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1. Introduction

With the rising concern for environmental protection, biodegradable polymers and bio-
composites have attracted considerable attention as green materials and biocompatible
materials that will replace some or all of the synthetic plastics in many applications.

Because petrochemical-based plastic material persists beyond its functional life, a waste
disposal problem is facing modern society. Research to alleviate pollution and litter
problems includes efforts to develop plastics that degrade more rapidly in the environment.
Most of our waste is either stored in landfills or composted. Since most of the natural
polymers are biodegradable, the use of natural polymers as a substitute for non-
biodegradable synthetic polymers can be environmentally beneficial to some extent.
Recently, many research groups have concentrated on the development of biodegradable
polymer blends or composites from starch (Ma et al.,, 2008; Grazuleviciene et al., 2007;
Gaspar et al., 2005), corn gluten meal (Samarasinghe et al., 2008; Beg et al., 2005; Wu et al.,
2003a), wheat gluten (Zhang et al., 2007; Olabarrieta et al., 2006; Ye et al., 2006; Domenek et
al., 2004; Kayseriliolu et al., 2003), and zein (Qu et al., 2008; Corradini et al., 2006; Wu et al.,
2003b). In most cases, commercially available biopolymers contain a significant amount of
unwanted materials that remain after the extraction/isolation process. Purification of these
materials is very costly for the practical utilization of these agricultural products as a
component of useful final products. If these agricultural excess products can be used
without further purification, it can minimize the use of toxic chemicals, simplify the
manufacturing process, save energy, and lower the production cost.

In this chapter, a new fabrication procedure for the production of biopolymer composites
will be introduced. In this procedure, a corn protein, zein, is utilized as a binder for matrix
materials (Kim, 2008). Matrix material can be chosen from both agricultural products and
non-agricultural products. Composite materials fabricated from agricultural products such
as starch and protein powders are biodegradable while those fabricated from non-
agricultural products such as iron powder and glass spheres are not.

2. Fabrication of composites by particle-bonding

Conventionally, polymer composites had been manufactured by mixing the component
materials in an extruder at high temperature. If the raw material is a mixture of various
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components with impurities, phase-separation, decomposition, and gas generation will
interfere with the extrusion process. A new methodology, called particle-bonding
technology, was developed for the production of biodegradable/non-degradable polymer
composites that will potentially replace existing petroleum-based polymers. This technique
requires neither extrusion nor processing at high temperatures. Instead, micrometer scale
raw materials (powders) are coated with a corn protein, zein which has a strong adhesive
force, and compressed to form a rigid material. Since this technique does not require
purification of raw materials, various types of compounds can be used as component
materials. During the fabrication process, raw materials in powder form are bound by zein.
Zein is utilized because of its good adsorption to hydrophilic surfaces and strong adhesive
properties. Both the unusual behavior of zein molecules in the aqueous alcohol solution and
its strong adhesive property play a major role in the fabrication process of the particle-
bonding technology. Mechanical properties such as compressive yield strength, modulus of
elasticity, and yield strength at 0.2% offset of the fabricated polymer composites confirm the
validity of the presented process.

3. Characteristics of zein

3.1 Source

Commercial zein is essentially a by-product of the corn wet-milling industry. In the wet
milling process, steeped corn in water is milled to separate the hulls and germ from the
endosperm, which is further milled into a fine slurry. Centrifugal separation of starch from
the endosperm slurry leaves a protein-rich mass, i.e., corn gluten meal, from which zein is
extracted (Padua & Wang, 2002). Annual zein production in the U.S. is more than 1 million
pounds, mostly used in formulations of specialty food and pharmaceutical coatings (Shukla,
1992; Lawton, 2002).

Biologically, zein is a mixture of proteins varying in molecular size and solubility. These
proteins can be separated by differential solubilities and their related structures into four
distinct types: a, B, y, and & (Coleman and Larkins, 1999). a-Zein is the most abundant,
accounting for ca. 70% of the total (Thompson and Larkins, 1989). The next most abundant
zein is y-zein, contributing ca. 20% to the total. a-Zein can be extracted using only aqueous
alcohol, whereas the other zeins need a reducing agent in the solvent to be extracted
(Lawton, 2002). a-Zein that is extracted with a reducing agent shows up as two bands with
apparent migration rates of 19 and 22 kDa on SDS-PAGE (Coleman and Larkins, 1999).
Commercial zein is made up of a-zeins (Wilson, 1988).

Zein can be used as a biodegradable material (Shukla & Cheryan, 2001; Lawton, 2002), and
as early in 1909, it was used to prepare plastics (Goldsmith, 1909). Later, the related research
was delayed due to the emergence of petroleum-based plastics. However, within the last
two decades, zein has again attracted attention because of its biodegradability.

3.2 Solution behavior

Zein’s defining characteristic is insolubility in water except in the presence of alcohol, high
concentrations of urea, high concentrations of alkali (pH 11 or above) or anionic detergents.
This is due to its amino acid composition. Zein is particularly rich in glutamic acid (21-26%),
leucine (20%), proline (10%) and alanine (10%), but deficient in basic and acidic amino acids.
The high proportion of nonpolar amino acid residues and deficiency in basic and acid amino
acids is responsible for the solubility behavior of zein. (Shukla, 1992)
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Conventionally, aqueous ethanol has been used as a solvent for zein in many experiments
(Parris and Coffin, 1997; Fu and Weller, 1999; Lawton, 2002; Dickey et al., 2003; Kim et al.,
2004; Guo et al., 2005). It is one of the good solvents for zein (Manley and Evans, 1943).
Although it is known that 60-95% ethanol content is adequate for solubilization of zein, the
effect of variation of alcohol content on the behavior of individual zein molecules has not
been well understood until 2008. Fu and Weller (1999) reported on the rheology of zein
solutions in aqueous ethanol. Zein (2-12%) in 50%, 60%, 70%, 80%, and 90% aqueous
ethanol was investigated. Regardless of zein concentration, the overall trend showed that
the viscosity of the solution decreased as the concentration of ethanol increased from 50% to
90%. This result indicates that the apparent molecular weight of zein decreases at a higher
ethanol content. Yamada et al. (1996) reported that zein films prepared from 80% (v/v)
aqueous ethanol did not show enough waterproof property compared with those prepared
from 70% (v/v) aqueous acetone. In addition, aggregate formation was observed in both
films. Dong et al. (2004) reported that SEM revealed that the zein film prepared from 70%
ethanol was composed of particles of diameter 100-500 nm. These particles were
agglomerated to form a film. The concentration of zein had no significant effect on particle
size. Guo et al. (2005) used atomic force microscopy (AFM) for the visualization of zein
globules formed from 70% (v/v) aqueous ethanol on the surface of mica. Depending on the
concentration of zein in the solution, the diameter of globules ranged between 150 and
550nm, or between 60 and 120nm. If we compare zein with other proteins of similar
molecular weight, the diameter of a zein molecule is expected to be ca. 5 nm (Cantor &
Schimmel, 1980). Therefore, the data from previous researches clearly indicate that zein
forms aggregates with a very large aggregation number in aqueous ethanol.

4. Particle bonding technology

4.1 Aggregation of zein in aqueous ethanol

The developed particle-bonding technology makes use of the aggregate-forming tendency of
zein in aqueous ethanol solution. Although the traditional solvents for zein, 70-90%
aqueous ethanols, did not show much difference in terms of the capability of making
solutions, transmittance measurement showed there is a variation of aggregate size
depending on the ethanol content in the solvent mixture (Kim & Xu, 2008). Transmittance of
zein solutions was measured at several zein concentrations with a turbidimeter that is
composed of a 633nm He-Ne laser, temperature-controlled sample block, stirrer, neutral
density filter, and a laser power meter. Zein solutions of 0.2%, 0.5%, 1%, and 2% (w/w) were
examined with a turbidimeter to find the best solvent composition (Fig. 1). The data show a
peak of transmittance at around 90% aqueous ethanol but the transmittance dropped with a
higher concentration of ethanol. However, although there was variation in the transmittance
in the range of 70-90%, no precipitation was observed. It is an indication that there is a size
variation of zein molecules as the percentage of the ethanol changes. Since the transmittance
variation was too dramatic to be considered as due to a change in the individual molecular
size, it was expected that there is a growth of particle size by aggregate formation of
individual zein molecules. For further understanding of the aggregation behavior of zein in
aqueous alcohol solution, the size variation of solute was investigated by a dynamic light
scattering (DLS) technique. At greater than 90% ethanol, unlike the case of 70-90% ethanol
solution, precipitation was observed and time-dependent transmittance was observed. The
reason for the dramatic change in the transmittance in the narrow region at around 90%
ethanol could only be explained after obtaining data from DLS experiment.
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Fig. 1. Transmittance of zein in a series of ethanol solutions. Zein solutions (0.2-2%) were
examined at 25.0 £ 0.1 °C. A 10mW He-Ne laser (A = 633 nm) was used as a light source.

For the measurement of the degree of aggregation of zein in various ethanol/water
mixtures, a DLS experiment was performed with an autocorrelator and a goniometer
equipped with an argon laser (A = 514.5 nm). All experiments were carried out with 0.1%
(w/w) zein solution at 25.0 + 0.1 °C. The scattered intensities were determined by using the
standard photon counting method. Hydrodynamic radii of zein aggregates were obtained as
follows. The DLS experiment yields a correlation function given as

g (t) = exp(-I't) (1)

where I' = Dig? (Johnson and Gabriel, 1994). From the slope of g2 vs. I" plot, we obtain a
diffusion coefficient of a solute molecule, D;. Here, q is the scattering wave vector. The
hydrodynamic radii of aggregates can be calculated by the Stokes-Einstein relationship

Ry, = (kT)/ (67nDy) (2)

where k is the Boltzmann constant, T is the absolute temperature (K), n is the viscosity of the
solvent (P), and D is the diffusion coefficient (cm?2/s).

Fig. 2 shows dimensional variation of hydrodynamic radii of zein aggregates in aqueous
ethanol solutions. At around 90% ethanol, a sharp decrease and increase in the
hydrodynamic radius of zein was observed. The volume of the aggregates was calculated
assuming the aggregates are spherical. As the molecular weight of zein is known from the
SDS-PAGE experiment (Cabra et al., 2005; Padua & Wang, 2002), the size of single molecule
was estimated from the list of proteins (Canton & Schimmel, 1980). Although it is not
practically possible to obtain the data for the hydrodynamic radii for all ethanol/water
compositions, it is probable that each zein molecule exists as a freely moving individual
particle at around 90% ethanol. The most probable hydrodynamic radius of single zein
molecule was assumed at 89.7% ethanol. Including this conjectured data point, the overall
trend of the variation of the volume of aggregates is shown by the red line in Fig. 2. The
volume of each aggregate and the degree of aggregation were calculated by assuming the
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specific volume to be close to one. The degree of aggregation of zein was gradually
decreased when the composition was changed from 70% to 90% ethanol. At around 90%
ethanol solution, the aggregation number was at the minimum. After that, the aggregation
number increased dramatically in the solvent composition higher than 90% ethanol. The
overall behavior of aggregate formation of zein suggests that there is a structural change in
the conformation of zein aggregates at around 90% ethanol. Since the amphiphilic behavior
of zein has been known (Wang et al., 2004a & 2004b), this behavior can be interpreted as the
inversion of micellar structure of zein aggregates as the solvent composition changes from a
hydrophilic environment to a more hydrophobic one. According to the aforementioned
aggregation behavior of zein, the structural inversion of zein can be induced by increasing
or decreasing the composition of ethanol from 90%.
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Fig. 2. Dimensional variation of zein aggregates in a series of ethanol solutions. Data were
obtained by a dynamic light scattering instrument equipped with an argon ion laser (A =
514.5 nm). The experiment was carried out with 0.1% (w/w) zein solution at 25.0 £ 0.1 °C.

4.2 Amphiphilic nature of zein

If each zein molecule behaves as an amphiphile, it is expected that zein molecules form a
macromolecular micelle —globular aggregates with the hydrophilic moiety exposed to the
surface and hydrophobic moieties clumped together in the aqueous ethanol with up to 90%
ethanol content. 90% aqueous ethanol should be the best solvent for zein as the aggregation
number was at its minimum (Fig. 2). As the percentage of ethanol increases to higher than
90%, the solvent medium turns more hydrophobic and a different type of macromolecular
micelle will be formed. This time, the hydrophobic moiety will be exposed to the surface
and hydrophilic moieties will clumped together. In other words, the orientation of each
molecule in the micelle will be reversed.

The structural inversion of zein molecules or aggregates had been suggested by Yamada et
al. (1996) when they found that the hydrophobicity of zein film depends on the type of
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solvent system used for its preparation. This observation supports our view that the
inversion of micelle-like structure of zein aggregates occurs at around 90% ethanol. The
micelle-like structures formed in lower than 90% ethanol have hydrophilic moieties that are
oriented toward the solvent medium. In this case, the surface charges of particles repel each
other without precipitation whereby they form a turbid solution. On the other hand, the
micelle-like structures formed in greater than 90% ethanol have hydrophobic moieties that
are oriented toward the solvent medium. In this case, the particles attract each other by van
der Waals force so that aggregation, followed by precipitation, is induced. This behavior
indicates that the micelles formed in this ethanol content have no or negligible charges on
the surface whereby van der Waals force between aggregates can play a major role in the
formation of precipitates. Micelle formation of zein in aqueous ethanol is schematically
illustrated in the top row of Fig. 3 (no added substrate particles). Considering the micelle
formation of surfactants at above CMC (Critical Micelle Concentration), the simplified
model for the aggregation of zein molecules is conceivable. Inclusion of the experimental
result shown in Fig. 2 readily yields inversion of micelle at around 90% aqueous ethanol.
This behavior resembles pH-induced inversion of micelle that was formed by diblock
copolymer unimers (Wang et al., 2006). It is expected that zein molecules would surround
hydrophilic or hydrophobic particles depending on the percentage of ethanol in the solution.
The schematic presentation of this behavior is shown in the bottom row of Fig. 3 (with added

< 90% Ethanol > 90% Ethanol

w S S0

substrate

particles %@é&? %O(%Q

w/
substrate
particles

Fig. 3. Schematic diagram of the structural inversion of micelle-like structured zein
molecules with and without added substrate particles in aqueous ethanol solutions. Shaded
areas represent hydrophobic surfaces. When particles with hydrophilic (hydrophobic)
surfaces are mixed with zein molecules, their surfaces will be surrounded by zein molecules
with hydrophilic (hydrophobic) moieties oriented toward their surfaces.
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substrate particles). This viewpoint is again supported by a simple experiment as follows.
According to Fig. 2, addition of ethanol or water to a zein solution in 90% ethanol will induce
larger aggregates. If two kinds of particles, one with hydrophilic surface and the other with
hydrophobic surface, are dispersed in this system (zein in 90% ethanol solution), depending on
the added solvent, ethanol or water, zein molecules would surround only one of the two
particles. The aggregate formation of zein was experimentally observed with the above-
mentioned procedure where glass spheres were employed as particles with hydrophilic
surface and toner with hydrophobic surface. The sizes of the two particles were similar to each
other and the color of the glass spheres was white while that of toner was black (Fig. 4).

Glass sphere + Toner
Add zein/30% Ethanol

Suspension

Add pure Ethanol Add pure water

Glass sphere Toner
composite compasite
" =l

Fig. 4. Composite materials prepared from a mixture of glass spheres and toner. The
selective adhesion of zein molecules to the surfaces of hydrophilic (glass spheres) or
hydrophobic particles (toner particles) allows us to prepare a glass sphere composite (A) or
a toner composite (B) from their mixture. 100 pm bars are shown in the microscopic images.

In this demonstration, 10% zein in 90%ethanol mixed with hydrophilic particles (glass
spheres, o.d. = ca. 10 pm) and hydrophobic particles (toner, o.d. = ca. 10 um) was prepared.
When ethanol was gradually added to the solution, zein surrounded the glass spheres and
formed a large agglomerate while the toner particles were minimally affected. The surface of
precipitated zein is so sticky that the glass spheres coated with zein stick together and form
large agglomerates. During this time, some of the toner particles, although they are not
coated with zein, are physically embedded in the agglomerates. That is why the color of
glass spheres is not pure white. The same reasoning applies to the toner composites. As the
agglomerate was compressed in the cylindrical mold, a glass sphere composite was
produced (Fig. 4). Since a phase contrast microscope was used for taking images in the inset
of Fig. 4, some particles of glass spheres look black. On the other hand, when water was
added to the solution, zein surrounded the toner particles and formed small agglomerates
while the glass spheres were not affected. Smaller agglomerates than those of the previous
case were formed because of the surface charges of particles that repel each other. A toner
composite was produced as the agglomerate was compressed in the cylindrical mold (Fig.
4). In this experiment, the behavior of zein in the latter case is similar to that of detergents in
a washer. Toner particles are nonpolar and insoluble in water. When detergents and
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hydrophobic particles (e.g., toner or oily dirt) are mixed in water, the hydrophobic moiety of
detergent molecules are attracted to the surface of hydrophobic particles. The micelle-like
structures formed by this mechanism contain hydrophobic particles in the center. By the
same reasoning, if some amphiphiles (e.g., zein) and hydrophilic particles (e.g., glass
spheres) are dispersed in a hydrophobic medium, the hydrophilic moiety of zein molecules
will be attracted to the surface of hydrophilic particles. The above experimental result
supports the concept for the structural inversion of micelle-like zein molecules. As stated
above, addition of more ethanol to a zein solution in 90% ethanol induces large aggregates.
It is the basis of the procedure developed in our lab for the production of polymer
composite materials.

4.3 Principle of fabrication

The particle bonding technology makes use of the powerful adhesive properties of zein to
bind the matrix materials. The adhesive properties of zein had not been recognized for a
long time until recent research by Parris and Dickey (2003). The enormous bonding strength
of zein could easily be demonstrated by using zein as a glue; zein solution prepared in
organic solvent mixture (CH>Cl./MeOH; 60/40) was applied on the surface of wood blocks
(Uy, 1998). After 24 h, when the bonded wood blocks were taken apart, bonded parts were
more difficult to break apart than the original wood block.

The surface of most matrix materials prepared from agricultural commodities is
hydrophilic. At greater than 90% aqueous ethanol solution, the hydrophilic moiety of zein
molecules should have a tendency to find hydrophilic materials in its solution and adsorb
on its surface to hide the hydrophilic moiety and externally expose the hydrophobic moiety.
In this situation, when matrix materials with hydrophilic surfaces, e.g., most of the
biopolymers, are mixed with zein, the latter will be adsorbed on the surface of the former.
As a result, we obtained matrix materials coated with zein molecules. Consequently, large
agglomerates are formed because of the adhesive character of zein in the mixture. When
these agglomerates are squeezed in the mold, the solvent is removed and a lump of protein
composite is obtained.

There is a fundamental difference in the behavior of aggregates between the particles with
hydrophilic surface and those with hydrophobic surface. In the case of the particles with
hydrophobic surface, they form larger agglomerates by dispersion force between particles as
soon as they are formed. Therefore, these particles are very unstable in the solution and
form larger particles until they precipitate. The aggregation process is readily observed
every time when the biopolymer composites are fabricated. On the other hand, the particles
with hydrophilic surface do not spontaneously form larger agglomerates because of the
electrostatic repulsion between particles.

The first step of the fabrication process is to disperse the matrix material and zein in ethanol.
Only a small amount of ethanol that will barely immerse the matrix material is enough at
this stage. The matrix material must be a powder of micrometer-scale particle size, and most
of the spray-dried biopolymers satisfy this condition. The second step is to dissolve zein in
the mixture by adding a calculated amount of water to make the composition of the solvent
mixture to be ca. 90% aqueous ethanol. Enough time (typically 2-3 min) should be allowed
for zein molecules to fully dissolve in the solution. From this point, depending on the
hydrophilicity of the matrix material, the fabrication procedure needs to follow a different
process.

In the case of hydrophilic powders, ethanol is added to make the ethanol content of the solvent
mixture greater than 95%. At this moment, zein molecules are adsorbed to the surface of the
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matrix particles, and the sticky characteristics of zein induce agglomeration of the particles.
The final step is to squeeze out the solvent mixture from the chunk material in the mold.

In the case of hydrophobic powders, water is added to make the ethanol content of the
solvent mixture less than 95%. At this moment, zein molecules are adsorbed to the surface of
the matrix particles, but the charges on the surface of proteins prevent the particles from
binding together. To obtain aggregated form of particles, the suspension needs to be
filtrated to remove the solvent mixture. An alternative choice is to add salts in the solvent
mixture to screen the charges on the surface of protein molecules that are surrounding
particles. The principle of this procedure is the same as that of “salting out” in colloid
chemistry. The final step is to squeeze out the solvent from the chunk material in the mold.

4.4 Fabrication procedure - example

4.4.1 Particles with hydrophilic surface

Composites can be prepared by using molds fabricated from Teflon and aluminum. Typical
procedure is as follows (example for composites with 20% zein). Both 6 g of matrix material
and 1.5 g of zein powder are dispersed and mixed thoroughly in 13.5 g of absolute ethanol
in a plastic container. Then 1.5 g of distilled water are added and stirred until the zein is
fully dissolved (2-3 min). After that, 50 g of ethanol are added with vigorous stirring.
During this time, particles aggregate to form a large chunk. Excess aqueous ethanol is
decanted, and the aggregate is poured into a Teflon mold. Compression pressure is
maintained at 75 Ibs/cm? for 2 min. The fabricated specimens are air-dried at least for 72 h.
For the measurement of mechanical properties, test specimens are fabricated by the method
specified in the above and the content of zein are calculated by (wt. of zein)/(wt. of both
matrix and zein) x 100. If the density of matrix material is very low, more than 15 g (ethanol
13.5 g + water 1.5 g) is needed for dispersion because of its large volume. In that case, the
amount of the second addition of ethanol (50 g) needs to be adjusted accordingly. If n times
larger composites need to be fabricated, the above procedure needs to be modified by
simply multiplying the amount of the materials and chemicals by n times.

4.4.2 Particles with hydrophobic surface

In the case of particles with hydrophobic surface, both 6 g of matrix material and 1.5 g of
zein powder are dispersed and mixed thoroughly in 13.5 g of absolute ethanol (example for
composites with 20% zein). Then 1.5 g of distilled water are added and stirred until the zein
is fully dissolved. Fabrication procedure up to this stage is the same as that of hydrophilic
particles. After that, 50 g of water are added with vigorous stirring. During this time, unlike
as in the hydrophilic particle case, particles do not spontaneously aggregate to form a large
chunk because of the surface charges of each zein-coated particle. By adding a small amount
of sodium chloride solution, agglomeration/precipitation will be induced. The rest of the
procedure is the same as that of hydrophilic particle case.

4.5 Mechanical properties

As far as the size of the particle that will be suspended is not too large, any type of particles
can be used for the base materials of polymer composites. As a test system, a wheat protein
mixture, gluten, was used as a matrix material for the fabrication of biopolymer composite.
From the preliminary examination of the procedure, it was found that too little or too great
of an amount of zein yields a mechanically weak product. To know the optimum amount of
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zein necessary to produce the sturdiest material, the percentage of zein was varied in 8
compositions (4%, 8%, 12%, 16%, 20%, 22%, 24%, and 32%), and the compressive strengths
of the product specimens were examined.

A typical compressive stress-strain diagram of gluten composite is shown in Fig. 5. In
general, maximum compressive stress increased monotonously until the content of zein
reached 20-22%. Repeated experiment revealed that there is a variation in the overall profile
of the compressive strain vs. stress curves, but the maximum strength was always obtained
with 20-22% zein, at which composition the compressive strength was comparable to that of
polypropylene (Northolt, 1981). Further increase in zein content lowered the maximum
compressive stress.
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Fig. 5. Mechanical property of gluten (wheat protein) composites. Effect of the percentage
amount of zein was demonstrated. Test was performed by ASTM standard, D695.

The compressive yield strength, modulus of elasticity, and yield strength at 0.2% offset are
plotted as a function of percentage of zein to find the optimum composition of zein (Fig. 6).
These three mechanical properties show the same trend, i.e., mechanical strength reaches its
maximum when around 22% of zein is included in the composite. This experimental result
clearly demonstrates that 20-22% is the optimum composition of zein in the case of gluten
composite.

Processing pressure is another variable that determines the strength of the final product. Its
effect was investigated by varying the pressure that is applied to the mold during the
process. Fig. 7a shows that the overall stress-strain curve profile does not change at various
processing pressures. To obtain an overview of the pressure effect, compressive stress at
10% strain was plotted as a function of processing pressure in Fig. 7b. This graph
demonstrates that the mechanical strength of the composites monotonously increases as
greater pressure is applied to the mold in the tested pressure range. In addition, it shows
that the composite has a base strength even without applied pressure to the mold.
According to this data, the strength of the composite will be doubled at a processing
pressure of 150 Ib/cm?2.
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Fig. 6. Effect of the percentage of protein adhesive on compressive modulus, compressive
strength, maximum load, and yield strength at 0.2% offset. (a) Composition vs. compressive
modulus and compressive strength. (b) Composition vs. yield strength at 0.2% offset.
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Fig. 7. Processing pressure effect. (a) Stress-strain curve at various processing pressure. (b)
Compressive stress at 10% strain was plotted as a function of processing pressure. The cross

section of the mold was 1.33 cm2. For this experiment, the composition of zein was fixed to
15%.

In order to show that the fabrication of polymer composite from hydrophilic particle and
zein is a universal behavior, glass spheres were used as a matrix material. The percentage of
zein was varied from 4% to 28% and the mechanical strengths of the fabricated glass sphere
composites were measured. Fig. 8 shows the compressive strain vs. stress curves obtained
from glass sphere composites. The strength of the composites increased until the
composition reached 24% and was weakened thereafter. It is noticeable that the maximum
strength of glass sphere composites is reached in less than 3% compressive strain, while that
of gluten composites is as high as 20% (Fig. 5). This discrepancy should be caused by the
difference in the hardness of the constituent particles.

The current processing technique uses controlled precipitation to coat particles of
biopolymers with a binder, zein, to form a microcomposite, and then consolidating the
material in a compression molding process. Therefore, it can be used with any type of

www.intechopen.com



72 Biopolymers

materials that does not dissolve in ethanol. Most proteins and carbohydrates belong to this
category. Mixtures of two or more compounds can also be used for the production of
polymer composites.
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Fig. 8. Mechanical property of glass sphere composites. Effect of the percentage amount of
zein was demonstrated.

The compressive strength of the composite produced from cellulose is a little weaker than
that from gluten. When composites are manufactured from the mixture of these two
materials, it is expected that the strength of the composite becomes weaker as the content of
cellulose is increased in the mixture. Fig. 9(a) demonstrates that the incorporation of weaker
matrix material weakens the strength of the composite. For this experiment, sample
composites were manufactured from 80 wt.% matrix material mixture and 20 wt.% zein. The
weight fraction of cellulose in the abscissa of Fig. 9(a) denotes wt.% of cellulose in the
mixture of the two matrix materials. This observation indicates that the strength of the
composite relies on the hardness of the constituent particles. In this example, the sizes of the
matrix particles are not much different from each other, as shown in the inset of Fig. 9. On
the other hand, when the particle sizes are very much different from each other as in the
case of the mixture of gluten and cornstarch, somewhat different result was observed. The
compressive strength of composite produced from cornstarch was a little weaker than that
from gluten as well. As these two materials, gluten and cornstarch, were mixed together, the
highest strength was observed when 40% starch was incorporated in the mixture (Fig. 9(b)).
This behavior was interpreted as follows. Gluten powders are composed of larger particles
than those of cornstarch. The strength of the composites originates from the strength of the
individual particles. When the composites were fabricated at the same condition, the
compressive strength of gluten composite (30 MPa) was higher than that of cornstarch
composite (23 MPa). When the two materials are mixed together, the small cornstarch
particles will fill the gaps between large gluten particles. For up to 40% cornstarch
composition, the reinforcement offered by cornstarch plays a role. Once all the gaps are
filled with cornstarch, the excessive cornstarch which is weaker than gluten degrades the
strength of the final product.
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Fig. 9. Effect of incorporation of second component (cellulose (a) and starch (b)) into the
gluten composites. Compressive strength was monitored as the content of second
component was increased. Each composite contains 20% (w/w) zein. Microscopic images of
gluten, cellulose and cornstarch and are also shown.

To show that the aforementioned technology can be applied to most of the biopolymer
particles, various type of materials were used to fabricate the composites (Fig. 10). Some of

30

25 |

Compressive Strength (MPa)
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10 15 20
Compressive strain (%) Compressive Strength (MPa)

Fig. 10. Compressive stress-strain diagram of various biopolymer samples. Each composite
contains 20% (w/w) zein. This illustration shows that various materials can be used for the
production of polymer composites by using the particle-bonding technology.
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the materials such as fine sugar, glass spheres, iron powder, fine salt, and graphite are not
polymers. Since the suspension medium of the matrix material(s) contains equal or higher
than 90% ethanol, matrix materials that dissolve in ethanol cannot be used. Other
requirements of the particles to be used for fabricating composites are the micrometer-scale
size and hydrophilicity of the particle surface. As particles with hydrophobic surface are
rare, only toner was used as an example. In this case, unlike the case with hydrophilic
surface, the particles were coated with zein by lowering the concentration of ethanol.

4.6 Conductive composites

As any type of particles can be used for the production of composites with the proposed
technology, a conductive filler, graphite, was incorporated into the gluten composite to
fabricate conducting polymer composites (Kim et al., 2010). For the presentation of the data,
resistivity which is the inverse of conductivity was used as a unit for comparing the
conductance of fabricated composites. It is defined as,

p=RA/L 3)

where p is the resistivity (Q2-cm), R is the electrical resistance (©), L is the length (cm), and A
is the cross-sectional area (cm?).

By common sense, it is predictable that the more added conducting fillers, the higher the
conductance of the produced composites. Fig. 11a clearly shows this trend, i.e., as more
graphite was incorporated in the gluten composite, lower resistivity was observed. On the
other hand, the amount of zein did not affect the resistivity of the composites. Fig. 11b is the
same plot as Fig. 11la but showed the resistivity as a function of the percentage of
incorporated graphite. The resistivity decreases as the percentages of graphite gets higher,
but the variation of the resistivity at high percentages of graphite is not so dramatic. This
decrease in the resistivity can be explained by the percolation theory (Pike & Seager, 1974;
Vilcakova et al. 2002). The mechanical strength of the conducting composites was measured
with the same samples as used for Fig. 11a and b. Although the percentage of zein does not
affect the conductance of the composites, it does with mechanical strength as is expected. As
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Fig. 11. Resistivity of conducting polymer composites. (a) Effect of the percentage of zein. (b)
Effect of the percentage of incorporated graphite.
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in the case of previous gluten composites, the strength increases until zein content increases
to 22%. After that, a decrease in the mechanical strength was observed (Fig. 12a). Therefore,
22% zein is the optimum composition for this system.

Also, it was found that the inclusion of graphite weakened the mechanical strength. This
trend was clearly shown again in the replot version (Fig. 12b). According to this data, the
surface of graphite is not hydrophilic enough to be bound firmly with gluten particles. For
this reason, the mechanical strength and conductance of graphite/gluten composite have to
be compromised.
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Fig. 12. Mechanical strength of conducting polymer composites. (a) Effect of the percentage
of zein. (b) Effect of the percentage of incorporated graphite.

5. Future research

Although the fabrication of the composites makes use of the amphiphilic nature of zein
molecules, the detailed structure of the individual molecule is not known yet. Several
models have been proposed for the 3D shape of a-zein (Argus et al., 1982; Garrett et al.,
1993; Tatham et al., 1993; Matsushima et al., 1997; Bugs et al., 2004; Forato et al., 2004).
Despite all these trials, a generally accepted axial ratio of the individual molecule has not
even been obtained yet. In this situation, discussion on the local hydrophilicity of the surface
of each molecule is premature. Crystallography of zein, however, would give us a clear
picture on the distribution of both polar and non-polar amino acids on the surface of each
zein molecule.

Like zein, gliadin in wheat belongs to the characteristic class of proteins known as
prolamines, which occur specifically in cereals (Shukla & Cheryan, 2001). Therefore, the
solvent behaviour of gliadin is expected to be similar to that of zein. This point of view was
examined with several instruments and supported by preliminary data. The only major
difference was that the best ethanol composition for the solubilization of gliadin is 65 wt%
ethanol while that of zein is 90 wt% ethanol. Preliminary data from the measurement of
mechanical strength at various gliadin content is shown in Fig. 13. It is clearly shown that
composite fabricated with ca. 20% gliadin is the sturdiest and the mechanical strength of
gliadin composite is compatible with that of zein composite. Since the production cost for
gliadin is much lower than that of zein ($0.50-1.00/1b vs. $5-10/1b), gliadin is a promising
material.
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Fig. 14. Fabrication of composite with a living microorganism, yeast. (a) yeasts bearing toxin.
(b) fabricated yeast pellet before cutting.

6. Conclusion

The particle bonding technology described in this chapter has the following merits.

a. It does not require purification of raw materials, except zein, thus reducing the use of
chemicals and processing time.

b. Since the fabricating process is performed at room temperature, it does not require
heating.

c. Biodegradable composites can be fabricated when biopolymers are used as raw
material.

d. Products with compressive yield strength comparable to that of petroleum-based
polymers can be fabricated.

e. In the case of the composite made with gluten, the compressive strength was
comparable to that of polypropylene.
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f. Any type of micrometer-scale powder that does not dissolve in alcohol can be
processed.

Two or more types of raw materials can be used at any mixing ratio.

It allows for easy coloring of the product by addition of food dyes during the process.
Compressive strength can be adjusted by varying the processing pressure.

It allows the incorporation of fibers to improve the strength of the product. Since this
process makes use of the adhesive properties of zein, any type of fiber with a
hydrophilic surface can be incorporated into the matrix materials.

The developed composites can be used as substitutes for existing commercial products
where biodegradation is desirable, such as plant pots, golf tees, clay targets (skeets),
lightweight construction material or as a binder for foods and drugs. Recently, it is proposed
that the composite can be used as a carrier for the pesticides. As an example, a composite
has been fabricated with intoxicated yeast (Fig. 14). Since the matrix material is a living
microorganism, the processing pressure needed to be maintained at a much lower value (15
Ib/cm?2). Other than that, the fabrication procedure is exactly the same as those of other
composites. As the test result with living insects was satisfactory, filing a patent is in
progress.

= o
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