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Fluctuations of Stiff Polymers and  
Cell Mechanics 

Jens Glaser and Klaus Kroy 
Leipzig University 

Germany 

Indeed, the vista of the biochemist is one with an infinite horizon. And yet, this 
program of explaining the simple through the complex smacks suspiciously of the 
program of explaining atoms in terms of complex mechanical models. 

                                                                                                                                     Max Delbrück 

1. Introduction 

Understanding complex systems through the study of minimal models that capture their 
underlying universal principles has always been the tradition of physics. This reductionist 
approach is challenged by the vast complexity of life and the accumulating knowledge in 
molecular biology. Biological sciences have always laid an emphasis on diversity rather than 
on simplicity and universality. And rightly so, since diversity is a sine qua non of 
evolutionary robustness and adaptability (Kirschner & Gerhart, 1998). Bearing in mind this 
tension, the insight that cellular functions can be attributed to functional modules (Hartwell 
et al., 1999) as a higher level of biological organization offers a new perspective on a possible 
unification of the two seemingly contradictory paradigms. It stimulated the emergence of 
“bottom-up approaches” (Bausch & Kroy, 2006; Schwille & Diez, 2009; Liu & Fletcher, 2009) 
aiming at the reconstitution of functional modules of cell biology in-vitro. The reconstitution 
of a simplified biological system with a reduced number of components mutually depends 
on a detailed level of physical understanding, reveals how evolved biological systems work 
and provides insight into how new biological functions could be engineered. 
Cellular mechanics represents an important example for the application of this idea (Bao & 
Suresh, 2003; Discher et al., 2009; Fletcher & Mullins, 2010). The bottom-up approach to cell 
mechanics has revealed the basic mechanisms underlying the complex mechanical behavior 
of the eukaryotic cytoskeleton (Fig. 1, left) by reconstituting self-assembling networks of 
biopolymers in-vitro in an attempt to balance the mutually conflicting demands for 
simplicity and complexity (Fig. 1, middle) (Bausch & Kroy, 2006). 
The present contribution adopts the coarse-graining approach tested in polymer physics and 
explores how far it takes us in the task of understanding the functional modules responsible 
for cellular mechanics. We progress from a minimal model for single semiflexible polymers 
to a theoretical description of their complex networks. It turns out that on this basis many 
crucial features found in experimental studies of cellular mechanics can be understood 
qualitatively if not quantitatively. Semiflexible polymers are characterized by their 
persistence length ℓp, which is a mesoscopic length scale, much larger than the microscopic 
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Fig. 1. Bottom-up approach to cell mechanics. Left: Schematic view of the cytoskeleton of the 
eukaryotic cell, showing microtubules (green), actin stress fibers and networks of the cortex 
and lamellipodium (red), and intermediate filaments (blue). Middle: A reconstituted actin 
network crosslinked by actin-binding proteins. Right: A single semiflexible filament 
described by a mathematical minimal model, the wormlike chain. 

monomer length. It indicates the backbone length over which thermal fluctuations bend the 
polymer significantly, and microscopically, it arises from the backbone's finite bending 
stiffness, as described mathematically by the wormlike chain (WLC) model (Fig. 1, right). 
Double-stranded DNA is a prototypical semiflexible polymer (Bustamante et al., 2003) with 
a persistence length of ℓp ≈ 50nm that has been measured by single-molecule stretching 
experiments. The protein machinery for transcription and replication of DNA is highly 
adapted to the mechanical stiffness of DNA. Also, mechanical bending energy is required to 
wind DNA into a tightly packed conformation in the nucleosome. 
As another important example, the semiflexible protein filaments of the cytoskeleton 
provide the structural basis of cellular mechanics. The cytoskeleton of the eukaryotic cell 
consists of three major classes of semiflexible filaments: microtubules, F-actin and 
intermediate filaments (see Fig. 1, left). In the cell, these filaments form self-assembling 
networks. 
Microtubules are the most rigid of the cytoskeletal polymers with persistence lengths on the 
order of millimeters, and they are capable of bearing significant compressive load. They 
form a star-like network that spans the cell, which allows them to act as rails for intracellular 
transport. During cell division, this network transforms into a bipolar structure (the mitotic 
spindle) separating the DNA into two identical sets. 
Filamentous (F-)actin is a biopolymer protein with ℓp ≈ 10μm (Isambert et al., 1995) 
assembled from globular (G)-actin monomers, which are of macromolecular size 
themselves. The actin cortex is a thin, membrane-bound F-actin network that is employed to 
maintain and transform the cell's shape. Lamellipodia, filopodia and microvilii are actin-rich 
structures, and polymerization-dependent forces push these cellular protrusions out of the 
cell. In muscles, actin provides tracks along which myosin motors walk to generate 
contractility. 
The third type of cytoskeletal polymers, rope-like intermediate filaments, comprises a group 

of different biopolymer families, which are relatively flexible (ℓp ≈1μm) (Schopferer et al., 

2009; Lin et al., 2010) and much less is known about their role in cell mechanics than for 

actin filaments and microtubules. Intermediate filaments lend mechanical support to the 

nuclear envelope. In the cytoplasm, a network of intermediate filaments helps the cell to 

resist shear stress. 

In the cell, all three types of protein networks intertwine and interact. For example, the 

buckling resistance of microtubuli is enhanced by the lateral constraints provided by the 

surrounding actin and intermediate filament meshworks (Brangwynne et al., 2006), providing 

a natural paradigm for fiber-reinforced materials, which are also very popular in engineering. 
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In the following, we review the WLC model and its properties in thermal equilibrium and 
we infer salient predictions for the dynamics of single semiflexible polymers (Sec. 2). Recent 
results for their non-equilibrium dynamic response to stretching forces are briefly 
summarized. Subsequently, we address biopolymer networks in-vivo and in-vitro and 
review experimental results that were obtained using the bottom-up approach to cell 
mechanics (Sec. 3). Theoretical concepts for the description of semidilute solutions of WLCs 
are introduced. We review theories of the tube and its heterogeneities (Sec. 4), and models of 
crosslinked biopolymer networks (Sec. 5). Finally we provide a brief overview of models of 
the viscoelastic and inelastic dynamics of stiff polymer solutions and networks (Sec. 6). 

2. Fluctuations and response of wormlike chains  

We begin by introducing the mathematical minimal model of a semiflexible polymer, the 
wormlike chain (WLC). Historically, the concept of a semiflexible polymer that bends only 
on scales much larger than the monomer size was introduced to explain scattering 
experiments on thread-like molecules (Kratky & Porod, 1949). The description of a 
semiflexible polymer as a finitely extensible, differentiable space curve with a curvature 
energy was introduced in the framework of statistical mechanics by Saitô et al. (1967). We 
will henceforth refer to it as the WLC. This has become a standard model of polymer physics 
(Yamakawa, 1971; Doi & Edwards, 1988), and, in the context of biopolymers, it has been 
useful for the analysis of dynamic light scattering data of F-actin solutions (Farge & Maggs, 
1993; Kroy & Frey, 1997). In particular, the simple analytical interpolation formula for the 
non-linear force-extension relation of a WLC proposed by Marko and Siggia explains force 
spectroscopy experiments with DNA (Bustamante et al., 1994; Marko & Siggia, 1995) and 
has led to a surge of applications in single-molecule experiments. Moreover, the WLC enters 
theories for polymers in confinement (Odijk, 1983; Semenov, 1986; Morse, 2001), under the 
application of forces (MacKintosh et al., 1995; Kroy & Frey, 1996; Seifert et al., 1996; 
Hallatschek et al., 2005), compressive load (Baczynski et al., 2007; Emanuel et al., 2007), 
under shear (Gittes et al., 1997; Morse, 1998c) or in flow fields (Morse, 1998b; Munk et al., 
2006), for their bundles (Heussinger et al., 2007) or rings (Alim & Frey, 2007; Ostermeir et al., 
2010). The WLC model has been used to characterize a wide range of other biological 
macromolecules besides DNA and cytoskeletal polymers, including muscle proteins 
(Tskhovrebova et al., 1997), RNA (Caliskan et al., 2005) or polysaccharides (Vincent et al., 
2007). 
In the following, we first concentrate on the fluctuations of single wormlike chains and their 
response to stretching forces, then we extend the picture to include the equilibrium and non-
equilibrium dynamics. 

2.1 Equilibrium properties of the WLC 
2.1.1 Definition and basic properties 
The WLC model represents the semiflexible polymer of contour length L by a differentiable 
space curve r(s) (see Fig. 1, right) with a curvature energy 

 
2

0

( ) ,
2

d 
L

WLC s s
κ ′′= ⎡ ⎤⎣ ⎦∫ rH  (1) 

where κ denotes the bending rigidity, together with the (local) constraint of inextensibility 
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 | ( )| 1.s′ =r  (2) 

Thermal averages are defined with respect to this Hamiltonian via a functional integral 

( ) [ ( )] ,s s〈…〉 ≡ Ψ …∫ r rD  

where 

{ }2
[ ( )] ( ) 1 exp WLC

B

s s
k T

δ
⎛ ⎞

′Ψ ∝ − −⎡ ⎤ ⎜ ⎟⎣ ⎦ ⎜ ⎟
⎝ ⎠

r r
H

 

is the statistical weight associated with the WLC Hamiltonian. The persistence length ℓp = 

κ/kBT (in d=3) emerges as the correlation length of the exponential decay of contour 
tangents in thermal equilibrium, i.e., 

 
| |

( ) ( ) exp ,
p

s s
s s

⎛ ⎞′−′ ⎜ ⎟〈 〉 = −
⎜ ⎟
⎝ ⎠

t t
`

 (3) 

with t(s) ≡ r’(s). Eq. (3) follows from the formal equivalence between the statistical weight 

Ψ[r(s)] of a WLC conformation, expressed in terms of the tangent orientation t(s), and the 
Wiener measure for diffusion on the surface of the unit sphere |t| = 1 (Landau & Lifshitz, 
1980; Doi & Edwards, 1988). As a direct consequence of the tangent-tangent correlations, the 

mean-square end-to-end distance 〈R2〉 of a WLC approaches the following asymptotic 
limiting cases, depending on the ratio of L to ℓp: 

2
2

(rigid rod)

2 (flexible polymer).

p

p p

L L
R

L L

⎧⎪〈 〉 → ⎨
⎪⎩

` 4
` ` 2

 

Thus, the persistence length demarcates cross-over from rigid rod behavior on short scales 
to flexible phantom chain (or random walk) behavior on large scales, where the effective 
step size or “Kuhn length” is 2ℓp. 

2.1.2 Transverse fluctuations - the weakly bending rod 
In many applications, semiflexible polymers are almost straight over the length scales of 

interest, either because of their intrinsic stiffness or because they are stretched by external 

forces. Thus, loops and overhangs of the contour are unlikely. In the weakly-bending rod 

(WBR) approximation the contour is parametrized by two-dimensional excursions r⊥(s) 

transverse to a preferred axis lying along the longitudinal or ||-direction (as shown in Fig. 1, 

right), 

( ) [ ( ), ( )].s s s r s⊥= −r r ‖  

Here, s−r|| (s) is the coordinate along the preferred axis, and the quantity r||(s) with r′
‖ (s) 2 1 

is called the projected (or stored) length, referring to the contour length stored in the 

transverse undulations. Thus, for a stiff polymer the local arc-length constraint |r’(s)| = 1 

(Eq. (2)) is expanded as 
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 ( )2 41
( ) ( ) [ ],

2
r s s⊥ ⊥′ ≈ +⎡ ⎤⎣ ⎦′ ′r r‖ O  (4) 

to leading order in the small transverse components ⊥′r  of the contour tangent. 

For a WBR, the exponential decay of the tangent correlations of a free WLC noted in Eq. (3) 

amounts to a diffusive growth of the mean-square displacement (MSD) of the transverse 

tangent vector as a function of the arc-length separation, 2[( ( ) (0)] 2| |/ .ps s⊥ ⊥′ ′〈 − 〉 =r r `  For a 

WLC grafted at one end (s = 0) with r⊥(0) = (0)⊥′r  = 0, the mean square transverse 

fluctuations are therefore calculated as 

 
3

2 2
( ) ,

3 p

s
s⊥〈 〉 =r

`
 (5) 

which can be interpreted as a roughness relation for the (asymptotically) self-affine contour 
fluctuations of the thermally agitated WBR. 

2.1.3 Asymptotic distribution of end-to-end distances 
An important quantity distinguishing a stiff polymer from a flexible one is the probability 

distribution P(r) ≡ 〈δ [r − R]〉 of the end-to-end-vector R ≡ r(L) − r(0). For flexible chains such 

as the freely-jointed chain, it is exactly known and for many purposes approximated well by 

a Gaussian centered around r = 0 (Yamakawa, 1971). Stiff polymers behave drastically 

different, since their distribution P(r) exhibits a peak near full extension. We quote here the 

exact asymptotic result for the P(r) of a WBR from Wilhelm & Frey (1996). 

 
3/2

1 1
( ) ~ 2 exp , (1 / ).

4

p
P x r L

x x Lx

⎛ ⎞ ⎛ ⎞− − = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

r
`N

 (6) 

This is the leading term of an infinite series for P(r) and it is valid near full extension, i.e. for 

1 − r/L 2  L/ℓp. The radial distribution function, obtained from P(r) by multiplying with an 

additional measure factor 4πr2 in three dimensions, is compared with Monte-Carlo data for a 

WLC in Fig. 2 for several values of ℓp/L. 

2.1.4 WLC under a strong stretching force 
We calculate the nonlinear response of the WBR to a strong stretching force f acting at the 

ends. In the WBR parametrization, the Hamiltonian of a chain stretched by the force f reads 

 
2 2

0 0

( ) ( )d ,
2

  d
2

L L

f WLC ext

f
s s s s

κ
⊥ ⊥′′ ′= + ≈ +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∫ ∫r rH H H  (7) 

where the last term Hext is the work done by the external stretching force f, which is 

calculated from Hext ≡ −fR = f r||(L) + const. using the approximate local arc-length constraint, 

Eq. (4). Since we are primarily interested in a qualitative discussion (rather than in 

numerically exact prefactors), we employ scaling arguments to find the asymptotic force-

extension relation for the WLC. First we observe the occurrence of a characteristic length 

scale  /f fκ≡`  of the force, which is obtained by equating the two contributions to the  
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Fig. 2. Isotropic radial distribution function for a WLC of different ℓp/L = 0.1, 0.2, 0.5, 1, 2 
from left to right. Shown is the asymptotic formula Eq. (6) (dashed lines) and the Daniels 
approximation (Daniels, 1950; Yamakawa, 1971) (solid line), compared with Monte Carlo 
simulation data (from Wilhelm & Frey (1996) for ℓp/L = 0.1, 0.2 and kindly provided by 
Sebastian Schöbl for ℓp/L = 0.5, 1, 2; symbols). 
 

Hamiltonian, Eq. (7). It indicates the length of unperturbed chain sections with a stored 

length 2( ) / .f f pr ` 0 ` `‖  For strong stretching forces, the chain may thus be viewed as a taut 

string of a number L/ℓ f of subsections of length ℓf, and the asymptotic end-to-end distance 

follows as R( f ) = L−r||, f (L) from the total contraction r||, f (L) of the chain, 

 ,

( )
( ) ~ .

f f B
f

f p p

Lr L k T
r L L

f
=

` `
0

` ` `
‖

‖  (8) 

This estimate differs from the exact asymptotic result merely by a factor of 1/2 (Fixman & 
Kovac, 1973; Marko & Siggia, 1995). 

2.2 Dynamics of the WBR 
2.2.1 Equation of motion of the WBR and the fluctuation-dissipation theorem 

We formulate the linearized Langevin equations of motion of an overdamped WLC in a 

viscous solvent. They derive from the WLC Hamiltonian, Eq. (1), and we note that the elastic 

force per unit length is given by fel = −δH/δr, where H is a sum of two contributions: 

2

0

1
d ( , ) ( ) .

2

L

WLC s f s t s′= + ⎡ ⎤⎣ ⎦∫ rH H  

Here, a Lagrange multiplier force f (s, t) enforces the local inextensibility constraint of the 

WLC, Eq. (2) (Goldstein & Langer, 1995). It has the physical interpretation of a local 

backbone tension. The friction force per unit length visc = −f r$ζ is in the free-draining 

approximation mediated by a friction tensor 
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[ (1 ) ],⊥ ′ ′ ′ ′≡ ζ − ⊗ + ζ ⊗r r r r‖ζ  

that reflects the anisotropic hydrodynamic interactions to leading order in two distinct 

friction coefficients ζ|| and ζ⊥ for longitudinal and transverse motion, respectively (Doi & 
Edwards, 1988). To distinguish between contour length and time derivatives, we use primes 
and dots, respectively. Improved approximations for the viscous drag lead to logarithmic 
corrections to the linearized dynamics of a WBR (Granek, 1997; Glaser et al., 2008). The 

external and the stochastic thermal force per unit length are denoted by g and ξ, 
respectively. Then, the linearized projected Langevin equations of motion follow from a 

balance of forces fvisc +fel + g + ξ = 0 as 

 
    . 

,f

f

κ⊥ ⊥ ⊥ ⊥ ⊥ ⊥′′′′ ′′ζ = − + + +
′ =

r r

g

r g$

‖

ξ
 (9) 

In order to arrive at Eq. (9), we expanded the equations to linear order in r⊥ using Eq. (2) 
(Hallatschek et al., 2007a). We also approximated f ≈const. in the WBR-limit. Its leading (s, t)- 
dependence is however accessible via a dedicated perturbation scheme (see Sec. 2.2.3 
below). The equations are completed by the correlations of the Gaussian distributed 

stochastic force density ξ, 

,

, , ,

( , ) 0,

( , ) ( , ) 2 ( ) ( ).

i

i j B ij

s t

s t s t k T t t s s

ξ
ξ ξ ζ δ δ

⊥

⊥ ⊥ ⊥

〈 〉 =
′ ′ ′ ′〈 〉 = − −

 

These correlations are dictated by the fluctuation-dissipation theorem, which establishes a 

relation between the linear response of the chain 〈r(s, t)〉g and its equilibrium conformational 

correlations, 

 
( , ) ( )

( , ) ( ,0) (FDT).
( , )

d

d

i
i j

j B

r s t t t
r s t t r s

g s t k T t

δ θ
δ
〈 〉 ′− ′ ′= − 〈 − 〉

′ ′
g

 (10) 

The FDT can be formulated for all systems in thermal equilibrium (Chaikin & Lubensky, 

1995). 

2.2.2 Linear response of a WBR to a transverse force 

We employ scaling arguments again to find an approximate solution to Eq. (9) for the linear 

dynamic response of a WBR to a transverse step force G⊥, acting for times t > 0 at s = s’, i.e. 

g⊥(s, t) = G⊥δ(s − s’)θ (t) with f = 0. It causes a growing indentation of width ℓ⊥(t) and depth 

〈r⊥(s’, t)〉g⊥, both of which are to be determined. The width ℓ⊥(t) is inferred from the 

thermally averaged Eq. (9), which reads 4/ / ( )t tζ κ⊥ ⊥ ⊥ ⊥r r0 `  on the scaling level for s ≠ s’, 

yielding ℓ⊥(t) 0  (κt/ζ⊥)1/4. To estimate 〈r⊥〉g⊥, we carry out the ensemble average of Eq. (9) 

again and integrate over the spatial coordinate s, which gives: 

 ( ) ,tζ
⊥⊥ ⊥ ⊥ ⊥〈 〉 =gr G$`  (11) 

The dynamics can therefore be understood in terms of a Stokes formula with a friction 

coefficient ζ⊥(t) = ζ⊥ℓ⊥(t) that grows in time, corresponding to the increasing subsection of 
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length ℓ⊥(t) of the chain that is set into motion by the force G⊥. Eq. (11) then implies for the 

linear response 
⊥⊥〈 〉gr  to the external force 

3/4

3/4 1/4
~ .

t

ζ κ⊥⊥ ⊥
⊥

〈 〉gr G  

The above assumption of a purely transverse friction implied by the linearized Eq. (9) ceases 

to hold when further growth of the transverse indentation 
⊥⊥〈 〉gr  is hindered by the limited 

availability of stored length, i.e. if additional contour length needs to be pulled in against 

longitudinal friction from the tails of the WBR. Thus transverse motion couples to 

longitudinal motion via a growing tension f and slows down at (sufficiently) long times 

(Obermayer & Hallatschek, 2007). 

2.2.3 WBR under tension 

The longitudinal dynamic response of a WBR to a stretching force G|| = f acting on the ends 

for t > 0 can analogously be inferred from scaling arguments. On the scaling level, the 

averaged Eq. (9) leads to 4 2/ / ( ) / ( ),t t f tζ κ⊥ ⊥ ⊥+0 ` `  which implies 1/4( ) ( / ) fort tκ ζ⊥ ⊥` 0  
2 1/2/ and ( ) ( / )  for . f ft t f t ft t tκζ ζ⊥ ⊥ ⊥≡2 ` 0 4  The distinction between short and long 

times ft t≶  is equivalent to the one between weak and strong forces, 1/2( / ) .f tκζ ⊥≶  The 

former, linear response may be calculated from the corresponding longitudinal fluctuations 

using the FDT, Eq. (10). The result is that both quantities scale with time as t3/4 (Granek, 

1997; Everaers et al., 1999), similar to the transverse response (see Sec. 2.2.2). The long-time 

longitudinal response is estimated by observing that the chain consists of L/ℓ⊥(t) subsections 

of length ℓ⊥(t), which, by definition, have equilibrated at time t, i.e. they have been pulled 

essentially straight by the external force. The condition of straight subsegments implies that 

their elongation is equal to their initial equilibrium contraction 2( ) ( ) / pr t⊥ ⊥` 0 ` `‖  (see Sec. 

2.1.2), but with the opposite sign. The total change in end-to-end distance of the polymer 

follows as 

 
1/2 1/2

1/2

( )
( ) ( , 0) ( , ) ~ ,

p p

Lf tL t
R t r L t L t

ζ
⊥

⊥

Δ ≡ = − r
` 0
` `‖ ‖

 (12) 

for ℓ⊥(t) 2 L. This quantity saturates at its equilibrium value r||(L) − r||,f (L) (see Sec. 2.1.4) 

when ℓ⊥(t) 0  L. 

If longitudinal friction was generated along the whole filament length L, the corresponding 

drag force L Rζ Δ $
‖  would exceed the external driving force f for times 2 4 2/ pt t L fζ ζ ⊥0 `�

‖1  

(Seifert et al., 1996; Ajdari et al., 1997; Everaers et al., 1999). This apparent contradiction 

indicates the breakdown of Eq. (12) at short times. It is avoided by considering that 

longitudinal friction is only generated inside a boundary layer of width ℓ||(t) growing with 

time, where the polymer contour is set into longitudinal motion. For the longitudinal 

motion, the length ℓ||(t) thus plays a role analogous to ℓ⊥(t) for the perpendicular motion. 

Accordingly, ℓ||(t) can be defined by postulating an effective longitudinal Stokes equation, 

analogous to Eq. 11 for the transverse motion, 

 ( ) ( ) ,t R t fζ Δ $` 0‖‖
 (13) 
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with a longitudinal friction coefficient ( ).tζ‖̀‖  Comparison of Eq. (13) with Eq. (12) after 

replacing L by ℓ||(t) yields 1/4 1/2( ) ( ) ( / )pt ftζ ζ⊥` 0 `‖ ‖  for strong stretching forces (Seifert et 

al., 1996). The 'longitudinal equilibration length' is larger than the transverse one by a factor 
1/2 1/2/ [ / ( )] ( / ) 1p pt L⊥ ⊥≈` ` ` ` ` 4‖ 2  (for a sufficiently stiff polymer), and thus grows 

faster. Propagation of the tension f (s, t) therefore only needs to be taken into account at 

short times for which ℓ||(t) 2 L, i.e. when the tension has not yet equilibrated. 

A systematic analysis of the phenomenon of tension propagation builds on this strong 

separation of length scales ℓ||(t) 4  ℓ⊥(t) (Hallatschek et al., 2005; 2007a;b). Via a (stochastic) 

multiple scale perturbation theory one can establish a coarse-grained deterministic theory for 

the polymer dynamics under strong tension. The spatially varying deterministic tension f (s, t) 

is extracted by averaging over the transverse thermal fluctuations on short length scales. 

Previously known scaling results were recovered from this systematic theory as intermediate 

asymptotic regimes for specific scenarios, including pulling on the polymer, release of tension, 

and sudden temperature quench. The practically relevant case of pulling on a pre-stressed 

(Obermayer et al., 2007) or even pre-straightened (Obermayer et al., 2009) polymer, such as a 

polymer held in an optical trap, has been shown to lead to a wealth of new dynamic regimes 

and to depend sensitively on the initial conditions. Based on these results, the complex 

rheological modulus ( ) ( ) ( )G G iGω ω ω′ ′′= +�  for the response of a single WLC to an oscillatory 

longitudinal force could be calculated, and was shown to exhibit a ( )G ω� ∝ ω7/8-regime for 

high frequencies (Hiraiwa & Ohta, 2008; 2009). Similar results were obtained for a chain with 

slightly extensible bonds (Obermayer & Frey, 2009). In affine shear flow, tension propagation 

can be neglected and the high-frequency modulus scales as ( )G ω� ∝ ω3/4 (Gittes & 

MacKintosh, 1998; Morse, 1998c; Pasquali et al., 2001; Hiraiwa & Ohta, 2009). 

3. Cells and gels 

3.1 The bottom-up strategy and basic mechanics of the actin cytoskeleton 
In this section, we review recent progress in the study of semiflexible polymer networks as 
simplified model systems for the actin cytoskeleton of the living cell (Kroy, 2006), focusing 
on their material properties (Kasza et al., 2007) and highlighting analogies (and differences) 
between both systems. We thus evaluate the usefulness of the bottom-up approach to cell 
mechanics by considering concrete examples of the linear and nonlinear rheology of cells 
and gels. 

The mechanical properties of cells are considerably influenced by the cell cortex as a thin 
membrane-bound F-actin network capable of bearing substantial load (Stricker et al., 2010), 
although the contribution due to other intracellular compartments cannot be neglected 
(Hoffman & Crocker, 2009). A multitude of rheological techniques has been developed to 
characterize the response of the cell to mechanical perturbations (see Fig. 3). One may 
distinguish between passive and active techniques, which correspond to observing the the 
spontaneous motion of embedded tracer particles or to probing the deformation in response to 
an applied force, respectively. Only in equilibrium materials these methods yield the same 
results, whereas in the cell, this is in general not the case (see Sec. 3.5 below). The linear 
mechanical behavior of the cell, as characterized by the frequency-dependent complex shear 
modulus ( )G ω� , can be measured by passive methods under suitable conditions e.g. of ATP 
depletion (Bursac et al., 2005; Hoffman et al., 2006) or by active methods. It is intermediate 
between that of a solid and a liquid, and it is thus called viscoelastic. 
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Fig. 3. Cells probed by common experimental methods, based on Kollmannsberger (2009) 
and Hoffman & Crocker (2009). 

3.2 Importance of crosslinkers 

The high-frequency shear-modulus of actin solutions and gels, a power-law resulting from 
single-filament dynamics (see Sec. 2.2.2 and Sections 4&5 below), crosses over to a rubber 
elastic plateau G’(ω) ~ G0 at low frequencies (Hinner et al., 1998; Gardel et al., 2004). This 
plateau is estimated by the tube model for entangled solutions (see Sec. 4 below) or the 
affine network model for gels (see Sec. 5 below). The difference between the absolute value 
of G0 (on the order of ≈ 1Pa) and that of the weakly frequency-dependent shear modulus 

( )G ω�  of cells (see Sec. 3.3 below; on the order of ≈ 1kPa) is now understood as a 
consequence of the different network elasticity in the absence or presence of crosslinkers 
and prestress. Networks of F-actin can be crosslinked using specific actin-binding-proteins 
(ABPs), and increasingly sophisticated studies have demonstrated that the relative 
crosslinker concentration, the type of crosslinker and even its molecular details provide fine-
grained control over elastic and structural properties of the network (Gardel et al., 2004; 
2006; Lieleg et al., 2010). Network elasticity is also determined by the flexibility of 
crosslinkers (Wagner et al., 2006). In addition, the network may be set under prestress, 
which can be externally applied (see Sec. 3.4 below) or internally generated, e.g. by 
molecular motors (see Sec. 3.5 below), which further increases the elasticity. 
Cells choose between a multitude of different and partially redundant ABPs for 
crosslinking, but a large number of in-vitro studies concentrates on isolating the physical 
properties of networks crosslinked by a single type of molecule. This is justified by the fact 
that the rheological properties of composite networks containing different crosslinkers are 
largely determined by the crosslinker which outnumbers the other (Schmoller et al., 2008). 

3.3 Plateau modulus vs. power-law rheology 

The rheology of cells is well described by a power-law shear modulus ( )G ω� ∝ ωβ at low 
frequencies with exponent β = 0.1−0.25, extending over up to three decades (Hoffman et al., 
2006; Hoffman & Crocker, 2009). This has been interpreted as a sign of “glassy” dynamics 
(Fabry et al., 2001), as described by the generic model of “soft glassy rheology” (Sollich et al., 

www.intechopen.com



Fluctuations of Stiff Polymers and Cell Mechanics   

 

519 

1997). However, such slow dynamics was also recently observed in reconstituted 
biopolymer networks. High-precision dynamic light scattering studies have demonstrated 
that the plateau in the tracer particle MSD of actin solutions, which is related to the linear 
response function ( )G ω�  via the FDT (see Sec. 2.2.1), is in reality slanted, corresponding to a 
dynamic structure factor S(q, t) that exhibits slow logarithmic decay of density fluctuations 
over several decades in time (Semmrich et al., 2007). This has been parametrized with high 
precision by the “glassy wormlike chain” model (see Sec. 6 below). Experiments on filamin 
crosslinked networks, on the other hand, have shown that power-law rheology may readily 
arise in these systems (Gardel et al., 2006), where it might be due to the flexibility of 
crosslinkers (DiDonna & Levine, 2006). Given the variety of crosslinker types available to 
the cell, power-law rheology could also result from the superposition of different crosslinker 
binding/unbinding rates (Lieleg et al., 2008). Common to these explanations for the power-
law rheology of cells is a broad distribution of length, time or energy scales, which is 
supposed to have its origin in the physics of the stiff polymers and their crosslinkers rather 
than in the genuinely biological cell dynamics. Therefore, its study should be possible not 
only in-vivo, but also in in-vitro reconstituted functional modules. 

3.4 Nonlinear strain-softening and stiffening 
However, the nonlinear rheology of cells differs from that of reconstituted gels at first sight. 
Cells have been reported to become stiffer or softer with increasing strain, depending on the 
applied deformation protocol, whereas reconstituted gels usually strain-stiffen. More 
specifically, cells under uniaxial loading displayed an elastic stiffening response (Fernández 
et al., 2006; Fernández & Ott, 2008), but when subjected to a transient stretch, the opposite 
response, i.e. fluidization and subsequent recovery emerged, as shown in Fig. 4, left (Trepat 
et al., 2007). The first response can be seen as analogous to observations of stiffening in actin 
gels (Gardel et al., 2004; 2006; Tharmann et al., 2007) or other biopolymer gels (Storm et al., 
2005), for which it was explained by the affine network model (see Sec. 5 below), nonlinear 
crosslink flexibility (Broedersz et al., 2008) or network geometry (Onck et al., 2005). By 
contrast, the fluidization of cells and similar observations of viscoplasticity in the living cell 
(Fernández & Ott, 2008) have been suggested to arise from the breaking of cytoskeletal 
bonds (Trepat et al., 2007; Wolff et al., 2010) (see also Sec. 6 below). 
A similar phenomenology has also been demonstrated for actin solutions undergoing a 
transition from strain softening to stiffening upon changing the solvent or ambient 
parameters or the deformation rate (Semmrich et al., 2007; 2008; Lieleg & Bausch, 2007) (Fig. 
4, right). This behavior, resembling a glass transition, might arise due to weak sticky 
interactions between filaments. Thus, the coexistence of a fluidiziation and a reinforcement 
response in cells, analogous to the continuous transition from strain-softening to stiffening 
observed in actin gels, could be interpreted as a common feature of the material properties 
of both systems. 

3.5 Towards active materials 
The living cell operates far from thermodynamic equilibrium, and in the cytoskeleton, 
energy stored in the form of ATP is constantly transformed into mechanical energy e.g. 
through the activity of motor proteins such as myosin, or through the ATP-dependent 
polymerization of actin filaments. The cytoskeleton might therefore be characterized as an 
active material (Fletcher & Geissler, 2009). The effect of active processes on cell rheology is 
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Fig. 4. Left: Fluidization and recovery of human airway smooth muscle cells after a single 
transient stretch, as measured by the normalized stiffness 

nG′  for different stretch 
amplitudes. Adapted from Trepat et al. (2007). Copyright © 2007 by Macmillan Publishers 
Ltd. Right: Temperature-induced transition from strain softening to stiffening in entangled 
F-actin solutions. The inverse of the normalized creep compliance J as a function of the 
applied stress σ for various temperatures from T = 27 − 18°C (bottom to top). Adapted from 
Semmrich et al. (2007). Copyright © 2007 by The National Academy of Sciences of the USA. 
 

signalled by the breakdown of the fluctuation-dissipation theorem (FDT) (see Sec. 2.2.1) (Lau 
et al., 2003; Bursac et al., 2005). Thus, in contrast to equilibrium materials, the linear response 
function ( )G ω�  can not be inferred from looking at the spontaneous fluctuations, e.g. of the 
position of a probe particle embedded in the cell, and in the presence of non-equilibrium 
fluctuations, it can only be obtained by active measurements. On the other hand, by combining 
passive and active methods in the same experiment, non-equilibrium contributions to the 
spontaneous fluctuations can be measured. By this method, a breakdown of the FDT at 
frequencies below 10Hz due to active motor-induced forces has been demonstrated in actin-
myosin gels (Mizuno et al., 2007) and similarly in cells (Mizuno et al., 2009). Active processes 
driven by molecular motors lead to a variety of new and interesting phenomena in 
reconstituted systems (MacKintosh & Schmidt, 2010), including fluidization of actin solutions 
(Humphrey et al., 2002), active fluctuations of stiff microtubules embedded in the actin 
cytoskeleton (Brangwynne et al., 2008), or stiffening of crosslinked gels due to contractile 
tension generated by motors (Mizuno et al., 2007; Koenderink et al., 2009). Since many 
cytoskeletal structures involve contractile elements, active reconstituted gels are highly 
relevant for a more complete understanding of cellular mechanics. 

3.6 Conclusion 
In conclusion, reconstituted cytoskeletal systems exhibit many of the salient features of cell 
mechanics and they seem ideally suited to further study the intriguing viscoelastic, non-
linear and viscoplastic properties of the living cell. It has been suggested that cell mechanics 
may be understood in terms of a small number of “laws” (Trepat et al., 2008). Here we have 
presented evidence that biopolymer gels exhibit mechanical properties of comparable 
robustness and universality. Their structural basis consists of scaffolding fibers, such as F-
actin, and these may be combined with a variety of crosslinkers and ultimately with active 
components. This demonstrates that using simple, polymer-based model systems it is 
possible to explain a large number of cell mechanical observations by minimal assumptions. 
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Theoretical descriptions are therefore useful to establish the link between the rheological 
properties at a higher level to the underlying microscopic structures. 

4. Tube model 

In this section, we address theories for entangled solutions of stiff polymers (see Sec. 3). In 
the absence of crosslinkers, their equilibrium properties are successfully and quantitatively 
described by models of topological interactions. Macroscopic resistance against shear arises 
from the mutual impenetrability of the polymers – to deform a test filament, surrounding 
filaments need to be pushed out of the way, as familiar from knotted strings. The 
mathematical problem posed by highly entangled solutions is sufficiently complicated that 
it eludes a rigorous solution (Edwards, 1967; Everaers et al., 2004), yet, the tube model 
provides a simple and successful phenomenological description of their macroscopic 
properties. 

4.1 Tube model for flexible polymers 
The tube model was introduced by S. F. Edwards for melts and solutions of flexible 
polymers (Edwards, 1967; Doi & Edwards, 1988). The idea is to circumvent the explicit 
discussion of the complicated topological constraints and to represent them, effectively, by a 
harmonic potential for a test polymer, which is thus confined to a narrow tube-like cage. The 
polymer may escape its cage very slowly by a snake-like diffusive motion called reptation 
(de Gennes, 1971; Doi & Edwards, 1988; Schweizer et al., 1997). Another mechanism consists 
in the sudden release of constraints, when the ends of confining polymers slide past the test 

polymer. The reptation time τd is very sensitive on the contour length L. From the 

longitudinal diffusion coefficient D|| ∝ L−1 one estimates it as τd 0  L2/D|| ∝ L3 for large L (de 
Gennes, 1971). 

4.2 Tube model for semiflexible polymers 
The principle of the tube model also applies to semiflexible polymers, with the main 
difference being the presence of an additional scale, the persistence length ℓp. It gives rise to 
a tightly entangled regime (Morse, 1998a; Uchida et al., 2008), where ℓp is larger than the 

mesh size ξ defined as ξ ≡ ρ−1/2. Here, ρ ≡ cpL denotes the line concentration and cp the 
polymer concentration. In a tightly entangled solution, the transverse bending undulations 

of all polymers are confined. The typical time scale τe on which they equilibrate and thus 
constitute the tube is on the order of milliseconds in actin solutions (Semmrich et al., 2007). 

On the other hand, typical semiflexible actin filaments have tube renewal times τd on the 

order of hours (Käs et al., 1994; He et al., 2007). Thus τd is much longer than the time needed 
by the transverse bending undulations to explore the cage and one can treat the polymer 
solution as an effective equilibrium system with a quenched network topology on 

intermediate time scales τe 2 t 2 τd. 

The success of the tube model relies on the fact that it requires only a small set of parameters 

to predict most properties of the rheology and the dynamics quantitatively. These 

parameters can be inferred from an analysis of the topological problem in simulations 

(Everaers et al., 2004) or from simple self-consistent scaling arguments. More specifically, 

the tightly entangled state of semiflexible polymer solutions is characterized by the mean-

field tube radius R and entanglement length 2/3 1/3
e pL R0 `  of a test polymer, referring to the 
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magnitude of the confined transverse undulations of a WLC (see Eq. (5)) and the contour 

length between collisions, respectively (see Fig. 5, left) (Odijk, 1983; Semenov, 1986). The 

dependence of the values of R and Le on monomer concentration c ∝ρ is readily estimated by 

considering the binary collision of a test polymer with an obstacle filament. The average 

number of collisions per entanglement segment is on the order of one, which gives  

cpLLeR 0  1. Defining Le as above, one then self-consistently obtains the tube radius 
3/5 1/5

pR ρ − −0 `  and the entanglement length 2/5 1/5
e pL ρ −0 ` (Semenov, 1986). 

Macroscopic properties such as the plateau shear modulus G0 or the osmotic compression 

modulus Π(ρ) are expressed in terms of these fundamental parameters, and from the latter 
they inherit their characteristic concentration-dependence. Assuming that each collision of 
the test polymer with its tube contributes a free energy kBT, the confinement free energy per 
filament scales as (Odijk, 1983; Isambert & Maggs, 1996; Burkhardt, 1995) 

2/5~ .B

e

k TL
F

L
ρ0  

From this, the plateau shear modulus and the osmotic compression modulus are estimated 

as 7/5
0( ) ( ) / /B eG N F V k T L cρ ρ ρΠ ≡ − ∂ ∂ ∝0 0  (Isambert & Maggs (1996); Morse (1998b)). 

This characteristic dependence on concentration has indeed been observed experimentally 

(Hinner et al., 1998; Tassieri et al., 2008; Vincent et al., 2007). 
The tube model predicts a high-frequency limiting form of the complex, frequency-
dependent shear modulus, resulting from the dynamic response of longitudinal fluctuations 
(see Sec. 2.2.3) (Morse, 1998c; Gittes & MacKintosh, 1998), 

 3/4 3/41
( ) ( 2 / ) .

15
pG iω κρ ζ κ ω= −`�  (14) 

This high-frequency modulus has been confirmed experimentally (Gittes et al., 1997; Gisler 
& Weitz, 1999; Koenderink et al., 2006). 

4.2.1 Microscopic models for the tube 
The intuition associated with the tube model has been confirmed in single-molecule 
experiments. Because of the relatively larger dimensions of F-actin compared to flexible 
polymers, the tube around a single actin filament in entangled solution can directly be 
visualized microscopically using fluorescence labeling techniques (Käs et al., 1994). The 
possibility to measure the tube radius directly has spurred the development of quantitative 
tube models, based on a self-consistent binary collision approximation (BCA) (Morse, 2001; 
Hinsch et al., 2007) and an effective medium approximation (EMA) (Morse, 2001). These 
models predict the value of the tube radius relying on an analysis of the entanglement 
topology. For example, the BCA considers pairwise collisions of two weakly bending rods in 
a simple binary topology – “above” or “below”. In a self-consistent calculation, the tube's 
strength is calculated as the cumulative effect of pair collisions in all possible configurations. 
The EMA, on the other hand, only discusses the average effect of the topological 
interactions. In this approximation, the polymer is coupled to an effective elastic 
background medium. Both theories give rise to conflicting predictions for the concentration-
dependence of R and Le, opening a debate on the appropriate theoretical description of 
semiflexible polymer solutions, and they have therefore been challenged by experiments 
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Fig. 5. Left: A stiff polymer confined in a tube of spatially varying radius R; Le: entanglement 
length. Background polymers are depicted in gray. Right: Tube radius distribution P(R) 
measured in entangled solutions of F-actin at different concentrations (shaded areas). Solid 
lines represent a global fit by a segment fluid theory. Inset: Superimposed confocal 
microscopy images of a fluorescent actin filament in a background solution and a spline 
representing the tube backbone; scale bar: 5μm. The width of the tube is inferred from 
Gaussian fits to the transverse intensity profile. From Glaser et al. (2010). Copyright © 2010 
by The American Physical Society. 

and simulations, which have either been in favor of the BCA (Romanowska et al., 2009; 
Wang et al., 2010; Ramanathan & Morse, 2007) or of the EMA (Tassieri et al., 2008). This 
controversy results in part from the close match of the scaling exponents in the BCA  

(R ∝ c−3/5) and the EMA (R ∝ c−1/2), suggesting that an unambiguous distinction between the 
two power-laws is extremely difficult to establish experimentally (Tassieri et al., 2008). In 
addition, respective conclusions must be drawn with care, since experiments typically yield 
skewed distributions of the tube radius, rendering an interpretation in terms of mere 
average values problematic (Wang et al., 2010; Glaser et al., 2010). 

4.2.2 Tube width fluctuations 
Indeed, experiments (Käs et al., 1994; Dichtl & Sackmann, 1999; Romanowska et al., 2009; 

Wang et al., 2010) and simulations (Hinsch et al., 2007) indicated that the assumption of a 

uniform tube width is a severe approximation. Pronounced tube fluctuations along a single 

actin filament have been measured by fluorescence microscopy (Glaser et al., 2010), as 

sketched in Fig. 5, left, and they can be analyzed by a systematic BCA-based theory. This 

theory extends D. Morse's mean-field approach and allows for a comprehensive 

characterization of the microstructure of entangled solutions. It predicts a tube radius 

distribution P(R) quantifying the observed heterogeneities and compares favorably with 

experiments (see Fig. 5, right). An analysis of small remaining discrepancies in this 

comparison attributes them to collective modes of the effective medium. This suggests a 

way how to combine the BCA and the EMA to achieve a practically perfect explanation of 

the experimental data in the future (Glaser, 2010). 

4.3 Recent developments and open problems 
We now discuss experimental findings which, at first sight, seem to contradict the 
predictions of the tube model. For example, in experiments, the curvature distribution of the 
tube's primitive path has been measured and large curvatures occurred with a higher 
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frequency than expected for a free polymer (Romanowska et al., 2009). This was 
corroborated by computer simulations, where the same effect has been shown to occur 
when filament ends were allowed to move freely and to slide past fixed obstacles (Hinsch & 
Frey, 2009), suggesting that one may interpret it as a consequence of finite filament length. 
A further observation is the slow logarithmic increase of the tube radius with time (see Sec. 
3.3 and Sec. 6 below), which leads to an effective “softening” of the tube. In practice, 
however, this time dependence is weak, and, depending on the application, it may be 
accounted for by measuring an effectively saturated value of the tube radius. 
Finally, let us comment on the nonlinear rheology. The response of physically entangled 
solutions to nonlinear strains is predicted by a nonlinear tube model, in which the tube is 
allowed to compress or expand (Morse, 1999; Fernández et al., 2009). The predicted 
universal strain-softening response is in contrast with the gradual transition from softening 
to stiffening in actin solutions (see Sec. 3.4 and Fig. 4, right), which has been interpreted as a 
consequence of weak crosslinking. On the other hand, the parameter changes that controlled 
this transition had little or no effect on the linear shear modulus (Semmrich et al., 2007; 
2008). One might interpret this and the results of this section in the sense that the tube 
model has been validated for the linear response regime, while its predictions are 
overshadowed by (spurious) adhesion and crosslinking effects in most non-linear 
measurements at finite shear rates. 
In summary, the tube model provides a detailed quantitative explanation of the mechanical 
properties of entangled polymer solutions. It reveals the important role of topological 
interactions in simple reconstituted cytoskeletal systems and serves as a well-defined 
reference description for studies of nontrivial dynamic and nonlinear effects. In a further 
step towards complexity, crosslinkers may be added. 

5. Affine network model 

The phenomenology of cytoskeletal networks with crosslinkers is broad and depends on a 
multitude of parameters, such as crosslinker type (rigid or flexible), crosslinker time scale 
(on/off-rate) and crosslinker/filament ratio (weakly or strongly crosslinked). After 
discussing elementary affine and non-affine deformation mechanisms, we give an outline of 
the affine network model as a simple zeroth order explanation for many of the observed 
effects in crosslinked networks, and we review progress on their understanding beyond the 
simplifying assumption of affine deformations. 
Crosslinkers mediate local interactions between polymers. For the protein filament 
meshworks that make up the cytoskeleton, their action relies on specific binding sites on the 
polymers, in other words, they induce short-ranged, “patchy” attractions. In cases of 
extremely long bond lifetimes, these attractions may be modeled as geometric constraints (in 
addition to the above mentioned topological constraints due to the impenetrability of the 
polymer backbones). One commonly accounts for the presence of crosslinkers by 
introducing a new characteristic length scale Lc, representative of the mean distance between 
crosslinking sites along a single filament (MacKintosh, 2006), which is distinct from the 

entanglement length Le and the geometrical mesh size ξ. On the level of a single filament, 
two different modes of deformation exist: longitudinal stretching/compression and 
transverse bending. Since, for rod-like networks, simple shear amounts to rotation and 
stretching/compression of filaments, only these latter modes should be relevant in a purely 
affine deformation. On the other hand, cooperative deformation mechanisms may result in 
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non-affine deformations involving bending of filaments. If the response to shear was 
dominated by non-affine filament bending, the plateau modulus of a densely crosslinked 

network approximated as a simple cubic mesh of semiflexible filaments with ξ 0  Lc would 
be expected to scale as (Kroy & Frey, 1996) 

 2
0 4

.
B p

B p

k T
G k T c

ξ
∝

`
0 `  (15) 

In the case of purely affine stretching, the modulus of the network originates from the 

mechanical response of a single WLC of length Lc. Stretching it an amount cLδ γ≡`  in the 

linear regime requires a force 2 4/B p cf k T Lδ0 ` `  (MacKintosh et al., 1995). Defining the stress 

as 2/ ,fσ ξ=  the shear modulus follows as 

 

2

0 3 2
.

B p

c

k T
G

L

σ
γ ξ

≡
`

0  (15) 

This is the rubber elasticity modulus of the affine semiflexible network model, which 

depends on filament and crosslinker concentration via the mesh size ξ and the cross-linker 
distance Lc. Using a plausible (ad-hoc) parametrization of the latter, agreement between Eq. 
(15) and experimental data for actin (Gardel et al., 2004; Tharmann et al., 2007) and 
intermediate filament networks (Lin et al., 2010) can be obtained. 

The corresponding high-frequency modulus ( )G ω�  may be estimated from the rubber 

elastic modulus Eq. (15) in close analogy to the single-polymer results of Sec. 2.2.3, by 

replacing Lc with the dynamic equilibration length ℓ⊥(t) for weak forces, evaluated at t = iω, 

yielding 2 2 3 3/4( ) / ( ) .B pG k T t iω ξ ω ω⊥ = ∝0 ` `�  The exact asymptotic form of this complex 

viscoelastic high-frequency modulus is again given by Eq. (14), which includes prefactors 

and which constitutes a universal asymptotic result independent of the crosslinker or 

affinity length scale Lc. It has been verified for crosslinked networks and entangled solutions 

of F-actin (Koenderink et al., 2006). 

The affine network model provides a simple natural explanation for the observed strain 
stiffening response observed for in-vitro networks and cells (see Sec.3.4) in terms of the 
nonlinear force-extension relation of a single WLC (see Sec. 2.1.4). Since it follows from Eq. 
(8) that 2[ ( )] ,f L R f −∝ −  the nonlinear differential modulus is thus obtained as (see Sec. 
2.1.4) (MacKintosh et al., 1995; MacKintosh, 2006) 

 3/2 3/2 .
dd

d d

f
K f

R

σ σ
γ

′ ≡ ∝ ∝ ∝  (16) 

Let us now turn to the question under which conditions the affine or non-affine deformation 
mechanisms prevail. This problem has been studied by simulations of two-dimensional 
crosslinked random fiber networks in the mechanical limit (Wilhelm & Frey, 2003; Head et 
al., 2003), and it was found that the transition from the non-affine bending to the affine 
stretching regime occurs for high crosslink densities and/or long fibers. The afine to non-
affine transition of mechanical fibers has also been observed in regular networks based on a 
triangular geometry (Das et al., 2007). Strain field visualization in F-actin networks indeed 
seems to provide some evidence for a cross-over between distinct deformation modes, 
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depending on the ratio of polymer length to a characteristic non-affinity length scale (Liu et 
al., 2007). Heussinger and Frey have however shown by taking into account thermal 
fluctuations that affine deformations are unstable and non-affine intermediate asymptotic 
scaling regimes of the shear modulus dominate the mechanical response instead 
(Heussinger & Frey, 2006a;b). These are characterized by filament-filament correlations, 
which are not taken into account in the affine network model. Further simulation studies 
show that the strain field is in general non-affine (Onck et al., 2005), and that 
homogeneously crosslinked networks are softer in the linear regime and stiffen at higher 
strains than predicted by the affine network model (Huisman et al., 2008). 
Moreover, the stiffening exponent of Eq. (16) is not universal (see also Sec. 3.4), as for 
example in filamin-crosslinked networks, strain-stiffening with an exponent close to one is 
observed (Gardel et al., 2006). Thus, models for flexible crosslinkers such as filamin have 
also been discussed. These may either be represented as a series of domains capable of 
unfolding (DiDonna & Levine, 2006), or as inextensible wormlike chains (Broedersz et al., 
2008), leading to a softening or stiffening response, respectively. Recently theoretically 
studied problems also include thermodynamic properties and complex phase diagrams of 
polymer networks (Borukhov et al., 2005; Benetatos & Zippelius, 2007). An interesting 
interplay between single polymer and crosslinker dynamics arises in transiently connected 
networks, where the kinetics of the crosslinker leads to an additional viscous dissipation 
mechanism (Lieleg et al., 2008; Wolff et al., 2010) (see Sec. 6 below). 

6. Towards viscoelastic and inelastic dynamics - the glassy wormlike chain 

A study of semiflexible polymer dynamics in purely entangled solutions revealed that 

instead of a strict tube constraint, an additional relaxation mechanism exists at long times. 

More specifically, simulations have shown that the tube potential softens with time (Zhou & 

Larson, 2006; Ramanathan & Morse, 2007), implying a time-dependent tube radius. 

Analogous observations in flexible polymer melts have been attributed to constraint release 

(Vaca Chávez & Saalwächter, 2010). The dynamic structure factor of entangled F-actin 

solutions exhibited slow logarithmic decay beyond the cross-over time from free to confined 

polymer modes, extending over five decades in time (see Fig. 6, right, black curves) 

(Semmrich et al., 2007). The glassy wormlike chain (GWLC) model interprets this by an 

exponentially stretched relaxation time spectrum of the normal modes of an ordinary WLC 

on time scales longer than the equilibration time τΛ 0  τe (Kroy & Glaser, 2007; Kroy, 2008). 

This is accomplished by prescribing a modified relaxation time τλ  for collective excitations 

of wavelength λ by 

,                              

exp[ ( / 1)], .
λ

λ λ
λ

τ λ
τ τ

τ ε λ λ
< Λ⎧

→ = ⎨ Λ − > Λ⎩
#

 

All relaxation times of bending modes of a wavelength longer than the characteristic 

interaction or bond length Λ – which may be different from the entanglement length (Glaser 

et al., 2008) – are thus multiplied by an Arrhenius factor involving the energy EkBT, and the 

number λ/Λ−1 of interactions. The Arrhenius factors have been attributed to free energy 
barriers arising either from finite free energy costs for tube deformations or from sticky 
interactions. Using this prescription in explicit expressions for the dynamic structure factor 
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Fig. 6. Left: Storage and loss modulus G’(ω) and G’’(ω) of human airway smooth muscle cells 
(symbols), for different pharmacological treatments. Solid lines are fits to the GWLC model 
described in Sec. 6. From Kroy & Glaser (2009). Copyright © 2009 by American Institute of 
Physics. Experimental data from Fabry et al. (2001). Right: Dynamic structure factor S(q, t) of 
entangled F-actin solutions at various wave vectors q (black curves) fitted by the GWLC 
model (red curves) proposed in Sec. 6. Adapted from Semmrich et al. (2007). Copyright © 
2007 by The National Academy of Sciences of the USA. 

of stiff polymer solutions (Kroy & Frey, 1997; Glaser et al., 2008) yields excellent agreement 

of the model predictions with the data (Fig. 6, right, red curves). The “macrorheological 

modulus” ( )G ω�  of a GWLC is obtained by combining the affine network model of Sec. 5 

with the stretched relaxation times of the GWLC. It exhibits (near) power-law rheology, in 

very good agreement with rheological data on live cells, see Fig. 6, left (Kroy & Glaser, 

2009). Concerning the nonlinear response, the model accounts for the mutually opposite 

influences of stiffening due to backbone tension and the lowering of the energy barrier 

height E under the influence of an external force. Hence, the nonlinear differential shear 

modulus of a GWLC shows a variable degree of stiffening depending on the value of E, 

followed by a softening response at high strains, which is in qualitative agreement with the 

experimental observations shown in Fig. 4, right. 

The GWLC thus provides an efficient phenomenological description of slow dynamics in 

entangled solutions of stiff polymers, and conceptually, it might also be applied to weakly 

crosslinked networks. Indeed, the model has recently been extended to account for bond 

kinetics with defined rates and under the influence of a force (Wolff et al., 2010). The 

corresponding model for inelastic deformations in sticky polymer solutions evaluates the 

macroscopic shear modulus of the GWLC using a dynamic inter-bond distance Λ(t) that 

accounts for the slow inelastic network evolution. In this scheme, it is straightforward to 

include the effect of prestress or backbone tension. It is then possible to account for the 

experimentally observed fluidiziation and recovery of live cells after transient shear 

deformations (see Fig. 4, left). 
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7. Summary and conclusion 

The study of single biopolymers provides the basic knowledge necessary to describe their 
complex collective effects in a “bottom-up approach”. The starting point of a description of 
stiff polymers is the wormlike chain model for a single semiflexible polymer, which already 
exhibits a rich phenomenology. Entangled solutions of stiff polymers are appropriately 
described by the tube model. In particular, we discussed heterogeneities of the tube width. 
The affine network model provides a simple explanation for the mechanics of densely 
crosslinked networks. Models of the viscoelastic and inelastic response of weakly and 
transiently crosslinked networks substantially extend prevailing theoretical approaches for 
cytoskeletal networks. Clearly, the development of mathematical toy models and systematic 
theories will remain a crucial element in the approach to a microscopic understanding of the 
origins of the remarkable mechanical properties of living matter. 
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