS S1 

to WS S7). 

Fig. 6 depicts the transition sets corresponding to each one of the activities (step 2). There is 

one transition for each valid configuration of the system that allows the start of an activity. 

For example, activity LFRT is represented by the transitions LFRT1, LFRT2 and LFRT3. 

www.intechopen.com



Synthesis of Coloured Petri Nets from Natural-like Language Descriptions   

 

33 
 

 

 
 

Fig. 6. Transition set generated by all activities 

Fig. 7 summarizes the place and the transition colour sets (steps 3 and 4). First 10 colour sets 

correspond to places.  All the places except one, the one corresponding to a roller table in an 

occupied state, have simple colours assigned because the values of the entity-variable 

attributes are uniquely determined by the states that the places represent. All the transitions 

have simple colours except transition BC that can fire in 36 different ways. 

 
 

 
 

Fig. 7. Associated colours sets to places and transitions 

Fig. 8 depicts the input and output functions (step 5). Because many of the colour sets of the 

transitions coincide with the colour sets of their input places, many of the functions are 

identity functions. Identity functions are represented by dashed arcs.  

 C(PASS AV)={<i>} i=1,…,6    C(BC)={<I,j>} i=1,…,6; j=1,…,6 

 C(RT S1)={<i>} i=1,…,6    C(LFRT1)={<i>} i=1,…,6 

 C(RT S2)={<i,j>} i=1,…,6; j=1,…,6   C(LFRT2)={<i>} i=1,…,6 

 C(WS S1)={<i>} i=1,…,6    C(LFRT3)={<i>} i=1,…,6 

 C(WS S2)={<i>} i=1,…,6    C(LFLT1)={<i>} i=1,…,6 

 C(WS S3)={<i>} i=1,…,6    C(LFLT2)={<i>} i=1,…,6 

 C(WS S4)={<i>} i=1,…,6    C(UFPT1)={<i>} i=1,…,6 

 C(WS S5)={<i>} i=1,…,6    C(UFPT2)={<i>} i=1,…,6 

 C(WS S6)={<i>} i=1,…,6    C(UFUT1)={<i>} i=1,…,6 

 C(WS S7)={<i>} i=1,…,6    C(UFUT2)={<i>} i=1,…,6 

 C(BA)={<i>} i=1,…,6     C(UFUT3)={<i>} i=1,…,6 

 C(BL)={<i>} i=1,…,6   

www.intechopen.com



 Advances in Petri Net Theory and Applications 

 

34 
 

 

Fig. 8. Input-output functions generated  

Function f takes from place RT SI the token that corresponds to roller table 1. Function g 
puts in place RT S2 a token that corresponds to roller table 1 occupied with a car body. 
The body destination was taken by transition BA from place PASS AV (passes available). 

Functions x and u take from places RT S2 and RT SI, respectively, tokens corresponding to 

two consecutive roller tables, the first one occupied and the second one free. Functions y 

and v put tokens corresponding to those roller tables, but with the first one free and the 

second occupied, in places RT SI and RT S2, respectively. Function r, used in transitions 

corresponding to activity loading from roller table, takes from place RT S2 a token 

corresponding to a roller table whose number and body destination coincide. Function s, 

used in transitions corresponding to activity unloading from roller table, puts in place RT S2 

a token corresponding to a roller table with a car body just processed, that is, the number of 

the roller table is the opposite of its body destination. In this example complex situations are 

not present in the input model, and therefore refinements (step 6) were not made to the net 

of fig. 8. This model is very close to that presented in (Colom et al., 1990), from where the 

real-life example is taken, but the functions of this model are simpler than those obtained by 

Colom. 

7. Conclusion 

A synthesis method for CPN was presented, a top-down technique in which the starting 

specifications of tasks are high-level expressed and predefined CPN modules are utilized. 

The method differs significantly from other methods published in that it preserves the 

formalism of CPN without imposing restrictions on the system modelled, and therefore it 

allows the modelling of shared resources and complex ordering and selecting criteria. The 

analysis of situations that can occur during the synthesis process is conducted using the 

philosophy of the activity-based approach for discrete-event systems. Input models of the 

synthesis process are specified in a natural-like language interface, which greatly facilitates 

www.intechopen.com



Synthesis of Coloured Petri Nets from Natural-like Language Descriptions   

 

35 

the expression of situations involving complex manipulations of items in waiting lines. 

These features also establish an advantage over other published methods. 

The predefined modules, which deal with complex situations, are live and bounded; 
nevertheless the synthesized CPN model must be analyzed with existing mathematical 
methods for their validation and proof of properties; then it can be used for real-time control 
and simulation. 

8. References 

Aized, T., Takahashi, K. & Hagiwara I. (2007). Advanced multiple product flexible 
manufacturing system modelling using Coloured Petri Net. Journal of Advanced 
Computational Intelligence and Intelligent Informatics. Vol. 11, No. 6, pp. 715-723, ISSN: 
1343-0130. 

Arjona, E. & Bueno, G. (2007). Using simulation to integrate ordering and complex selecting 
criteria into Coloured Petri Net Models. Agrociencia Vol. 41, No. 8, pp.  883-901, 
ISSN: 1405-3195. 

Badouel, E. & Darondeau, P. (2004). The synthesis of Petri nets from path-automatic 
specifications. Information and Computation Vol. 193, pp. 117-135, ISSN: 0890-5401. 

Baldasari, M. & Bruno, G. (1991). PROTOB: an object oriented methodology for developing 
discrete event dynamic systems. Computer Languages, Vol. 16, No. 1, pp. 39-63, 
ISSN: 0096-0551. 

Colom, J.M., Esparza, J., Martinez, J.  &  Silva, M. (1990).  DEMON: Design methods based on 
nets, Esprit Basic Research Action 3148, University of Zaragoza, Spain, June 1990. 

Da Silva, A., Montgomery, E. & Lima E. (2008). Flexible manufacturing systems modelling 
using high level Petri Nets.  Proceedings of ABCM Symposium Series in Mechatronics, 
Vol. 3, pp. 405-413.  

Der Jeng, M. & DiCesare, F. (1990). A review of synthesis techniques for Petri nets. Proc. of 
the IEEE 2nd. International Conference on Computer Integrated Manufacturing, pp. 348-
355, Troy, NY, May 1990. 

Diaz, M. (2009). Petri Nets: Fundamental Models, Verification and Applications, Wiley-ISTE, 
ISBN: 1848210795. 

Ezpeleta, J. (1993). Análisis y síntesis de modelos libres de bloqueos para sistemas 
concurrentes, doctoral diss., University of Zaragoza, Spain. 

He, D.W., Strege, B., Tolle, H. & Kusiak, A. (2000). Decomposition in automatic generation 
of Petri Nets for manufacturing system control and scheduling. International Journal 
of Production Research, Vol. 38, No. 6, pp. 1437-1457, ISSN: 0020-7543. 

Jensen, K. (1981). Coloured Petri nets and the invariant method. Theoretical Computer Science, 
Vol. 14, pp. 317-336, ISSN: 0304-3975. 

Jensen, K. (1991). Coloured Petri nets: A high level language for system design and analysis, 
In: Lecture Notes in Computer Science, Advances in Petri nets 1990, G. Rosenberg, Ed., 
pp. 342-416, Springer-Verlag, ISBN: 978-3-540-53863-9, Berlin. 

Khadka, B. (2007). Transformation of live sequence charts to Colored Petri Nets, masters 
project report, University of Massachusetts Dartmouth, USA. 

Kreutzer, W. (1986). System Simulation Programming Styles and Languages, Addison-Wesley, 
ISBN: 0-201-12914-0, Reading, MA, USA. 

MengChu, Z. (2009). System modeling and control with resource-oriented Petri Nets, CRC Press, 
ISBN: 978-1-4398-0884-9, Boca Raton, FL, USA. 

www.intechopen.com



 Advances in Petri Net Theory and Applications 

 

36 

Micovsky, A., Sesera, L., Veishab, M. & Albert, M. (1990). TORA: A Petri net based tool for 
rapid prototyping of FMS control systems. Computers in Industry, Vol. 15, No. 4, pp. 
279-292, ISSN: 0166-3615. 

Shang, D., Burns, F., Koelmans, A., Yakovlev, A. & Xia, F. (2004). Asynchronous system 
synthesis based on direct mapping using VHDL and Petri nets. IEE Proceedings 
Computers and Digital Techniques, Vol. 151, No. 3, ISSN: 1751-8601.  

Yeung, D.S., Shiu, S.C.K. & Tsang, E.C.C. (1999). Modelling flexible manufacturing systems 
using weighted Fuzzy Coloured Petri Nets. Journal of Intelligent and Fuzzy Systems, 
Vol. 7, No. 2, pp. 137-149, ISSN: 1064-1246. 

Zhi-Jun, D., Jun-Li, W & Chang-Jun, J. (2008). An approach for synthesis Petri nets for 
modeling and verifying composite web service, Journal of Information Science and 
Engineering, Vol. 24, pp. 1309-1328, ISSN: 1016-23. 

Zhou, M., DiCesare, F., & Desrochers, A. (1992). A hybrid methodology for synthesis of Petri 
net models for manufacturing systems. IEEE Trans. on Robotics and Automation, Vol. 
8, No. 3, pp. 350-361, ISSN: 1042-296X. 

Appendix. Formal Grammar of the Language 

Before giving the grammar of the language, we will explain the logic behind it, describe the 
different ways in which its elements can be used, and give some general examples of its use. 
These examples complement the language features showed in the automotive workshop 
example given in section 6. 
The language was designed analyzing all possible situations that can occur when modeling 
a real life system using the activity-approach paradigm. As was said before, besides of 
declarations, the language uses only two types of statements. The first one is used for entity 
(material and resource) flows and the second one for attribute (state) modifications. 
Interactive actions are modeled by explicit starting and ending conditions in the activities 
and these conditions can use both internal and external variables. Only one type of 
statement is used for entity flows because the number of different ways in which is possible 
to store, or retrieve, an entity in a waiting line (storage areas, buffers, and queues) is very 
small. Storing and retrieving depend heavily on the ordering criteria of the waiting lines 
involved and, excluding nonsense ordering criteria, a waiting line can be ordered in only a 
few ways. Only one type of statement is used for attribute modifications because the only 
modifications that attributes are susceptible to are assignments. Flows of entities from 
waiting lines to activities can be individual or multiple. Individual flows can be 
unconditional or conditioned to attribute values of entities or to entity positions in waiting 
lines when these have associated ordering criteria (overriding). Conditions on attribute 
values can be absolute, relative to attribute values of other entities that already are in the 
activity, or relative to values of the model variables. Multiple flows consist of a fixed or 
variable number of individual flows. Priorities can be given to the entities required for a 
particular activity (alternate flows). Flows of entities from activities to waiting lines can only 
be individual. Alternate storage waiting lines can be specified based on attribute values of 
the entities. Also, when the output waiting lines have associated ordering criteria, a position 
for the storage of an entity can be specified (overriding). Assignments can be conditional or 
unconditional. Values assigned are the result of the evaluation of expressions that may have 
as operands attribute names, constants, variable names, and intrinsic and extrinsic 
functions. One assign statement will affect all similar entities that satisfy the conditions of 

www.intechopen.com



Synthesis of Coloured Petri Nets from Natural-like Language Descriptions   

 

37 

the statement (implicit repeat). There is an intrinsic function (#) for the counting of entities 
included in an activity and that meet specific attribute characteristics. This function is of 
particular importance when using multiple flows with a variable (unknown) number of 
individual flows. 
Specification of a model consists of six parts or sections. In the first section is given the name 

of the model. In the second section are given the names of the entities and attributes and the 

admissible values of the attributes. In the third section are given the names of the waiting 

lines, and their ordering criteria and admissible entities. In sections four and five, are given 

the names of the internal and external variables of the system. In the sixth section, the 

activities that make up the system are described. All declarations and statements must end 

with a point. Declarations are used in all sections, and statements are used only in the sixth 

section that corresponds to activity descriptions. All the names should start with an 

alphabetic character and may be followed by a string of alphanumeric or underscore 

characters. Entities may have or not attributes. Variables are defined in a similar way as 

entities. Internal variables correspond to endogenous variables and external variables 

correspond to exogenous or interactive variables. Variables for which admissible values are 

not specified are assumed boolean whose default admissible values are zero and one. 

Waiting lines can have an ordering criterion or a length specified. When it is not specified an 

ordering criterion the waiting line is ordered FIFO. The names of entities allowed in waiting 

lines can be pluralized to improve readability. Activities can have multiplicity. Activity 

multiplicity must be evaluated to an integer number that indicates the maximum number of 

concurrent occurrences of the activity; default multiplicity is one. Starting and ending 

conditions are boolean expressions that use relational expressions of variables and 

constants. Ending conditions and activity durations are mutually exclusive. Activity 

durations can be obtained from random variates using external variables or intrinsic 

functions. A flow statement may consist of one or more individual entity flows. Each 

individual flow can be a generator, a transmitter or a consumer of entities. The number of 

individual flows in a flow statement can be constant or variable. Priorities can be specified 

between individual flows as well as alternate choices. Entities in a flow can be conditioned 

by means of their attribute values to a constant or to other entities attribute values, in an 

absolute or a relative way. In addition, it is possible to override ordering criteria of the 

waiting lines from where the entities are removed, and it is possible to specify alternate 

destination waiting lines for the storage of entities. The scope of a flow statement is used to 

select a subset of a set of individual flows. The cardinality of the subset can be fixed or 

variable within a range. The selecting option is used to define local relations among entities. 

Repetition factors condense model specifications when identical flows are used. Many of the 

words included in the flow statements are optional. Finally, attribute modifications can only 

consist of a conditional or an unconditional assignment. 

Examples of valid entity definitions are the following: 
 

ENTITIES: 
    CAR WITH THE FOLLOWING ATTRIBUTES: 
        MAKE (ADMISSIBLE VALUES FORD OR CHRYSLER) 
        PASSENGER_CAPACITY (ADMISSIBLE VALUES 2 TO 5). 
    ELEVATOR. 
    CRANE. 

www.intechopen.com



 Advances in Petri Net Theory and Applications 

 

38 

Examples of valid variable definitions are the following: 
 

INTERNAL VARIABLES: 

    PRODUCT_GENERATED. 

EXTERNAL VARIABLES: 

    USER_ANSWER (ADMISSIBLE VALUES HIGH OR MEDIUM OR LOW). 
 

Examples of valid waiting line definitions are the following: 
 

WAITING LINES: 

    WAREHOUSE CONTAINS BOXES. 

    ASSEMBLY_LINE (FIFO) CONTAINS CAR_BODIES AND ITS  MAXIMUN LENGHT IS 

     10. 

    WAITING_ROOM CONTAINS PATIENTS ON DESCENDING ORDER BY 

      ILLNESS_CONDITION. 
 

Examples of valid starting and ending conditions definitions of activities are: 
 

ACTIVITY: 

    BEST_QUALITY_CONTROL. 

  STARTING CONDITIONS: 

    USER_ANSWER=HIGH. 

  ACTIVITY DURATION: 3. 
 

ACTIVITY: 

     DIRECT_ASSEMBLY. 

  STARTING CONDITIONS: 

     INFRARED_SENSOR=1.AND.RECOGNITION_TO_BE_DONE=0. 

  ENDING CONDITIONS: 

     END_OF_ASSEMBLY=1.    
 

Examples of valid flow statements are the following: 
 

ENTITY FLOWS: 
  GET A WORKER WITH SKILL>2 FROM CREW. 
  GET A BIT WITH SIZE=1/2 FROM THE BIT_PALETTE AND AT END OF ACTIVITY PUT 
     BACK IN THE BIT_PALETTE. 
  AT END OF ACTIVITY PUT A PASS IN AVAILABLE_PASSES. 
  

ENTITY FLOWS  (FROM 30 TO 150 OF THE FOLLOWING FLOWS): 

  (AT MOST 20 TIMES) GET A PASSENGER WITH CLASS=FIRST FROM 

    PASSENGER_LIST AND AT END OF ACTIVITY PUT IN IMMIGRATION_LANE. 

  (AT MOST 130 TIMES) GET A PASSENGER WITH CLASS=SECOND.OR.CLASS=THIRD 

    FROM PASSENGER_LIST AND AT END OF ACTIVITY PUT IN IMMIGRATION_LANE. 
 

ENTITY FLOWS  (SELECTING ASSEMBLY_STATE OF ASSEMBLY_SITE IN  

                          ASSEMBLY_TABLE = TYPE_OF_PART OF PART IN STORAGE_TABLE  -1): 

    GET A PART FROM STORAGE_TABLE. 

    GET AN ASSEMBLY_SITE FROM ASSEMBLY_TABLE AND AT END OF ACTIVITY 

      PUT BACK IN ASSEMBLY_TABLE. 

www.intechopen.com



Synthesis of Coloured Petri Nets from Natural-like Language Descriptions   

 

39 

Examples of valid attribute modifications are the following: 
 

ATTRIBUTE MODIFICATIONS: 
    TOTAL_NUMBER_OF_JOBS := TOTAL_NUMBER_OF_JOBS +1. 
    JOBS_DONE OF WORKER := JOBS_DONE OF WORKER +1.  
    COLOR OF CAR := COLOR OF PAINT_ORDER. 
    IF ASSEMBLY_STATE OF ASSEMBLY_SITE = 4 THEN POSITION OF ROBOT1 := 3. 
 

Now, we will give the definition of the language. A computer language is defined by its 

formal grammar. A formal grammar defines rules for building syntactically correct 

sentences in the language. Sentences are made up of strings of characters that are logically 

combined into grammar elements using grammar rules. Grammar rules are specified by 

means of productions that state how a grammar element can be composed from other 

grammar elements. Each production defines a grammar element and has two sides 

separated by the symbol “::=”. The left hand side of the production is the grammar element 

defined (represented by a nonempty string of characters enclosed in triangular parenthesis) 

and the right hand side its definition. This definition consists of grammar elements, 

character strings (letter, digits, keywords, punctuation marks, operators, etc.), and auxiliary 

symbols with specific meanings (square brackets indicate optional items, three periods 

indicate that the preceding element can be repeated one or more times, and a vertical bar 

indicate a choice of items). For example, the productions: 
 

<identifier> ::= <letter> [<letter> | <digit> | _ ] ... 
<letter> ::= A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | 
                     U | V | W | X | Y | Z 
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 
<global criterion of ordering> ::= FIFO | LIFO 
 

state that the grammar element called “identifier” is built up using a letter that may be 
followed by one or more letters or digits or the underscore character, and that the grammar 
element called “global criterion of ordering” consists of one of the keywords FIFO or LIFO. 
Note that the grammar elements called “letter” and “digit” used in the first production need 
to be defined because words or phrases used to represent grammar elements do not have 
any real meaning until defined. 
Following, it is given the formal grammar of the language.  
 

<model>::=MODEL NAME:<model name><period> 
                    <entities definition> 
                    [<internal variables definition>] 
                    [<external variables definition>] 
                    <waiting lines definition> 
                    <activity definition>... 
                    END OF MODEL <period> 
<model name> ::= <identifier> 
<identifier> ::= <letter> [<letter> | <digit> | _ ] ... 
<letter> ::= A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | 
                    U | V | W | X | Y | Z 
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

www.intechopen.com



 Advances in Petri Net Theory and Applications 

 

40 

<period> ::= . 
<entities definition> ::= ENTITIES: <entity> <period> [<entity> <period>]... 
<entity> ::= <entity name> [WITH THE FOLLOWING ATTRIBUTES: <attributes>] 
<entity name> ::= <identifier> 
<attributes> ::= <name and admissible values of the attribute> 
                            [<name and admissible values of the attribute>]... 
<name and admissible values of the attribute> ::= <attribute name> [(<admissible values>)] 
<attribute name> ::= <identifier>       
<admissible values> ::= [ADMISSIBLE VALUES] <range of values> | 
                                           [ADMISSIBLE VALUES] <specific values> 
<range of values> ::= <integer> TO <integer> 
<integer> ::= [+|-] <string of digits> 
<string of digits> ::= <digit> [<digit>]... 
<specific values> ::= <integer or literal> [OR <integer or literal>]... 
<integer or literal> ::= <integer> | <literal> 
<literal> ::= <identifier> 
<internal variables definition> ::= INTERNAL VARIABLES: <internal variable><period> 
                                                            [<internal variable> <period>]... 
<internal variable> ::= <internal variable name> [(<admissible values>)] 
<internal variable name> ::= <identifier> 
<external variables definition> ::= EXTERNAL VARIABLES: <external variable> <period> 
                                                             [<external variable> <period>]... 
<external variable> ::= <external variable name> [(<admissible values>)] 
<external variable name> ::= <identifier> 
<waiting lines definition>::= WAITING LINES: <waiting line> <period> [<waiting line> 
                                                   <period>]... 
<waiting line> ::= <waiting line name> 
                                [(<global criterion of ordering>)] 
                                CONTAINS <admissible entity> [AND <admissible entity>]... 
                                [AND ITS MAXIMUM LENGTH IS <integer>] 
<waiting line name> ::= <identifier> 
<global criterion of ordering> ::= FIFO | LIFO 
<admissible entity> ::= <pluralized entity name> [<local criterion of ordering> BY 
                                         <attribute name>] 
<pluralized entity name> ::= <entity name> [S | ES] 
<local criterion of ordering> ::= ON ASCENDING ORDER | ON DESCENDING ORDER 
<activity definition> ::= ACTIVITY: <activity name> <period> 
                                          [MULTIPLICITY: <expression of variables> <period>] 
                                          [STARTING CONDITIONS: <condition of variables> <period>] 
                                          [ENDING CONDITIONS: <condition of variables> <period>] 
                                          <flow statement> <period> [<flow statement> <period>]... 
                                          [<attribute modifications>] 
                                          [ACTIVITY DURATION: <expression of variables> <period>] 
<activity name> ::= <identifier> 
<condition of variables> ::= <boolean term of variables> 
                                                 [.AND.<boolean term of variables>] 

www.intechopen.com



Synthesis of Coloured Petri Nets from Natural-like Language Descriptions   

 

41 

<boolean term of variables> ::= <boolean factor of variables> 
                                                        [.OR.<boolean factor of variables>] 
<boolean factor of variables> ::= <relation of variables> | (<condition of variables>) 
<relation of variables> ::= <expression of variables> <relational operator> 
                                              <expression of variables> 
<expression of variables> ::= <term of variables> 
                                                   [+<term of variables> | -<term of variables>] 
<term of  variables> ::= <factor of variables> 
                                          [*<factor of variables> | /<factor of variables>] 
<factor of variables> ::= <atom of variables> | <factor of variables> @ <atom of variables> 
<atom of variables> ::= <constant> | 
                                          <internal variable name> | 
                                          <external variable name> | 
                                          <function of variables> | 
                                          (<expression of variables>) 
<relational operator> ::= > | < | = | <> | >= | <= 
<constant> ::= <integer number> | [+|-].<string of digits> | 
                         <integer number>.<string of digits> | <literal> 
<function of variables> ::= <function name> (<expression of variables>) 
<function name> ::= <identifier> 
<flow statement> ::= ENTITY FLOWS 
                                     [(<scope and select condition>)]: 
                                     <flow specification>... 
<scope and select condition> ::= <scope> |<scope> <select condition> | <select condition>  
<scope> ::= [ONLY] <expression> OF THE FOLLOWING FLOWS | 
                     FROM <expression> TO <expression> OF THE FOLLOWING FLOWS 
<select condition> ::= SELECTING <relation of entities> 
                                       [AND <relation of entities>]... 
<relation of entities> ::= <expression of entities> <relational operator> 
                                           <expression of entities> 
<expression of entities> ::= <term of entities> [+<term of entities> |-<term of entities>] 
<term of entities> ::= <factor of entities> [*<factor of entities> | /<factor of entities>] 
<factor of entities> ::= <atom of entities> | <factor of entities> @ <atom of entities> 
<atom of entities> ::= <constant> |  <attribute name> OF <entity name> 
                                       IN <waiting line name> 
<flow specification> ::= [<repetition factor>] [IF <condition>] <flow> 
<repetition factor> ::= ([AT MOST] <expression> TIMES) 
<condition> ::= <boolean term> [.AND. <boolean term>] 
<boolean term> ::= <boolean factor> [.OR. <boolean factor>] 
<boolean factor> ::= <relation> | (<condition>) 
<relation> ::= <expression> <relational operator> <expression> 
<expression> ::= <term> [+<term> | -<term>] 
<term> ::= <factor> [*<factor> | /<factor>] 
<factor> ::= <atom> | <factor>  @ <atom> 
<atom> ::= <constant> | 
                    <internal variable name> | 

www.intechopen.com



 Advances in Petri Net Theory and Applications 

 

42 

                    <external variable name> | 
                    <number of entities> | 
                     <entity attribute> | 
                     <function> | 
                     (<expression>) 
<number of entities> ::= # <pluralized entity name> [WITH <entity condition>] 
<entity condition> ::= <expression of attributes> <relational operator> <expression> [AND  
                                       <expression of attributes> <relational operator> <expression>]... | 
                                       (<entity condition>)   
<expression of attributes> ::= <term of attributes> [+<term of attributes> | 
                                                    -<term of attributes>] 
<term of attributes> ::= <factor of attributes> 
                                          [*<factor of attributes> | /<factor of attributes>] 
<factor of attributes> ::= <atom of attributes> | <factor of attributes> @ <atom of attributes> 
<atom of attributes> ::= <constant> |  <attribute name> 
<entity attribute> ::= <attribute name> OF <entity name> [(# <string of digits>)] 
<function> ::= <function name> (<expression>) 
<flow> ::= <consumption flow> | <transmission flow> | <generation flow> 
<consumption flow> ::= <input flow> <period> 
<input flow> ::= GET [A|AN] <entity name>[WITH <entity condition>] 
                              FROM [THE] [<position> OF THE] <name of waiting line> 
<position> ::= FRONT | END 
<transmission flow> ::= <input flow> AND [AT END OF <identifier>] 
                                           PUT [BACK] <output flow> [,<output flow>]... <period> 
<output flow> ::= IN [<position> OF ] <name of waiting line> [IF <condition>] 
<generation flow> ::= [AT END OF <identifier>] PUT [A | AN] 
                                       <entity name> <output flow> 
<attribute modification> ::= ATTRIBUTE MODIFICATIONS:  
                                                  <modification statement> <period> 
                                                  [<modification statement> <period>]... 
<modification statement> ::= [IF <condition> THEN] 
                                                   <left side of assignment> := <expression> 
<left side of assignment> ::= <internal variable name> | <external variable name> | 
                                                   <entity attribute> 
 

End of the formal grammar definition. 

www.intechopen.com



Advances in Petri Net Theory and Applications

Edited by Tauseef Aized

ISBN 978-953-307-108-4

Hard cover, 220 pages

Publisher Sciyo

Published online 27, September, 2010

Published in print edition September, 2010

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

The world is full of events which cause, end or affect other events. The study of these events, from a system

point of view, is very important. Such systems are called discrete event dynamic systems and are of a subject

of immense interest in a variety of disciplines, which range from telecommunication systems and transport

systems to manufacturing systems and beyond. There has always been an intense need to formulate methods

for modelling and analysis of discrete event dynamic systems. Petri net is a method which is based on a well-

founded mathematical theory and has a wide application. This book is a collection of recent advances in

theoretical and practical applications of the Petri net method and can be useful for both academia and industry

related practitioners.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Enrique Arjona, Graciela Bueno and Ernesto Lopez-Mellado (2010). Synthesis of Coloured Petri Nets from

Natural-like Language Descriptions, Advances in Petri Net Theory and Applications, Tauseef Aized (Ed.),

ISBN: 978-953-307-108-4, InTech, Available from: http://www.intechopen.com/books/advances-in-petri-net-

theory-and-applications/synthesis-of-coloured-petri-nets-from-natural-like-language-descriptions



© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


