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1. Introduction 

Phosphomannose isomerases (PMIs, E.C. 5.3.1.8), first described by Slein (1950) and isolated 
from brewers’ yeast by Gracy and Noltmann (1968), are metal-dependent aldose–ketose 
isomerases that catalyze the reversible isomerization of D-fructose-6-phosphate (F6P) into 
D-mannose-6-phosphate (M6P) in prokaryotic and eukaryotic cells (Fig. 1). 
 

 

Fig. 1. The reversible conversion of fructose-6-phosphate (left) into mannose-6-phosphate 
(right), catalyzed by PMI enzymes. 

The reaction catalyzed by PMIs is the first step of the mannose pathway leading to the 
generation of guanosine diphosphate (GDP)-D-mannose (Fig. 2). In this pathway, M6P is 
subsequently converted into mannose-1-phosphate (M1P) by the phosphomannomutase 
(PMM, E.C.5.4.2.8) enzymatic activity, followed by the conversion of M1P into GDP-D-
mannose by GDP-D-mannose pyrophosphorylase (GMP, E.C.2.7.7.22). GDP-D-mannose is 
an important precursor of many mannosylated structures such as glycoproteins, nucleotide 
sugars, glycolipids, cell wall components found in fungi, and bacterial polysaccharides 
(Dunwell et al., 2000). As shown in Fig. 2, GDP-D-mannose is also the precursor of the 
activated sugar nucleotides GDP-L-fucose, GDP-D-rhamnose, GDP-colitose, and GDP-
perosamine, that are required for the biosynthesis of several glycoconjugates, including 
lipopolysaccharide (LPS) O-antigens, exopolysaccharides (EPS) and glycoproteins (Richau et 
al., 2000b; Vinion-Dubiel and Goldberg, 2003, Fig. 2). 
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Fig. 2. Enzymatic conversions leading to GDP-D-mannose, the precursor for the synthesis of 
the sugar residues L-fucose, L-colitose, D-rhamnose, and D-perosamine, sugar residues 
commonly found in bacterial lipopolysaccharide O-antigens and other glycoconjugates. 

2. The PMI family of proteins is divided in four classes 

PMIs are a family of proteins that are members of the cupin superfamily of prokaryotic and 
eukaryotic proteins. Besides PMIs, the cupin superfamily includes several enzymes and 
proteins that bind sugars and other compounds (Dunwell et al., 2000). The term cupin 
derives from the latin word cupa (small barrel), and was given to this protein superfamily 
since their members possess a six-stranded ǃ-barrel structural domain (the cupin domain) 
(Khuri et al., 2001).  
The PMI protein family was divided into four distinct classes that are structurally unrelated, 
except for a small conserved amino acid sequence motif that belongs to the active site for the 
M6P to F6P isomerization reaction (Jensen & Reeves, 1998; Hansen et al., 2004). The type I 
class of PMIs is composed of monofunctional enzymes mainly found in eukaryotes and that 
only catalyze the F6P to M6P isomerization reaction. For example, the type I PMI isolated 
from Saccharomyces cerevisiae has been shown to be a zinc-dependent metalloenzyme with 
one metal ion per monomer (Gracy & Noltmann, 1968).  
The type II class of proteins is only found in prokaryotes, and are bifunctional proteins with 
both PMI and GMP enzyme activities in separate catalytic domains of the protein (Jensen & 
Reeves, 1998). The GMP enzyme activity catalyses the reversible conversion of mannose-1-
phosphate into GDP-D-mannose (Fig. 2).  
The type III class of proteins comprises only a single protein from Sinorhizobium meliloti 
(Jensen & Reeves, 1998).  
The type IV class includes atypical proteins from several aerobic crenarchaeota such as 
Aeropyrum pernix, Thermoplasma acidophilum, Archaeoglobus fulgidus, and Pyrobaculum 
aerophilum. This class of proteins is also bifunctional, with both phosphoglucose isomerase 
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(PGI, EC 5.3.1.9) and PMI enzyme activities (Hansen et al., 2004). PGI catalyses the 
reversible isomerization of glucose-6-phosphate (G6P) to F6P. 

3. PMIs are critical for microbial survival and pathogenesis 

PMIs have been reported as important enzymes for the survival and / or pathogenesis of 
several bacterial species (Escherichia coli, Salmonella enterica, Mycobacterium smegmatis, 
Pseudomonas aeruginosa, Helicobacter pylori, Burkholderia cepacia complex), yeasts (Saccharomyces 
cerevisiae, Candida albicans, Cryptococcus neoformans, and Aspergillus nidulans) and protozoan 
parasites (Leishmania mexicana) (Patterson et al., 2003; Shinabarger et al., 1991; Wu et al., 
2002; Sousa et al., 2007a; Garami and Ilg, 2001; Payton et al., 1991; Smith et al., 1995; Wills et 
al., 2001; Smith and Payton, 1994; Jensen and Reeves, 2001). The requirement of a functional 
PMI activity for the survival and pathogenesis was recently demonstrated in the case of 
Leishmania. Species of the Leishmania genus synthesize large amounts of mannose-containing 
glycoconjugates, including the unusual glycoinositolphospholipids (GIPLs), the conserved 
protein-linked glycosylphosphatidylinositol (GPI) membrane anchors, glycoproteins with 
uncommon N-linked glycans, and phosphoglycan-modified molecules such as 
lipophosphoglycan (LPG), and proteophosphoglycans (PPGs) (Garami and Ilg, 2001). These 
glycoconjugates are responsible for the remarkable resistance of Leishmania parasites against 
the hostile habitats they find within their host organisms (Garami and Ilg, 2001). To gain 
insights on the role played by the PMI activity in the biosynthesis of these glycoconjugates, 
L. mexicana deletion mutants on the lmexpmi gene (encoding the protein with PMI activity) 
were generated (Garami and Ilg, 2001). As a consequence of the deletion of the lmexpmi 
gene, the mutants had a lower PMI activity. However, they were still able to grow in media 
deficient for mannose, but were unable to synthesize the phosphoglycan repeats 
 [-6-Galǃ1-4Manǂ1-PO4--], and the mannose-containing glycoinositolphospholipids. As a 
consequence, these mutants exhibited a reduced ability to express the 
glycosylphosphatidylinositol-anchored dominant surface glycoprotein leishmanolysin. 
When compared to the wild-type strain, the mutants were less virulent in mice and 
exhibited a lower ability to colonize macrophages in vitro (Garami and Ilg, 2001).  
Mannose is also a key component of several cell-wall and intracellular molecules in 
mycobacteria, including mannolipids (phosphatidylinositol mannoside, lipomannan, 
lipoarabinomannan), the cytoplasmic 3-O-methylmannose polysaccharide and O-
mannosylated glycoproteins. To understand the PMI role in the mannose metabolism in 
mycobacteria, Patterson et al. (2003) generated a M. smegmatis mutant auxotrophic for 
mannose by deleting the manA gene. The mutant cells were found to be shorter in lenght 
than the wild-type, and presented a mild hyperseptation phenotype. These changes caused 
an exponential loss of cell viability after 10 hours of growth in mannose-free medium, 
revealing the essentiality of the mannose metabolism for growth and viability of M. 
smegmatis (Patterson et al., 2003).  
The PMI activity is also essential for the viability of the yeast C. albicans. In this pathogenic 
yeast, cell lysis was reported to occur in the absence of the pmi gene (Smith et al., 1995).  
In the bacterium H. pylori, the LPS O-antigen contains fucosyloligosaccharides similar to the 
human Lewis X and Lewis Y antigens (Wu et al., 2002). These molecules contribute to the 
mimicry of the host and to the development of an autoimmune response, leading to the 
pathogen increased persistence in the host (Wu et al., 2002). The major pathway for 
biosynthesis of GDP-L-fucose, the precursor for L-fucose, starts from GDP-D-mannose (Fig. 
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2). Wu et al. (2002) have shown that the type II protein HP0043 was the point control for 
GDP-D-mannose biosynthesis in H. pylori. 
Due to the important roles played by these enzymes for the survival and pathogenesis, PMIs 
have been considered as promising targets for the development of antibacterial, antifungal, 
and antiparasitic agents. 

4. Type II phosphomannose isomerases 

In contrast with the well-studied type I PMIs, type II PMI proteins remain poorly 
characterized. The bacterial type II PMIs that have been functionally characterized so far 
include the E. coli and S. enterica ManC (Jensen and Reeves, 2001), the P. aeruginosa AlgA 
(Shinabarger et al., 1991), the Xanthomonas campestris XanB (Köplin et al., 1992), the 
Gluconacetobacter xylinum AceF (Griffin et al., 1997), the Sphingomonas chungbukensis DJ77 
PMI (Tran et al., 2009), the HP0043 protein from H. pylori (Wu et al., 2002), and the BceA and 
BceAJ proteins from B. cepacia IST408 and B. cenocepacia J2315, respectively (Sousa et al., 
2007a; Sousa et al., 2008). The sequence analysis of these type II PMIs revealed that they are 
composed of two domains, with four conserved motifs, as shown in Fig. 3: a GMP domain at 
the N-terminus and a PMI domain at the C-terminus. The GMP active site motif, that 
includes the conserved sequence FVEKP, is present in the N-terminus of the amino acid 
sequence and is essential for M1P binding, being the lysine (K) residue responsible for the 
binding of the phosphate moiety (May et al., 1994). The N-terminal region of the proteins 
also contain the highly conserved pyrophosphorylase signature sequence, GXGXR(L)-PK 
(where X represents any amino acid residue), similar to the activator-binding site of the 
bacterial XDP-sugar pyrophosphorylases (Jackson et al., 2004). In the C-terminal domain, 
two conserved motifs are also present, the zinc-binding motif QXH, and the putative PMI 
active site EN(Q/E)SX(Y/F)I (Jackson et al., 2004).  
Sousa et al. (2008) have performed a prediction analysis of the secondary structure of the 
type II PMI BceAJ. These authors have found that, while the GMP domain of BceAJ was 
putatively composed of ǂ-helices interspaced by ǃ-strands, the PMI domain of the protein 

was almost composed of ǃ-strands. This predicted secondary structure is in good agreement 
with the occurrence of two distinct domains in type II PMIs (Sousa et al., 2008). 
Both the PMI and GMP enzyme activities were detected in all the purified type II PMIs 
mentioned before. The requirement for divalent metal ions (e.g. Mg2+, Ca2+, Co2+, Mn2+, Ni2+, 
or Zn2+) for catalysis has also been demonstrated for those proteins. In fact, the type II PMIs 
extracted and purified from X. campestris and B. cepacia were totally inhibited by the metal 
chelator ethylenediaminetetraacetic acid (EDTA) (Sousa et al., 2007a; Papoutsopoulou & 
Kyriakidis, 1997).  
In the type II PMI from H. pylori, a difference in pH dependence between the forward and 
reverse direction of PMI reaction was observed, the forward reaction exhibiting a pH 
optimum of 7, while the reverse reaction had an optimal pH range of 7-9 (Wu et al., 2002). 
Due to these results, it was suggested that this enzyme requires proper ionization of either 
M1P and/or GTP for binding and catalysis. 
GDP-D-mannose was found to inhibit the PMI activity of the P. aeruginosa PlsB and the H. 
pylori HP0043 proteins, suggesting feedback regulation of the pathway in these bacterial 
species (Lee et al., 2008; Wu et al., 2002). This observation led to the suggestion that the 
mannose group in GDP-D-mannose might compete with M6P at the PMI active site to 
regulate the mannose utilization in these pathogens. However, no inhibition by GDP-D-
mannose was observed for the P. aeruginosa AlgA protein (Shinabarger et al., 1991). In  
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Burkholderia cenocepacia BceAJ NAPAVAAETRHSSSAATAVGTPAVGMRLAVQPVILAGGSGTRLWPMSREFPKQLIGLLG 60 

Burkholderia cepacia BceA NAPAVAAETRHSSSTAPAAGT-----RVAVQPVILAGGSGTRLWPMSREFPKQLIGLLG 55 

Xanthomonas campestris XanB --------------------------MSDVLPIILSGGSGTRLWPLSREYPKQFLPLVG 33 

Salmonella enterica ManC -------------------------MSQCLYPVVIAGGTGSRLWPLSRVYPKQFLNLVG 34 

Escherichia coli ManC ----------------------------MIIPIIMAGGSGTRLWPLSRSYPKQFLSLIN 31 

Acetobacter xylinum AceF ---------MTFMTATDVTVSTPEPRNRTITPVILSGGTGTRLWPVSRAHPKQFWALAS 50 

Sphingobium chungbukensis PMI  ------------------------------MPVILCGGSGTRLWPLSRRFPKQFARLLD 29 

Pseudomonas aeruginosa AlgA -----------------------------MIPVILSGGSGSRLWPLSRKYPKQFLALTG 30 

Helicobacter pylori HP0043     ---------------------------MKIKNILLSGGSGKRLWPLSRSYPKQFLKLFD 32           

::.**:*.****:** .***:  *

DHSLLQSTALRLDGLTADHPLNDDVLIVCGEDHRFTTAELR-LTAKRAT-IMLEPLGRDTAPALTLAALRLVADGN--DAVMTVMPAD 146

EHSLLQSTALRLDGLAADHPLNDDVLIVCGEDHRFTTAELR-LTGKSAS-IMLEPIGRYTAPALTLAAFRLVAGGN--DAVMTVMPAD 141

EHSMLQATWLRSAPVAAHAPI-----VVANEEHRFMAAELQQLGVKPSA-ILLEPKGRNTAPAIAVAALEATRNGG--DPLLLVLPSD 115

NSTMLQTTIARLNGIKCENPI-----VICNEDHRFIVAELRQIDKLTKN-IILEPKGRNTAPAIALAAFIAQKKKPKDDPLLLVLAAD 118

ENSLLQETLKRLDGLNCLPPV-----IVSNNEHRFIVAELRQSGVDDFQ-IILEPVGRNTAPAVALAALKSLELHG--DHHMLVLAAD 113

SRTMIGETLQRATGTAFAPPI-----VVCNNAHRFLVAELRENGCEDGR-IILEPAVRNTAAAIAAAALLAAQDDP--ETLLWIMAAD 132

DESLFQATARRVLGPAFDRPI-----IVTGEPFRFTIVELAALGVKPDG-VLIEPEARNTAPAVLAAALWLRDRHP--EALMLVMPSD 111

DDTLFQQTIKRLAFDGMQAPL-----LVCNKEHRFIVQELEAQNLASQA-ILLEPFGRNTAPAVAIAAMKLVAEGR--DELLLILPAD 112

HKSLFELSFKRNASLVDETLI------VCNEKHYFLALEIKNEIKNKSVGFLLESLSKNTANAIALSALMS---DK--EDLLIVTPSD 111  

:::  :  *         :      : .: . *   *::         .::*.  : ** *:  :*:         :  : : .:*

AVADLPRFHAAVAAGVHCAAQGKIATMGIVPKHAETGYGYIRVGAPLGDGTGTLDVRRLDRFVEKPHLELAQQYVASGEYWWNSGIFIVRASVWLKAI 246

AVADLPRFHAAVAAGVHCAMQGKIATMGIVPKHPETGFGYIRVGAPLGDATGKLDVRRLDRFVEKPHLELAQQYVASGEYWWNSGIFIVRASVWLKAI 241

VIRDEAAFQAAVTVAAAAAEQGKLVTFGIKPTAPETGYGYIKAG--VGTAT------AVERFVEKPDLATAQGYLASGEYYWNSGMFLFRASRYLEEL 207

SINNEQAFREAIIKAIPYADAGKLVMFGIIPSVAHTGYGYIKRSVPVDAKDS--TAYYVANFVEKPNIQKAQEYIMSEGYYWNSGMFLFRASKYLGEL 216

AIQDIEAFHAAVLAAEQESVDNKLVTFGIVPTKPETGYGYIKKGEQVKN-----SVFKVNSFVEKPDLETAKNYLEQKCYLWNSGMFMFKASVYLDEL 207

VFRYPERLPAVLEKAMTVAREGYIVTFGMKPDVPETGYGYIRLG-APLHGDADDNVYRVARFIEKPDRLRATEMLNEGGYLWNSGMFLAPASVILAEL 231

QIADVASFHAAIEAAKPRALAGDIVTFGIVPSHAETGYGYLELKPGELNSGPQE----LRQFVEKPDAERASLMIEAGNFLWNAGIFLFSVQAIVDAY 207

VIEDQRAFQQALALATNAAEKGEMVLFGIPASRPETGYGYIRASADAQLEG----VSRVQSFVEKPDEARAREFVAAGGYYWNSGMFLFRASRYLEEL 208

LIKDLQAYENAIKKAIDLAQKGFLVTFGVSIDKPNTEFGYIESP----------NGLDVKRFIEKPSLDKAIEFQKSGGFYFNSGMFVFQAGVFLDEL 200

.        .:  .   :  . :. :*:     .* :**:.                :  *:***    *        :  *:*:*:  .   :   

QLEPAIYAACEQAVAQGR----DDGDFFRVDRDAFAASPSNSIDYAVMELASQPQLCESVVVPLDAGWSDVGSWDAIWQISAKDETGNVGRGH--VLF 340

QLEPAIYAACEQAVAQGK----ADGDFFRIDREAFAASPSNSIDYAVMELASLPQLCESVVVPLDAGWSDVGSWDAIWQISPKDEAENVGRGH--VLF 335

KFQPAIADACQKAWEGGK----RDADFTRLDKDAFASSPSDSIDYAVMETA------DAVVVPLDAGWNDVGSWSSLLDVSEQDGQGNAHHGD--VIQ 295

KFRPDIYNKCESATATAN----IDMDFVRINETEFINCPEESIDYAVMETK------DAVVLPIDVGWSDVGSWSSLWDISQKDVHGNVCQGD--VIN 304

KFRPDILAACKESLSSAS----TDLDFIRLNSDVFAECPDESIDYAVMETQ------DCVVIPLDADWSDIGSWTSLWEISEKDEHENVSHGD--VIN 295

RHEPDVLENVRHALLHSE----SDLTFRRLETASFMRCPNVSIDYAVMETD------RAVVIPADLGWSDVGNWNALWELGDKDAAGNVVVGD--VVL 319

AHASAMSAAVASSLAAAR----LDLDFTRLEPEPWRGVESISIDYAIMEIS------NLAVMPLTAGWSDLGGWASVWNEGRQDAVGNVCSND--VTA 295

KHDADIYDTCLLALERSQ----HDGDLVNIDAATFECCPDNSIDYAVMETS------RACVVPLSAGWNDVGSWSSIWDVHAKDANGNVTKGD--VLV 296

KHAPTILKGCERAFESLENAYFFEKKIARLSEKSMQDLEDMSIDIALMQSH------KIKMVELNAKWSDLGNFNALFEEAANEPKENVSLNQTPVFA 294  

. :      :          :  : .:.        . *** *:*:           ::     *.*:*.: :: :   ::   *.  ..  *

GAESTFAHSESR--LVACVGTQNLVVVETPDAVLVADKSRVQDVKKIVGIKARQGTEATDHRKVHRPWGHYDSVDTGERFQVKRIVVKPGAQLSLQMH 438

GAESTFAHSESR--LVACVGTQNLVVVETPDAVLVADKSRVQDVKKIVGIKAQRGTEATDHRKVHRPWGHYDSVDMGERFQVKRIVVKPGAQLSLQMH 433

DCKNTYAYG-SR--LIAMVGLENVVVVETDDAVLVGHRDRIQEVKEVVSIKSAGRSEATWHRKVYRPWGAYDSIDMGQRFQVKRITVKPGATLSLQMH 392

DSEDSFIYSESS--LVATVGVSNLVIVQTKDAVLVADRDKVQNVKNIVDLKQGGRAEYYMHREVFRPWGKYDAIDQGDRYKVKKIIVKPGEGLDLRMH 402

NSRNNYIYSEGS--LISTVGVNNLIIVQTKDALLVAQQDNVQDIKKIVELKKQKRSEHISHREVYRPWGRYDSVERGDRYQVKRITVKPGECLSTQMH 393

QSHNCYVRSEG--MLTAVAGLTDIVLVVTSDAVLAIHRDYAQDVSALVSLKMARRTEAEIHNRCYRPWGFYEGLIQGERFQVKRIVVYPGQKLSLQKH 417

DCSGTLLRTEGEGLHLVGIGLQDMIAVAMPDAVLVAPMSESQRVGEAVALRENGVKQANMSNRDLRPWGWYESIASGDRFQVKRIMVRPGASLSLQSH 395

DSHNCLVHGNGK--LVSVIGLEDIVVVETKDAMMIAHKDRVQDVKHVVKLDAQGRSETQNHCEVYRPWGSYDSVDMGGRFQVKHITVKPGARLSLQMH 394

ESENNLVFSHKV---SALLGVENLAVIDTKDALLIAHKDKAKDLKALVNVETNNQELLQTHTKVYRPWGSYEVLHESGCYKVKILEVKPNARLSLQKH 391 

. .               *  ::  :   **::    .  : :   * :            .  **** *: :  .  ::**   * *.  *. : *

HRAEHWIVVRGTARITRGDETFLLSENESTYIPLGVSHRLENPGKMPLEIEVQSGAYLGEDDIVRFDDTYGRQ------------ 513

HRAEHWIVVCGTARITRGDETFLLSENESTYIPLGVSHRLENPGKMPLEIEVQSGAYLGEDDIVRFDDTYGRQ------------ 508

HRAEHWIVVSGTAEVTRGEEVLLLTENQSTYIPLGVTHRLKNPGKLPLEIEVQSGSYLGEDDIVRFEDTYGRT------------ 467

HRAEHWIVVSGTAKVSLGNKIKLLVPNESIYIPQGAEYSLENPGVIPLHIEVSSGDYLESDDIVRFTDRYNSKKFLK-------- 481

HRAEHWVVVAGTAKVTCGERTFFVTENESTFIPIGTVHTLENPGKIPLEIEIQSGVYLGDDDIVRLSDKYGRVEDK--------- 471

HRAEHWVVVSGTAIVTRNEEKLMLQENESVYLPLGCMHRLENPGRIPLTIEVQSGPYLGEDDIVRFEDTYGRQ------------ 492

HRAEHWIVVAGTAQVTIEDQISLITENQSIYVPLGARHRLENTGKLPVLIEVQTGAYLGEDDIIRYADVYARN------------ 470

HRAEHWIVVSGTAQVTCDDKTFLLTENQSTYIPIASVHRLANPGKIPLEIEVQSGSYLGEDDIERLEDVYGRTAEPALQVVAGSR 481

HRSEHWVVISGMASVELDHQLFELQANESTYIPKNTLHRLANYGKIPLIIEVQVGEYVGEDDIVRIDDDFNRQNQNA-------- 470

**:***:*: * * :   ..   :  *:* ::*    : * * * :*::**:. * *: .*** *  * :               

Pyrophosphorylase signature

Zinc binding motif

PMI active site

Nucleotidyl transferase domain

Mannose-6-phosphate isomerase domain

GMP active site

Burkholderia cenocepacia BceAJ NAPAVAAETRHSSSAATAVGTPAVGMRLAVQPVILAGGSGTRLWPMSREFPKQLIGLLG 60 

Burkholderia cepacia BceA NAPAVAAETRHSSSTAPAAGT-----RVAVQPVILAGGSGTRLWPMSREFPKQLIGLLG 55 

Xanthomonas campestris XanB --------------------------MSDVLPIILSGGSGTRLWPLSREYPKQFLPLVG 33 

Salmonella enterica ManC -------------------------MSQCLYPVVIAGGTGSRLWPLSRVYPKQFLNLVG 34 

Escherichia coli ManC ----------------------------MIIPIIMAGGSGTRLWPLSRSYPKQFLSLIN 31 

Acetobacter xylinum AceF ---------MTFMTATDVTVSTPEPRNRTITPVILSGGTGTRLWPVSRAHPKQFWALAS 50 

Sphingobium chungbukensis PMI  ------------------------------MPVILCGGSGTRLWPLSRRFPKQFARLLD 29 

Pseudomonas aeruginosa AlgA -----------------------------MIPVILSGGSGSRLWPLSRKYPKQFLALTG 30 

Helicobacter pylori HP0043     ---------------------------MKIKNILLSGGSGKRLWPLSRSYPKQFLKLFD 32           

::.**:*.****:** .***:  *

DHSLLQSTALRLDGLTADHPLNDDVLIVCGEDHRFTTAELR-LTAKRAT-IMLEPLGRDTAPALTLAALRLVADGN--DAVMTVMPAD 146

EHSLLQSTALRLDGLAADHPLNDDVLIVCGEDHRFTTAELR-LTGKSAS-IMLEPIGRYTAPALTLAAFRLVAGGN--DAVMTVMPAD 141

EHSMLQATWLRSAPVAAHAPI-----VVANEEHRFMAAELQQLGVKPSA-ILLEPKGRNTAPAIAVAALEATRNGG--DPLLLVLPSD 115

NSTMLQTTIARLNGIKCENPI-----VICNEDHRFIVAELRQIDKLTKN-IILEPKGRNTAPAIALAAFIAQKKKPKDDPLLLVLAAD 118

ENSLLQETLKRLDGLNCLPPV-----IVSNNEHRFIVAELRQSGVDDFQ-IILEPVGRNTAPAVALAALKSLELHG--DHHMLVLAAD 113

SRTMIGETLQRATGTAFAPPI-----VVCNNAHRFLVAELRENGCEDGR-IILEPAVRNTAAAIAAAALLAAQDDP--ETLLWIMAAD 132

DESLFQATARRVLGPAFDRPI-----IVTGEPFRFTIVELAALGVKPDG-VLIEPEARNTAPAVLAAALWLRDRHP--EALMLVMPSD 111

DDTLFQQTIKRLAFDGMQAPL-----LVCNKEHRFIVQELEAQNLASQA-ILLEPFGRNTAPAVAIAAMKLVAEGR--DELLLILPAD 112

HKSLFELSFKRNASLVDETLI------VCNEKHYFLALEIKNEIKNKSVGFLLESLSKNTANAIALSALMS---DK--EDLLIVTPSD 111  

:::  :  *         :      : .: . *   *::         .::*.  : ** *:  :*:         :  : : .:*

AVADLPRFHAAVAAGVHCAAQGKIATMGIVPKHAETGYGYIRVGAPLGDGTGTLDVRRLDRFVEKPHLELAQQYVASGEYWWNSGIFIVRASVWLKAI 246

AVADLPRFHAAVAAGVHCAMQGKIATMGIVPKHPETGFGYIRVGAPLGDATGKLDVRRLDRFVEKPHLELAQQYVASGEYWWNSGIFIVRASVWLKAI 241

VIRDEAAFQAAVTVAAAAAEQGKLVTFGIKPTAPETGYGYIKAG--VGTAT------AVERFVEKPDLATAQGYLASGEYYWNSGMFLFRASRYLEEL 207

SINNEQAFREAIIKAIPYADAGKLVMFGIIPSVAHTGYGYIKRSVPVDAKDS--TAYYVANFVEKPNIQKAQEYIMSEGYYWNSGMFLFRASKYLGEL 216

AIQDIEAFHAAVLAAEQESVDNKLVTFGIVPTKPETGYGYIKKGEQVKN-----SVFKVNSFVEKPDLETAKNYLEQKCYLWNSGMFMFKASVYLDEL 207

VFRYPERLPAVLEKAMTVAREGYIVTFGMKPDVPETGYGYIRLG-APLHGDADDNVYRVARFIEKPDRLRATEMLNEGGYLWNSGMFLAPASVILAEL 231

QIADVASFHAAIEAAKPRALAGDIVTFGIVPSHAETGYGYLELKPGELNSGPQE----LRQFVEKPDAERASLMIEAGNFLWNAGIFLFSVQAIVDAY 207

VIEDQRAFQQALALATNAAEKGEMVLFGIPASRPETGYGYIRASADAQLEG----VSRVQSFVEKPDEARAREFVAAGGYYWNSGMFLFRASRYLEEL 208

LIKDLQAYENAIKKAIDLAQKGFLVTFGVSIDKPNTEFGYIESP----------NGLDVKRFIEKPSLDKAIEFQKSGGFYFNSGMFVFQAGVFLDEL 200

.        .:  .   :  . :. :*:     .* :**:.                :  *:***    *        :  *:*:*:  .   :   

QLEPAIYAACEQAVAQGR----DDGDFFRVDRDAFAASPSNSIDYAVMELASQPQLCESVVVPLDAGWSDVGSWDAIWQISAKDETGNVGRGH--VLF 340

QLEPAIYAACEQAVAQGK----ADGDFFRIDREAFAASPSNSIDYAVMELASLPQLCESVVVPLDAGWSDVGSWDAIWQISPKDEAENVGRGH--VLF 335

KFQPAIADACQKAWEGGK----RDADFTRLDKDAFASSPSDSIDYAVMETA------DAVVVPLDAGWNDVGSWSSLLDVSEQDGQGNAHHGD--VIQ 295

KFRPDIYNKCESATATAN----IDMDFVRINETEFINCPEESIDYAVMETK------DAVVLPIDVGWSDVGSWSSLWDISQKDVHGNVCQGD--VIN 304

KFRPDILAACKESLSSAS----TDLDFIRLNSDVFAECPDESIDYAVMETQ------DCVVIPLDADWSDIGSWTSLWEISEKDEHENVSHGD--VIN 295

RHEPDVLENVRHALLHSE----SDLTFRRLETASFMRCPNVSIDYAVMETD------RAVVIPADLGWSDVGNWNALWELGDKDAAGNVVVGD--VVL 319

AHASAMSAAVASSLAAAR----LDLDFTRLEPEPWRGVESISIDYAIMEIS------NLAVMPLTAGWSDLGGWASVWNEGRQDAVGNVCSND--VTA 295

KHDADIYDTCLLALERSQ----HDGDLVNIDAATFECCPDNSIDYAVMETS------RACVVPLSAGWNDVGSWSSIWDVHAKDANGNVTKGD--VLV 296

KHAPTILKGCERAFESLENAYFFEKKIARLSEKSMQDLEDMSIDIALMQSH------KIKMVELNAKWSDLGNFNALFEEAANEPKENVSLNQTPVFA 294  

. :      :          :  : .:.        . *** *:*:           ::     *.*:*.: :: :   ::   *.  ..  *

GAESTFAHSESR--LVACVGTQNLVVVETPDAVLVADKSRVQDVKKIVGIKARQGTEATDHRKVHRPWGHYDSVDTGERFQVKRIVVKPGAQLSLQMH 438

GAESTFAHSESR--LVACVGTQNLVVVETPDAVLVADKSRVQDVKKIVGIKAQRGTEATDHRKVHRPWGHYDSVDMGERFQVKRIVVKPGAQLSLQMH 433

DCKNTYAYG-SR--LIAMVGLENVVVVETDDAVLVGHRDRIQEVKEVVSIKSAGRSEATWHRKVYRPWGAYDSIDMGQRFQVKRITVKPGATLSLQMH 392

DSEDSFIYSESS--LVATVGVSNLVIVQTKDAVLVADRDKVQNVKNIVDLKQGGRAEYYMHREVFRPWGKYDAIDQGDRYKVKKIIVKPGEGLDLRMH 402

NSRNNYIYSEGS--LISTVGVNNLIIVQTKDALLVAQQDNVQDIKKIVELKKQKRSEHISHREVYRPWGRYDSVERGDRYQVKRITVKPGECLSTQMH 393

QSHNCYVRSEG--MLTAVAGLTDIVLVVTSDAVLAIHRDYAQDVSALVSLKMARRTEAEIHNRCYRPWGFYEGLIQGERFQVKRIVVYPGQKLSLQKH 417

DCSGTLLRTEGEGLHLVGIGLQDMIAVAMPDAVLVAPMSESQRVGEAVALRENGVKQANMSNRDLRPWGWYESIASGDRFQVKRIMVRPGASLSLQSH 395

DSHNCLVHGNGK--LVSVIGLEDIVVVETKDAMMIAHKDRVQDVKHVVKLDAQGRSETQNHCEVYRPWGSYDSVDMGGRFQVKHITVKPGARLSLQMH 394

ESENNLVFSHKV---SALLGVENLAVIDTKDALLIAHKDKAKDLKALVNVETNNQELLQTHTKVYRPWGSYEVLHESGCYKVKILEVKPNARLSLQKH 391 

. .               *  ::  :   **::    .  : :   * :            .  **** *: :  .  ::**   * *.  *. : *

HRAEHWIVVRGTARITRGDETFLLSENESTYIPLGVSHRLENPGKMPLEIEVQSGAYLGEDDIVRFDDTYGRQ------------ 513

HRAEHWIVVCGTARITRGDETFLLSENESTYIPLGVSHRLENPGKMPLEIEVQSGAYLGEDDIVRFDDTYGRQ------------ 508

HRAEHWIVVSGTAEVTRGEEVLLLTENQSTYIPLGVTHRLKNPGKLPLEIEVQSGSYLGEDDIVRFEDTYGRT------------ 467

HRAEHWIVVSGTAKVSLGNKIKLLVPNESIYIPQGAEYSLENPGVIPLHIEVSSGDYLESDDIVRFTDRYNSKKFLK-------- 481

HRAEHWVVVAGTAKVTCGERTFFVTENESTFIPIGTVHTLENPGKIPLEIEIQSGVYLGDDDIVRLSDKYGRVEDK--------- 471

HRAEHWVVVSGTAIVTRNEEKLMLQENESVYLPLGCMHRLENPGRIPLTIEVQSGPYLGEDDIVRFEDTYGRQ------------ 492

HRAEHWIVVAGTAQVTIEDQISLITENQSIYVPLGARHRLENTGKLPVLIEVQTGAYLGEDDIIRYADVYARN------------ 470

HRAEHWIVVSGTAQVTCDDKTFLLTENQSTYIPIASVHRLANPGKIPLEIEVQSGSYLGEDDIERLEDVYGRTAEPALQVVAGSR 481

HRSEHWVVISGMASVELDHQLFELQANESTYIPKNTLHRLANYGKIPLIIEVQVGEYVGEDDIVRIDDDFNRQNQNA-------- 470

**:***:*: * * :   ..   :  *:* ::*    : * * * :*::**:. * *: .*** *  * :               

Pyrophosphorylase signature

Zinc binding motif

PMI active site

Nucleotidyl transferase domain

Mannose-6-phosphate isomerase domain

GMP active site

 

Fig. 3. Amino acid sequence alignment of experimentally caracterized type II PMIs from B. 
cenocepacia, B. cepacia, X. campestris, S. enterica, E. coli, A. xylinum, S. chungbukensis, P. 
aeruginosa, and H. pylori. The putative GMP and PMI domains are indicated by arrows. The 
conserved motifs are boxed in grey. Asterisks indicate the amino acid residues that are 
identical in all proteins. One or two dots indicate semi-conserved or conserved 
substitutions, respectively. Alignments were performed with ClustalW software. 
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addition, some reducing agents such as DTT and ǃ-mercaptoethanol, have also been shown 
to strongly inhibit the PMI activity, suggesting the involvement of disulfide bonds in the 
formation of the active site and / or the substrate binding site of the enzyme (Shinabarger et 
al., 1991; Papoutsopoulou & Kyriakidis, 1997). The XanB protein was also inhibited by 
diethyl pyrocarbonate (DEPC), being the protection from inactivation obtained after 
addition of the substrate M6P, revealing that the amino acid residue affected is located at or 
near the active site (Papoutsopoulou & Kyriakidis, 1997). DEPC modifies lysyl (K), histidyl 
(H), cysteinyl (C), seryl (S) and tyrosyl (Y) residues of proteins. To identify the modified 
amino acid residues, different compounds were tested, such as PMSF for serine residues, N-
acetylimidazole for tyrosine and lysine residues, hydrogen peroxide for cysteine and 
methionine (M) residues, and p-mercurybenzoate for cysteine residues (Papoutsopoulou & 
Kyriakidis, 1997). None of these compounds were able to inhibit the PMI activity. However, 
the treatment of the carbethoxy-PMI with hydroxylamine, that reverses histidine and serine 
modifications, restored the activity to about 82% of the initial activity, revealing that the 
modified amino acid was histidine (Papoutsopoulou & Kyriakidis, 1997). The PlsB protein 
was inhibited by 2,3-butanedione, suggesting the presence of a catalytic arginine (R) residue 
(Lee et al., 2008). Site-directed mutagenesis revealed that the residue R408 of PlsB was 
required for the PMI catalysis, but not for the GMP activity (Lee et al., 2008). Therefore, it 
was concluded that this residue must participate in the interconversion of sugar moieties by 
providing the binding of the sugar phosphate group or by forming the hydrogen bond of 
sugar hydroxyl group, stabilizing the binding between substrate and enzyme (Lee et al., 
2008). 
A summary of the kinetic parameters of the type II PMIs AlgA and PlsB from P. aeruginosa 

PAO1, AceF from A. xylinum, XanB from X. campestris ATCC13951, BceA from B. cepacia 

IST408, BceAJ from B. cenocepacia J2315, HP0043 from H. pylori 26695 and PMI from S. 

chungbukensis, is presented in Table 1. 

In most of these bacterial species, the type II PMIs are involved in the biosynthetic pathway 

of sugar precursors that are required for the production of polysaccharide-containing 

polymers, such as EPSs and LPSs. In bacteria, EPSs have been shown to provide protection 

against dehydration, engulfment by macrophages, bacteriophages, antibiotics and other 

toxic compounds like heavy metal ions (Ferreira et al., 2010). Due to their physico-chemical 

properties, like high viscosity and pseudoplasticity, the EPSs from some bacterial species are 

also used in many applications ranging from food processing to pharmaceutical production 

(Pettitt, 1979). We will focus on the EPS xanthan as an example of an EPS with several 

industrial applications, and on alginate and cepacian, both known to play a role on the 

pathogenesis of the producing organisms to the human host. In Fig. 4, the chemical 

structures of these three bacterial EPSs are shown, as well as photographs of Petri plates 

containing colonies of the respective EPS producing bacteria. 

Type II PMIs XanB, AlgA, and BceA are involved in the biosynthesis of the sugar 

nucleotides necessary for polymerization of the EPS xanthan, alginate and cepacian, 

respectively. In the case of xanthan synthesis, the GDP-D-mannose is the activated sugar 

precursor for the mannose moiety found in the repeating unit (Fig. 5). However, in the case 

of the two other EPSs, the GDP-D-mannose is either directly used to form the repeating unit 

(cepacian), or further converted into GDP-D-rhamnose or to GDP-D-mannuronic acid, 

before being incorporated, respectively, into the repeating unit of cepacian or added into the 

growing poly-mannuronate polymer produced by P. aeruginosa. 
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Protein Metals ions for PMI 
activity 

Vmax PMI 
activity 
(U/mg) 

Km 
PMI 
activity
(μM) 

Metals ions for 
GMP activity 

Vmax 

GMP 
activity 
(U/mg) 

Km GMP 
activity 
(μM) 

Inhibitors References 

BceAJ Mg2+>Ca2+>Mn2+> 
Co2+>Ni2+ 

27.03 12390 Mg2+>Ca2+ 4.56 24 ND 

BceA Ca2+>Mn2+>Mg2+> 
Co2+>Ni2+ 

a21.10 a9010 Mn2+>Ca2+> 
Mg2+>Ni2+ 

212.8 2940 EDTA 

AlgA Co2+>Ni2+>Mn2+> 
Mg2+>Ca2+>Zn2+ 

0.83 3030 Mg2+>Mn2+ 5.17 14.2 DTT 

PlsB Co2+>Mn2+ ND 1180 Mg2+>Co2+> 
Mn2+ 

ND 110 GDP-D-
mannose, 2,3-
butanedione 

HP0043 Co2+>Mg2+>Mn2+> 
Zn2+ 

ND 55.56 Mg2+>Mn2+ ND 101 GDP-D-
mannose 

XanB Co2+>Zn2+>Mn2+> 
Ni2+>Ca2+ 

33.5 2000 ND ND ND EDTA, 
mercaptoethan
ol, D

AceF ND b0.04 ND ND b0.01 ND ND 

PMI Co2+>Mg2+>Ca2+> 
Ni2+>Zn2+ 

ND ND Mg2+ ND ND GDP-D-
mannose 

aThe PMI reaction was performed in presence of MgCl
2
.

bThe specific activity was determined in crude cell extracts of the E. coli CD1 (pmi-) and CWG152 ( 
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Since its discovery in 1950, the xanthan EPS produced by the phytopathogen X. campestris, 

generated a great scientific and industrial interest, and was first approved as a food additive 

in 1969 by the Food and Drug Administration (FDA, USA) (Born et al., 2002). This high 

molecular weight acidic heteropolysaccharide consists of repeating units containing D-

glucose, D-mannose and D-glucuronic acid in a molar ratio of 2:2:1, respectively (Fig. 4). The 

glucose residues are linked to form a ǃ-1,4-D-glucan cellulosic backbone, with alternate 

glucose residues decorated with a short branch with a glucuronic acid residue sandwiched 

between two mannose residues (Born et al., 2002). The type II PMI XanB is one of the key 

enzymes in the pathway of xanthan biosynthesis, leading to the formation of the precursor 

GDP-D-mannose (Papoutsopoulou & Kyriakidis, 1997). Work performed by 

Papoutsopoulou & Kyriakidis (1997) revealed that the half life of this enzyme was 3 times 

higher in the presence of zinc ions, implying a structural role for this metal ion. This study 

also revealed that a histidyl residue at or near the PMI active site was essential for the 

isomerization reaction. 
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Fig. 4. Chemical structures of xanthan, alginate and cepacian (right) and photographs of Petri 
plates with isolated colonies of the respective producing bacterial strains, evidencing their 
heavy mucoid phenotype (left). Abbreviations: Glc, glucose; Man, mannose; GlcA, glucuronic 
acid; ManA, mannuronic acid; GulA, guluronic acid; Gal, galactose; Rha, rhamnose. 
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PMI

GMP

 

Fig. 5. Biosynthetic pathways leading to the activated sugar precursors necessary for 
assembly of the repeating units of cepacian, xanthan and alginate. The enzyme activity 
catalyzing each step is shown close to the arrow. Abbreviations: PMI, phosphomannose 
isomerase; GMP, GDP-D-mannose pyrophosphorylase; PGI, phosphoglucose isomerase; 
PGM, phosphoglucomutase; UGP, UDP-glucose pyrophosphorilase; UGE, UDP-galactose 
epimerase; UGD, UDP-glucose dehydrogenase; PMM, phosphomannomutase; GRS, GDP-
rhamnose synthase; GMD, GDP-mannose dehydrogenase. The PMI and GMP activities of 
bifunctional type II PMIs are evidenced in bold. 

In P. aeruginosa PAO1, three genes (algA, wbpW, pslB) encoding proteins homologous to type 
II PMIs have been described (Sá-Correia et al., 1987; Rocchetta et al., 1998; Jackson et al., 
2004). These genes are located within three distinct polysaccharide biosynthesis gene 
clusters. WbpW participates in the production of the A-band LPS, while PslB is required for 
EPS production and biofilm formation (Rocchetta et al., 1998; Jackson et al., 2004). The 
occurrence in P. aeruginosa of multiple type II PMIs dedicated to the synthesis of distinct 
polysaccharide molecules is thought to enable the independent regulation of each specific 
pathway and thus to promote the adaptation of the bacterium to different environments. 
Nevertheless, AlgA is the best known characterized type II PMI from P. aeruginosa. This 56-
kDa bifunctional enzyme catalyzes the first and third steps in the biosynthesis of alginate 
and was originally described by Sá-Correia et al. (1987). The P. aeruginosa alginate is a highly 
acetylated polymer, mostly composed of 1,4-linked ǃ-D-mannuronic acid residues with few 
interspaced guluronic acid residues (Shinabarger et al., 1991; Fig. 4). This contrasts with the 
structure of the alginates produced by brown algae, which contain blocks of L-guluronic 
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acid, responsible for the ability of alginate to originate gels in the presence of Ca2+ (Sabra et 
al., 2001). P. aeruginosa alginate has medical significance due to its production during the 
conversion of P. aeruginosa strains to a mucoid phenotype, in association with chronic 
infections in the lungs of cystic fibrosis patients (Shankar et al., 1995). This conversion is 
induced by several conditions, including nutrient starvation, use of energetically poor 
substrates, and presence of metabolic inhibitors (Leitão and Sá-Correia, 1997). The 
production of alginate by P. aeruginosa protects the bacterium from the host immune 
responses and against the action of antibiotics (Govan and Deretic, 1996). Leitão and Sá-
Correia (1993) have shown that the alginate pathway from P. aeruginosa can be manipulated 
by increasing the amounts of the type II PMI AlgA. This result revealed that the 
modification and control of critical steps in complex microbial EPS pathways at the genetic 
level can allow the increase of the EPS production yield and the alteration of the rheological 
properties of aqueous solutions prepared with the biopolymer. 
In another CF pathogen, the Bcc bacteria, multiple type II PMI encoding genes were also 
found (2 to 5). In particular, three type II PMI encoding genes were associated with 
polysaccharide biosynthetic clusters, the bceA, of the cepacian biosynthetic cluster, the pmi of 
the capsular polysaccharide genomic island, and a third pmi involved in LPS biosynthesis 
(Sousa et al., 2007a). Cepacian is the major exopolysaccharide produced by a large 
percentage of clinical isolates of Bcc (Cunha et al., 2004; Herasimenka et al., 2007; Richau et 
al., 2000a; Zlosnik et al., 2008; Ferreira et al., 2010). The production of cepacian has been 
correlated with higher persistence and virulence of the producing bacterium in animal 
models, inhibition of neutrophil chemotaxis and scavenging of reactive oxygen species in 
vitro, suggesting a role for cepacian in the protection of bacteria against the host immune 
response (Sousa et al., 2007b; Bylund et al., 2006). This EPS is composed of a branched 
heptasaccharide repeating-unit, with D-glucose, D-rhamnose, D-mannose, D-galactose and 
D-glucuronic acid, in the ratio 1:1:1:3:1, respectively (Cescutti et al., 2000; Fig. 4). The GDP-
D-mannose formed by the type II PMI BceA is the activated sugar precursor for the 
incorporation of D-mannose in cepacian and is also the precursor for the synthesis of GDP-
D-rhamnose, the activated sugar precursor of the D-rhamnose moiety of cepacian (Richau et 
al., 2000b). The 55.3-kDa BceA protein was also shown to be required for thick biofilm 
formation and for the production of EPSs that lead to aqueous solutions with higher 
viscosity (Sousa et al., 2007a). However, the lack of a functional bceA gene did not affect the 
EPS production yield, suggesting that other bceA functional homologues may compensate 
the bceA mutation (Sousa et al., 2007a). The BceA protein from B. cepacia IST408 and the 
BceAJ from B. cenocepacia J2315 exhibited no PMI and GMP activities in the presence of zinc, 
in spite of the existence, in their primary sequences, of a zinc-binding motif (Sousa et al., 
2007a; Sousa et al., 2008; Fig. 3). Similarly, the PMI and GMP activities of PlsB could not be 
activated in presence of ZnCl2 (Lee et al., 2008). Zn2+ was also reported to be the less 
effective activator of the type II PMI HP0043 from H. pylori, suggesting that the combination 
between the zinc metal ion and the PMI domain is loose and less specific than in the type I 
PMI proteins (Wu et al., 2002).  

5. Biotechnological potential of PMIs 

L-ribose has been proposed as a potential starting material for the synthesis of many L-
nucleoside-based pharmaceutical compounds (e.g. the antiviral drug for the treatment of 
hepatitis B, Clevudine) (Okano, 2009). However, L-ribose is not an abundant sugar in 
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nature, and therefore L-ribose has been produced mainly by chemical synthesis from L-
arabinose, L-xylose, D-glucose, D-galactose, D-ribose, or D-mannono-1,4-lactone (Okano, 
2009). Recently, the isomerization activity of the PMI enzyme from B. subtilis was reported 
to be specific for aldose substrates possessing hydroxyl groups oriented in the same 
direction at the C-2 and C-3 positions, such as the D and L forms of ribose, lyxose, talose, 
mannose, and allose (Yeom et al., 2009). This enzyme also exhibited the highest activity with 
L-ribulose, among all pentoses and hexoses tested (Yeom et al., 2009). Recently, 
experimental conditions have been reported as leading to the production of L-ribose at a 
final concentration of 213 g liter-1 from 300 g liter-1 of L-ribulose, using mannose-6-
phosphate isomerase at 40°C for 3 h, with a conversion yield of 71% and a volumetric 
productivity of 71 g liter-1 h-1 (Yeom et al., 2009). This was the highest volumetric 
productivity and product concentration reported until now for the biological manufacture 
of L-ribose. In addition, the downstream purification methodology was simpler than the 
previously used for the preparation of L-ribose, either by chemical methods or fermentation. 
The production of the expensive sugar L-ribose from the rare sugar L-ribulose by PMI may 
prove to be a valuable industrial process, because the L-ribulose sugar can be produced 
from the low-cost sugar L-arabinose, using the L-arabinose isomerase from Geobacillus 
thermodenitrificans (Yeom et al., 2008). 
Antibiotic and herbicide resistance genes have been used for the selection of transgenic 

plants (Min et al., 2007). However, the use of these genetic markers has generated a 

widespread public concern. For this reason, alternative methods of selection have been 

developed, in particular the use of mannose as the carbon source in selective media, since 

plants have an inefficient ability to metabolize this sugar (Lee and Matheson, 1984). The pmi 

gene isolated from E. coli has been used as a selectable marker for the transformation of 

several plant species, including sugar beet, cassava, maize, wheat, Arabidopsis, pepper, sweet 

orange, pearl millet, tomato, papaya, onion, almond, Chinese cabbage, and cucumber (Miles 

and Guest, 1984; Min et al., 2007). The transgenic plants expressing the E. coli pmi gene and 

growing in mannose medium, are able to convert the M6P to F6P, thus providing a carbon 

and energy source to survive to the high selective pressure. 

The study of the biological function of oligosaccharides from human milk such as lactose, D-

galactose, N-acetylglucosamine, sialic acid, and L-fucose, has received an increasing interest 

in the last years. This interest derives from the properties of fucosylated oligosaccharides 

(e.g. the Lewis blood group antigen) in protecting infants against enteric pathogens (Boehm 

and Stahl, 2007). The availability of large amounts of fucosylated oligosaccharides will be 

useful for the development of therapeutic and protective strategies to prevent infections by 

pathogens, to improve the immune system response, and to reduce the inflammatory 

process (Newburg et al., 2004). Enzymatic fucosylation of oligosaccharides requires GDP-L-

fucose as the donor of L-fucose. However, the high cost of GDP-L-fucose limits its 

application for large-scale production of these oligosaccharides. The conversion F6P to GDP-

L-fucose requires the activity of five enzyme activities (mannose-6-phosphate isomerase 

ManA, phosphomannomutase ManB, mannose-1-phosphate guanyltransferase ManC, GDP-

D-mannose-4,6-dehydratase Gmd, and GDP-L-fucose synthase WcaG), with GDP-D-

mannose as the intermediate. Recently, a recombinant E. coli BL21star(DE3) strain 

overexpressing gmd, wcaG, manB and manC genes was developed to maximize the 

production of GDP-L-fucose (Lee et al., 2009). This advance might lead to the future 

availability of affordable fucosylated oligosaccharides. 
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6. PMIs are promising targets for the development of new antimicrobials 

PMIs have been considered as suitable targets for the development of antibacterial, 
antiparasitic, and antifungal agents (Bhandari et al., 1998; Roux et al., 2004; Roux et al., 
2007). Roux et al. (2004) reported the inhibition of a yeast type I PMI and a P. aeruginosa type 
II PMI by 5-phospho-D-arabinohydroxamate (5PAH). However, phosphorylated 
compounds have a limited therapeutical interest, not only because of their ionic character 
which do not allow them to freely cross the barrier that is the hydrophobic cell membrane, 
but also because of their high susceptibility to hydrolysis by endogenous phosphatase 
enzyme activity (Foret et al., 2009). Recently, the 6-deoxy-6-(dicarboxymethyl)-D-
mannopyranose, a non-hydrolysable M6P analogue in which the phosphate group was 
replaced by a dicarboxymethyl group, was reported to be a strong inhibitor of the enzymatic 
activity of PMIs from E. coli and S. cerevisiae (Foret et al., 2009). 
Sequence alignment studies have revealed that the type I PMIs from pathogenic 
microorganisms such as fungi and protozoa, exhibit a high level of amino acid sequence 
identity (>40%) with the humans type I PMIs, especially in the binding site region (Jensen 
and Reeves, 1998). This high degree of identity hampers the development of species-specific 
inhibitors against fungal or bacterial type I PMIs that do not inhibit the human type I PMIs. 
In most human tissues, the inhibition of the PMI activity will most probably do not impair 
the global metabolism, because the majority of the M6P that is utilized for glycoprotein 
synthesis is most likely not derived from F6P, but originates from efficient uptake of D-
mannose through a specific exogenous mannose transporter, followed by its 
phosphorylation by hexokinases (Panneerselvam et al., 1997). However, in organs such as 
the liver and the intestine, where this pathway is less efficient, a deficiency in human PMI 
activity leads to the carbohydrate deficient glycoprotein syndrome type 1b (CDGS 1b), a 
severe metabolic disorder with hepatic and intestinal manifestations (Niehues et al., 1998). 
Nevertheless, this disease has been successfully treated by oral administration of D-
mannose (Niehues et al., 1998). Therefore, a therapeutical strategy combining the enzyme 
inhibitor and D-mannose supplementation should alleviate the side-effects of PMI inhibition 
on humans. 
In the pathogenic yeast C. neoformans, the pathway for exogenous mannose uptake was 
reported to be much less efficient than in humans, and the type I PMI from this pathogen 
was considered as an excellent therapeutic target (Wills et al., 2001). However, the efficiency 
of the pathway for M6P formation in other microorganisms remains poorly studied. The 
PMI inhibition therapy will also be possible for local treatments, such as against yeast 
infections (e.g. candidiasis) and cutaneous leishmaniasis, without affecting human 
metabolism.  
No significant sequence identity has been found between Type I and Type II PMI enzymes, 

except for a very small conserved amino acid sequence motif in the active site of the protein 

(Jensen and Reeves, 1998). For this reason, specific inhibition of the type II PMI activity, 

while leaving the human type I protein unaffected, should be achieved more easily than for 

the type I PMI proteins from pathogens. This opens the door for the rational design of 

potent and highly species-specific inhibitors against the targeted PMIs from pathogens. 

However, for this purpose, structural information on type I and type II PMIs is necessary. 

High-resolution X-ray crystal structures have been reported for the type I PMIs of Candida 

albicans (Cleasby et al., 1996; PDB code 1pmi), Salmonella typhimurium (Gowda et al., 2008; 

PDB codes 2wfp, 3h1y, 3h1w, and 3h1m), Helicobacter pylori (PDB code 2qh5), Bacillus subtilis 
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(PDB code 1qwr) and the type IV PMIs from A. fulgidus (PDB code 1zx5) and P. aerophilum 

(Swan et al., 2004; PDB codes 1x9i, 1x9h, 1tzb and 1tzc). The analysis of the crystal structure 

of the type I PMI from C. albicans allowed the identification of the active site and the zinc 

metal cofactor binding site of the enzyme (Cleasby et al., 1996). Although the roles of the 

individual amino acid residues of the active site and the catalytic mechanisms are still 

poorly known, Gracy and Noltman (1968) proposed that the zinc ion coordinates with the 

carbonyl and hydroxyl oxygens on Cl and C2, activating the ǂ-hydrogen to the carbonyl, 

which is abstracted by the nonprotonated nitrogen of an imidazole group to form the 

transient enediol intermediate. In contrast, the type II PMIs don´t bind Zn2+ specifically. This 

observation reveals that there are some differences between the different classes of PMIs. 

Contrasting with the wealth of structural information on types I and IV PMIs, no 

structural information on type II and III PMIs is available, difficulting the determination 

of the roles of individual amino acid residues of the active site and the catalytic 

mechanisms of these proteins. Therefore, knowledge on the three-dimension structure of 

these enzymes is necessary to allow the understanding of the mechanisms of the 

isomerization reaction and the role played by the metal ions in catalysis. In turn, this 

information will certainly give crucial information for the exploitation of these important 

enzymes as targets for the rational design of inhibitors, thus enabling us with new 

antimicrobials to fight infections caused by microorganisms resistant to the clinically 

relevant antibiotics available nowadays. 
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