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1. Introduction    

Nowadays it is clear that multi-robot systems offer several advantages that are very difficult 
to reach with single systems. However, to leave the simulators and the academic 
environment it is a mandatory condition that they must fill: these systems must be 
economically attractive to increment their implantation in realistic scenarios. Due to multi-
robots systems are composed of several robots that generally are similar, if an economic 
optimisation is done in one of them, such optimisation can be replicated in each member of 
the team. 
In this paper we show a work to implement low level controllers with small computational 
needs that can be used in each of the subsystems that must be controlled in each of the 
robots that belongs to a multi-robot system. If a robot is in a multi-robot system that robot 
needs bigger computational capacity, because it has to do some tasks derived from being in 
the team, for example, coordination and communication with the remaining members of the 
team. Besides, occasionally, it has to deduce cooperatively the global strategy of the team. 
One of the theoretical advantage of multi-robot systems is that the cost of the team must be 
lower than the cost of a single robot with the same capabilities. To become this idea true it is 
mandatory that the cost of each member was under a certain value, and we can get this if 
each of them is equipped with very cheap computational systems. One of the cheapest and 
more flexible devices for control systems implementation are Field Programmable Gate 
Arrays (FPGAs). If we could implement a control loop using a very simple FPGA structure, 
the economic cost of each of them could be about 10 dollars. 
On the other hand, and under a pessimistic vision, the subsystems to control could have 
problems to be controlled using classic and well known control schemas as PID controllers. 
In this situation we can use other advanced control systems which try to emulate the human 
brain, as Predictive Control. This kind of control works using a world model and calculating 
some predictions about the response that it will show under some stimulus, and it obtains 
the better way of control the subsystem knowing which is the desired behavior from this 
moment until a certain instant later. The predictive controller tuning is a process that is done 
using analytical and manual methods. Such tuning process is expensive in computational 
terms, but it is done one time and in this paper we don’t deal with this problem.  
However, in spite of the great advantage of predictive control, which contributes to control 
systems that the classic control is unable to do, it has a great drawback: it is very 
computationally expensive while it is working. In section 4 we will revise the cause of this 
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problem. A way of avoiding this drawback is to model the predictive controller using neural 
networks, because once these devices are trained they perform the calculus at great speed 
and with very small computational requirements, and at the same time, we can implement 
them using very cheap FPGA devices. In this paper we propose a learning model to be used 
with Time Delayed Neural Networks, so once the neural network is trained, the neuronal 
predictive controller is ready and it responds properly showing its generalization 
capabilities in environments that it hasn’t seen in the training phase. This way we could get 
a very cheap implementation of each of the control loops that each robot of the multi-robot 
team needs, avoiding the rise of the total cost of the team.  
In the literature there are several sources indicating that each robot of a multi-robot system 
must be as cheap as possible. There is a quantitative support for the argument that larger 
teams of less-reliable and cheaper robots can perform certain missions more reliably than 
smaller teams of more-reliable robots (Stancliff et al., 2006). There are examples of using 
very cheap discrete components. In (O’Hara & Balch, 2007) very cheap sensorless nodes are 
used to support a complex multi-robot foraging task. On the other hand, in (Wu et al., 2008) 
a kind of sensors is used because they became cheaper that others. In (Kornienko et al., 
2005), the components of the developed system consume energy provided by 
microcontroller's I/O ports, are cheap and available on micro-component market. Besides 
the use of individual components, (Andrews et al., 2007) integrate economic and technical 
issues into an unified engineering design framework for the manufacturers of robots. There 
are examples that have been done as previous works in the same direction that this paper 
(López-Guede et al., 2008). 
Section 2 gives a summary of the objective of the work of this paper. Section 3 gives 
background information about Predictive Control and a technique called Dynamic Matrix 
Control, and about a kind of neural nets called Time Delayed Neural Networks. Section 4 
discusses a concrete case study and the results that we obtain. Finally, conclusions are 
covered in section 5. 

2. Objective 

The main objective of this paper is to get cheap implementation of low level control loops 
that could be used by each member of a multi-robot system. To get this objective Time 
Delayed Neural Networks are used to model predictive controllers, because these can 
control subsystems that classics controllers can’t. 

3. Background 

This section gives a brief introduction about a general technique called Model Predictive 
Control, and about a concrete technique called Dynamic Matrix Control. We also present a 
brief introduction about Time Delayed Neural Networks.  
We consider that it is necessary to understand the advantages of this kind of control, that 
make it very useful in some circumstances, and their drawbacks, and then understand how 
a neural network based implementation can eliminate these drawbacks. 

3.1 Model Predictive Control (MPC) 

Model Predictive Control (MPC) is an advanced control technique used to deal with systems 
that are not controllable using classic control schemas as PID. This kind of controllers works 
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like the human brain in the sense that instead of using the past error between the output of 
the system and the desired value, it controls the system predicting the value of the output in 
a short time, so the system output is as closer as possible to its desired value for these 
moments. Predictive Control isn’t a concrete technique. It’s a set of techniques that have 
several common characteristics: there is a world model that is used to predict the system 
output from the actual moment until p samples, an objective function that must be 
minimized and a control law that minimizes the objective function. The predictive 
controllers follow these steeps: 

• Each sampling time, through the system model, the controller calculates the system 
output from now until p sampling times (prediction horizon), which depends on the 
future control signals that the controller will generate. 

• A set of m control signals is calculated optimizing the objective function to be used 
along m sampling times (control horizon). 

• In each sampling time only the first of the set of m control signals is used, and in the 
next sampling time, all the process is repeated again. 

The concept of Predictive Control is a set of techniques that share certain characteristics, and 
the engineer has liberty to choose in each of them. So, there are several types of predictive 
controllers. These characteristics are the following: 

• There is a plant model, and there can be used a step response model, an impulse step 
response model, a transfer funcion, etc. 

• There is an objective funcion that the controller has to optimize. 

• There is a control law to minimize the objective function.  
To learn more about Predictive Control in general and about diverse predictive control 
algorithms, see (Camacho & Bordons, 2004), (Camacho & Bordons, 1995), (Maciejowski, 
2002), (Sunan et al., 2002), (Rawlings, 1999) and (Soeterboek, 1992). 

3.1.1 Model predictive control advantages 

From a theoretical point of view, model predictive based controllers have some advantages: 
- It is an open methodology, with possibility of new algorithms. 
- They can include constraints on manipulated variables as well as on controlled 

variables. This is important to save energy and to get the working point as near as 
possible from the optimum. 

- They can deal with multivariable systems in a simplest way than other algorithms. 
From a practical point of view, model predictive based controllers have the advantage that 
they can deal with systems that show stability problems with classical control schemes. To 
show this property we will use one of these systems in Section 4. 

3.1.2 Model predictive control drawbacks 

The main drawback of predictive controllers isn’t that it was very expensive in 
computationally terms in the tuning phase, because it is carried out only one time. The main 
drawback is that the computational requirements of the shown controller are great when it’s 
in its working phase. Each sample time the controller must calculate the control law of the 
equation (1), and there are involved several matrix operations, as several multiplication, an 
addition and a subtraction. Performing these operations we obtain a set of m control signals, 
but only the first of them is used in this sample time, the rest are ignored. The algorithm 
woks in this way, but it is computationally inefficient. 
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3.2 Dynamic Matrix Control (DMC) 

The technique called Dynamic Matrix Control (DMC) is a concrete MPC algorithm that fixes 

each of the three characteristics that we have seen inf the following way. 

To learn more about Dynamic Matrix Control in particular, see (Camacho & Bordons, 2004), 

(Camacho & Bordons, 1995), (Maciejowski, 2002) and (Sunan et al., 2002). 

3.2.1 Subsystem model 

The plant model used by DMC algorithm is the step response model. This model obtains the 

gi coefficients that are the output of the lineal subsystem when it is excited using a step. To 

reduce the number of coefficients we assume that the subsystem is stable and the output 

doesn't change after a certain sampling time k. 

 ( )
1

( )
k

i
i

y t g u t i
=

= Δ −∑   (1) 

3.2.2 Prediction model 

Using the step response model to model the subsystem and maintaining the hypothesis that 

perturbations over the subsystem are constants, it is possible to calculate a prediction in the 

instant t of the output until the instant (t + p) under the effect of m control actions: 

 ŷ G u f= Δ +   (2) 

being ŷ  the prediction of the output, G a matrix that contains the subsystem's dynamics and 

f the free response of the subsystem. Following we show the dimension of this matrix and 

these vectors: 
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In the equation (5) we show how the free response of the subsystem f(t,k) is calculated: 
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3.2.3 Control law 

The obtention of the control law is based on the existence of an objective function, which 
uses the future outputs prediction model that we have described before. As objective 
function we used the described by this equation: 

 ( ) ( ) ( )2 2

1 1

ˆ | 1
p m

j j

J y t j t w t j u t jλ
= =

⎡ ⎤ ⎡ ⎤= + − + + Δ + −⎣ ⎦ ⎣ ⎦∑ ∑   (5) 

We have to minimize the difference between the reference and the output prediction along a 
prediction horizon p with the m control actions generated in the control horizon, 
ponderating the rougness in the variation of the manipulated variables using λ. Minimizing 
the objective funcition J described in the equation (5) we obtain the folowing expression, that 
produces m control actions, although in t only one of the is used: 

 ( ) ( )
1

t t
mu G G I G w fλ

−⎡ ⎤Δ = + −⎢ ⎥⎣ ⎦
  (6) 

3.3 Neuronal implementation 

Following with the discussion about the computationally inefficiency of the analytical 
predictive control shown in the previous section, we think that it would be convenient to 
have a mechanism that could implement such controller requiring less computational 
power. An alternative to get this is to use neural networks, and more precisely, Time 
Delayed Neural Networks, because as the rest of neural networks, they are very fast, 
computationally inexpensive and they have the ability of generalizing their responses. 
This section gives a brief introduction about a kind of neural networks called Time Delayed 
Neural Networks, that we have used to model the previous model predictive controller to 
eliminate the shown drawbacks.  To learn more about neural networks in general see 
(Braspenning et al., 1995), (Chester, 1993) and (Widrow & Lehr, 1990). To learn more about 
identification and control of dynamical systems, see (Narendra & Parthasarathy, 1990) and 
(Norgaard et al., 2003), and about neural identification applied to predictive control see 
(Arahal et al., 1998) and (Huang, 2000). There are interesting approximations to the 
prediction capacity of neuronal models when predictive control is present, (McKinstry et al., 
2006), (Aleksic et al., 2008) and (Kang, 1991). Stability of these neural networks is an 
important issue, (Wilson, 1995). 

3.3.1 Time Delayed Neural Networks 

Time Delayed Neural Networks (TDNN) are a kind of multi-layer perceptron neural 
networks. They have an input layer, where are the neurons that accept the exterior inputs; 
one or more hidden layers, that generate intermediate values; and a final layer, that puts 
outside the data generated by the net. The TDNN special feature is that they are a kind of 
dynamic neural networks, because delayed versions of the input signals are introduced to 
the input layer. Due to this, the outputs don’t depend only on the actual values of the 
signals, they depend on the past value of the signals too. This is one of the main parameters 
of a TDNN: the size of the delay line. The TDNNs that are going to be used in this work 
only have forward conections, so they aren't neither  recurrent nor partially recurrent. This 
kind of neural network can be trained using the Backpropagation algorithm or the 
Generalized Delta Rule. In the experiments that we show in this paper the Levenberg-
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Marquardt method has been used. To learn more about Time Delayed Neural Networks, see 
(Huang et al., 2000), (Huang et al., 2006), (Waibel et al., 1989), (Wang et al., 2005) and 
(Taskaya-Temizel & Casey, 2005). 

3.3.2 Structural parameters 

As we are worried about the computational cost of our implementation of the predictive 
controller, we have limited the number of hidden layers to one, so we assume that we are 
working with a time delayed neural network that has  the simplest structure. Once we have 
established this constraint, the main parameters that configure the structure of this TDNN 
are the number of neurons of the hidden layer and the size of the time delay line, in other 
words, the number of delayed versions of the input signals are introduced to the input layer. 
We will try to get these parameters as small as possible to minimize the computational cost 
of the resultant implementation. The last main parameter to establish is the kind of the 
function that will be executed in each neuron, and we will take into account that the linear 
function is the least expensive from the computational point of view. In Fig. 1 we show the 
structure of the Time Delayed Neural Network that we have used to get our purpose, in 
which we have fitted the size of time delay line d and the size of hidden layer h parameters. 
 

Input

T

D

L

Hidden Out

(d)

(h) (1)(3)
 

Fig. 1. Time Delayed Neural Network structure with 3 layers: input layer with 3 inputs, and 
the output layer with 1 output. 

4. Case study 

In this case study we will show an example of how we can get an advanced control of robot 
subsystems using neural networks. We are going to suppose that the model of a subsystem 
is described by the following discrete transfer function: 

 ( ) 1

0.5
H z

z
=

−
  (7) 

As we can see analyzing the poles, this subsystem is stable. Although it is a stable 
subsystem, its response is unstable if we try to control it using a discrete PID controller 
tuned through classic and well-known method as Ziegler-Nichols, as we can see in Fig. 2. 
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Once we have seen that the respone is unstable, we decide to use Model Predictive Control. 
To work with this kind of control we have to stablish the working point. To do this, we 
examine the Bode diagram of the Fig. 3 and we choose the frecuency of the marked point of 
this figure. 
Once we have determined the working point in Fig. 3, we design the reference signal. As it 
is shown in Fig. 4, using a properly tuned DMC predictive controller, for example, with the 
values for its parameters p = 5, m = 3 y λ = 1, a right control is obtained. 
To get this control it has been mandatory to tune the DMC controller. This phase is very 

expensive in computationally terms, but it’s carried out only one time. However, the 

computational requirements of DMC controller are great when it’s in its working phase, due 

to the operations that it must perform to get the control law, and although it obtains set of m 

control signals, only first of them is used in this sample time, the rest are ignored. Because of 

this, it would be convenient to have a mechanism that could implement such controller 

requiring less computational power. Besides, it may be necessary to control several 

subsystems of this kind in each robot of the multi-robot team. An alternative to get this is to 

use neural networks, and more precisely, Time Delayed Neural Networks, because, as the 

rest of neural networks, they are very fast and they have the ability of generalizing their 

responses. 

In the literature there are works comparing PID and MPC controllers (Voicu  et al., 1995). 

Now we deal with the concrete problem of getting a neuronal predictive controller that 

could control the system described by the discrete transfer function of the equation (7) using 

Time Delayed Neural Networks. 
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Fig. 2. Unstable response of the subsystem under the control of a discrete PID controller. 
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Fig. 3. Bode diagram of the subsystem, showing the chosen point. 
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Fig. 4. Control of a robot subsystem using Predictive Control when the reference is a pure 
step, with the values of the parameters p = 5, m = 3 y λ = 1. 
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Fig. 5. Control of a robot subsystem using Predictive Control when the reference is a noisy 
step, with the values of the parameters p = 5, m = 3 y λ = 1. 
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Fig. 6. Control of a robot subsystem using Predictive Control when the reference is a noisy 
step, with the values of the parameters p = 5, m = 3 y λ = 1. 
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To implement a predictive controller using a neural network we have done training 
experiments with multiple structures, varying two structural parameters: the number of the 
hidden layer neurons h and the number of delays of the time delay line d, having in mind 
that linear function is computationally efficient. 
We have used the Levenberg-Marquardt method to carry out the training of each structure, 

and the training model has consisted of a target vector ( ) ( ) ( ), , 1P w k y k u k
′

⎡ ⎤= Δ −⎣ ⎦  and an 

output ( )u kΔ  to get the same control that equation (6).  

As it has be shown in Fig. 7, there is a perfect control when we use references that we have 

used in the training phase of the time delayed neural network. In Fig. 8 and Fig. 9, we can 

see that the control of the neuronal controller is right even with noisy references that hadn’t 

been used in the training phase.  

To implement these predictive controllers using neural networks we have chosen FPGA 

devices. We have used a device commercialized by Altera Corporation, the EPF10K70 

device, in a 240-pin power quad flat pack (RQFP) package.  

The way that we have used to implement the neural network in this device is to describe the 

behavior of that neural network using VHDL languaje, including in the entity that is in this 

description the same inputs and outputs that the neural network has. VHDL is a description 

language used to describe the desired behavior of circuits and to automatically synthesize 

them through specific tools. 
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Fig. 7. Control of a system with a Time Delayed Neural Network with a time delay line of  
d = 7 delays in the input, and h = 5 neurons in the hidden layer. The reference to follow is a 
signal that the neural network has been used in the training phase. 
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Fig. 8. Control of a robot subsystem with a Time Delayed Neural Network with a time delay 
line of d = 7 delays in the input, and h = 5 neurons in the hidden layer. The reference to 
follow is a signal that the neural network hasn’t seen in the training phase. 
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Fig. 9. Control of a robot subsystem with a Time Delayed Neural Network with a time delay 
line of d = 7 delays in the input, and h = 5 neurons in the hidden layer. The reference to 
follow is a signal that the neural network hasn’t seen in the training phase. 
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Fig. 10. Control of a robot system with a Time Delayed Neural Network with a time delay 
line of d = 7 delays in the input, and h = 5 neurons in the hidden layer. The reference to 
follow is a signal that the neural network hasn’t been used in the training phase. 

5. Conclusions 

This paper has started thinking about the convenience that the computational capacity of 
robots that belong to multi-robot systems was devoted exclusively to high level functions 
they have to perform due to being a member of such system. However, each robot must 
have so many internal control loops as subsystems, and in some cases they aren’t 
controllable through classic techniques. In these cases, predictive control is a good option 
because it can deal with subsystems that classical PID controllers can't, but it’s 
computationally expensive. In this paper it has been shown how the predictive controllers 
can be modeled using Time Delayed Neural Networks, which implementation is very cheap 
using very low cost FPGAs. This way we can reduce de price of each member of multi-robot 
system, because the investment in computational capacity must cover only the high level 
functions, ignoring the subsystems that it had, which are solved with very low cost FPGAs. 
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