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Gerasimos G. Rigatos 
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1. Introduction 

State estimation and control over sensor networks is a problem met in several applications 

such as surveillance and condition monitoring of large-scale systems, multi-robot systems 

and cooperating UAVs. In sensor networks the simplest kind of architecture is centralized. 

Distributed sensors send measurement data to a central processing unit which provides the 

state estimate for the monitored system. Such an approach has several weaknesses: (i) it 

lacks fault tolerance: if the central processing unit is subject to a fault then state estimation 

becomes impossible, (ii) communication overhead often prohibits proper functioning in case 

of a large number of distributed measurement units. On the other hand decentralized 

architectures are based on the communication between neighboring measurement units. 

This assures scalability for the network since the number of messages received or sent by 

each measurement unit is independent of the total number of measurement units in the 

system. It has been shown that scalable decentralized state estimation can be achieved for 

linear Gaussian models, when the measurements are linear functions of the state and the 

associated process and measurement noise models follow a Gaussian distribution (Nettleton 

et al. 2003). A solution to decentralized sensor fusion over sensor networks with the use of 

distributed Kalman Filtering has been proposed in (Olfati-Saber 2006), (Watanabe & 

Tzafestas 1992), (Olfati-Saber 2005), (Gan & Harris 2001), (Gao et al. 2009). Distributed state 

estimation in the case of non-Gaussian models has been studied in (Rosencrantz et al. 2003) 

where decentralized sensor fusion with the use of distributed particle filters has been 

proposed in several other research works (Mahler 2007), (Makarenko & Durrant-Whyte 

2006), (Deming & Perlovsky 2007). 

In this paper autonomous navigation of UAVs will be examined and a solution to this 
problem will be first attempted with the use of the Extended Information Filter and the 
Unscented Kalman filter (Shima et al. 2007), (Lee et al. 2008), (Lee et al. 2008), (Vercauteren 
& Wang 2005). Comparatively, autonomous UAV navigation with the use of the Distributed 
Particle Filter will be studied. This problem belongs to the wider area of multi-source multi-
target tracking (Coué et al. 2006), (Hue et al. 2002), (Ing & Coates 2005), (Coué et al. 2003), 
(Morelande & D. Mušicki 2005). Subproblems to be solved for succeeding autonomous 
navigation of the UAVs are: (i) implementation of sensor fusion with the use of distributed 
filtering. In this approach the goal is to consistently combine the local particle distribution 
with the communicated particle distribution coming from particle filters running on nearby 
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measurement stations (Caballero et al. 2008). It is assumed that each local measurement 
station runs its own local filter and communicates information to other measurement 
stations close to it. The motivation for using particle filters is that they can represent almost 
arbitrary probability distributions, thus becoming well-suited to accommodate the types of 
uncertainty and nonlinearities that arise in the distributed estimation (Rigatos 2009a), 
(Rigatos 2009b) (ii) nonlinear control of the UAVs based on the state estimates provided by 
the particle filtering algorithm. Various approaches have been proposed for the UAV 
navigation using nonlinear feedback control (Ren & Beard 2004), (Beard et al. 2002), (Singh 
& Fuller 2001). The paper proposes flatness-based control for the UAV models. Flatness-
based control theory is based on the concept of differential flatness and has been 
successfully applied to several nonlinear dynamical systems. Flatness-based control for a 
UAV helicopter-like model has been developed in (Léchevin & Rabbath 2006), assuming 
that the UAV performs manoeuvres at a constant altitude. 
The paper proposes first the Extended Information Filter (EIF) and the Unscented 
Information Filter (UIF) as possible approaches for fusing the state estimates provided by 
the local monitoring stations, under the assumption of Gaussian noises. The EIF and UIF 
estimated state vector is in turn used by a flatness-based controller that makes the UAV 
follow the desirable trajectory. The Extended Information Filter is a generalization of the 
Information Filter in which the local filters do not exchange raw measurements but send to 
an aggregation filter their local information matrices (local inverse covariance matrices) and 
their associated local information state vectors (products of the local information matrices 
with the local state vectors) (Shima et al. 2007), (Lee et al. 2008). In the case of the Unscented 
Information Filter there is no linearization of the UAVs observation equation. However the 
application of the Information Filter algorithm is possible through an implicit linearization 
which is performed by approximating the Jacobian matrix of the system’s output equation 
by the product of the inverse of the state vector’s covariance matrix (which can be also 
associated to the Fisher Information matrix) with the cross-correlation covariance matrix 
between the system’s state vector and the system’s output (Lee et al. 2008)], (Vercauteren & 
Wang 2005). Again, the local information matrices and the local information state vectors are 
transferred to an aggregation filter which produces the global estimation of the system’s 
state vector. 
Next, the Distributed Particle Filter (DPF) is proposed for fusing the state estimates 
provided by the local monitoring stations (local filters). The motivation for using DPF is that 
it is well-suited to accommodate non-Gaussian measurements. A difficulty in implementing 
distributed particle filtering is that particles from one particle set (which correspond to a 
local particle filter) do not have the same support (do not cover the same area and points on 
the samples space) as particles from another particle set (which are associated with another 
particle filter) (Ong et al. 2008), (Ong et al. 2006). This can be resolved by transforming the 
particles sets into Gaussian mixtures, and defining the global probability distribution on the 
common support set of the probability density functions associated with the local filters. The 
state vector which is estimated with the use of the DPF is used again by a flatness-based 
controller to make each UAV follow a desirable flight path. 
The structure of the chapter is as follows: in Section 2 the Distributed Extended Kalman 
Filter (Extended Information Filter) is studied. In Section 3, the Distributed Unscented 
Kalman Filter (Unscented Information Filter) is analyzed and its use for distributed sensor 
fusion and state estimation is explained. In Section 4 Distributed Particle Filtering for sensor 
fusion-based state estimation will be analyzed. In Section 5 nonlinear control will be 
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proposed for succeeding trajectory tracking by the UAVs. In Section 6 simulation 
experiments will be provided about UAVs autonomous navigation using the proposed 
distributed particle filtering algorithm. The test case will be concerned with m helicopter 
models monitored by n different ground stations. By fusing the measurements from the 
distributed observation units with the use of the Extended Information Filter and the 
proposed Particle Filter algorithm, state estimates of the UAVs are obtained. These in turn 
are used by local nonlinear controllers for succeeding trajectory tracking. Finally in Section 7 
concluding remarks will be provided. 

2. Distributed Extended Kalman Filtering 

2.1 Extended Kalman Filtering at local processing units 
The distributed Extended Kalman Filter, also know as Extended Information Filter, 
performs fusion of the state estimates which are provided by local Extended Kalman Filters. 
Thus, the functioning of the local Extended Kalman Filters should be analyzed first. The 
following nonlinear state model is considered (Rigatos & Tzafestas 2007): 

 
( 1) = ( ( )) ( ) ( ) ( )

( ) = ( ( )) ( )

x k x k L k u k w k

z k x k v k

φ
γ

+ + +
+

 (1) 

where x∈Rm×1
 is the system’s state vector and z∈Rp×1

 is the system’s output, while w(k) and 
v(k) are uncorrelated, zero-mean, Gaussian zero-mean noise processes with co- variance 

matrices Q(k) and R(k) respectively. The operators φ(x) and γ(x) are φ (x) = [φ1(x), φ2(x), 

···,φm(x)]T, and γ (x) = [γ1(x), γ2(x), ··· , γp(x)]T, respectively. It is assumed that φ and γ are 
sufficiently smooth in x so that each one has a valid series Taylor expansion. 

Following a linearization procedure, φ is expanded into Taylor series about x̂ : 

 ˆ ˆ ˆ( ( )) = ( ( )) ( ( ))[ ( ) ( )]x k x k J x k x k x kφφ φ + − +A   (2) 

where Jφ(x) is the Jacobian of φ calculated at ˆ( )x k : 
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Likewise, γ  is expanded about ˆ ( )x k−  

 ˆ ˆ( ( )) = ( ( )) [ ( ) ( )]x k x k J x k x kγγ γ − −+ − +A   (4) 

where ˆ ( )x k−  is the estimation of the state vector x(k) before measurement at the k-th instant 

to be receivec and ˆ( )x k  is the updated estimation of the state vector after measurement at 

the k-th instant has been received. The Jacobian Jγ(x) is 
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The resulting expressions create first order approximations of φ and γ. Thus the linearized 

version of the system is obtained: 

 
ˆ ˆ ˆ( 1) = ( ( )) ( ( ))[ ( ) ( )] ( )

ˆ ˆ ˆ( ) = ( ( )) ( ( ))[ ( ) ( )] ( )

x k x k J x k x k x k w k

z k x k J x k x k x k v k

φ

γ

φ

γ − − −

+ + − +

+ − +
  (6) 

Now, the EKF recursion is as follows: First the time update is considered: by ˆ( )x k  the 

estimation of the state vector at instant k is denoted. Given initial conditions ˆ(0)x  and P−(0) 

the recursion proceeds as: 

• Measurement update. Acquire z(k) and compute: 

 

1ˆ ˆ ˆ( ) = ( ) ( ( )) [ ( ( )) ( ) ( ( )) ( )]

ˆ ˆ ˆ( ) = ( ) ( )[ ( ) ( ( ))]

ˆ( ) = ( ) ( ) ( ( )) ( )
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  (7) 

• Time update. Compute: 

 
ˆ ˆ( 1) = ( ( )) ( ) ( ( )) ( )

ˆ ˆ( 1) = ( ( )) ( ) ( )

TP k J x k P k J x k Q k

x k x k L k u k

φ φ

φ

−

−

+ +

+ +
 (8) 

The schematic diagram of the EKF loop is given in Fig. 1. 

2.2 Calculation of local estimations in terms of EIF information contributions 
Again the discrete-time nonlinear system of Eq. (1) is considered. The Extended Information 

Filter (EIF) performs fusion of the local state vector estimates which are provided by the 

local Extended Kalman Filters, using the Information matrix and the Information state vector 

(Lee et al. 2008), (Lee et al. 2008), (Vercauteren & Wang 2005), (Manyika & H. Durrant-

Whyte 1994). The Information Matrix is the inverse of the state vector covariance matrix, 

and can be also associated to the Fisher Information matrix.” (Rigatos & Zhang 2009). The 

Information state vector is the product between the Information matrix and the local state 

vector estimate 

 
1

1

( ) = ( ) = ( )

ˆ ˆ ˆ( ) = ( ) = ( ) ( )

Y k P k I K

y k P x k Y k x k

−

−−
 (9) 

The update equation for the Information Matrix and the Information state vector are given by 
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Fig. 1. Schematic diagram of the EKF loop 
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where 

 

(

(

( ) = ( ) ) 1 ( ) is the associated information matrix and 

ˆ( ) = ) 1[( ( ) ( ( ))) ( )] is the information state contribution

T

T

I k J k R k J k

i k J R k z k x k J x k

γ γ

γ γγ −

−

− − +
  (12) 

The predicted information state vector and Information matrix are obtained from 

1

1 1

ˆ ˆ( ) = ( ) ( )

( ) = ( ) = [ ( ) ( ) ( ) ( )]T

y k P k x k

Y k P k J k P k J k Q kφ φ

− − − −

− − − − −+
 (13) 

The Extended Information Filter is next formulated for the case that multiple local sensor 

measurements and local estimates are used to increase the accuracy and reliability of the 

estimation. It is assumed that an observation vector zi(k) is available for N different sensor 

sites i = 1, 2, ··· ,N and each sensor observes a common state according to the local 

observation model, expressed by 

 ( ) = ( ( )) ( ), = 1,2, ,i iz k x k v k i Nγ + A   (14) 

where the local noise vector vi(k)~N(0,Ri) is assumed to be white Gaussian and uncorrelated 

between sensors. The variance of a composite observation noise vector vk
 is expressed in 

terms of the block diagonal matrix 
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 R(k) = diag[R(k)1, ··· ,RN(k)]T  (15) 

The information contribution can be expressed by a linear combination of each local 

information state contribution ii and the associated information matrix Ii at the i-th sensor site 
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∑
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Using Eq. (16) the update equations for fusing the local state estimates become 

 

1 _

1

1

1
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=
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∑

∑
  (17) 

It is noted that in the Extended Information Filter an aggregation (master) fusion filter 
produces a global estimate by using the local sensor information provided by each local filter. 
 

 

Fig. 2. Fusion of the distributed state estimates with the use of the Extended Information Filter 

As in the case of the Extended Kalman Filter the local filters which constitute the Extended 
Information Filter can be written in terms of time update and a measurement update equation. 
Measurement update: Acquire z(k) and compute 

 
1 1

1

             ( ) = ( ) ( ) ( ) ( )

or ( ) = ( ) ( ) where ( ) = ( ) ( ) ( )

T

T

Y k P k J k R k J k
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γ γ
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+

+
 (18) 
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1ˆ ˆ ˆ ˆ( ) = ( ) ( ) ( ) [ ( ) ( ( )) ( )]

ˆ ˆ                    or ( ) = ( ) ( )

Ty k y k J k R k z k x k J x k

y k y k i k

γ γγ− − −

−
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+
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Time update: Compute 

 1 1( 1) = ( 1) = [ ( ) ( ) ( ) ( )]TY k P k J k P k J k Q kφ φ
− − − −+ + +   (20) 

 1 ˆ( 1) = ( 1) ( 1)y k P k x k− − − −+ + +   (21) 

 

 

Fig. 3. Schematic diagram of the Extended Information Filter loop 

2.3 Extended Information Filtering for state estimates fusion 
In the Extended Information Filter each one of the local filters operates independently, 
processing its own local measurements. It is assumed that there is no sharing of 
measurements between the local filters and that the aggregation filter (Fig. 2) does not have 
direct access to the raw measurements feeding each local filter. The outputs of the local 
filters are treated as measurements which are fed into the aggregation fusion filter (Lee et al. 
2008), (Lee et al. 2008), (Vercauteren &Wang 2005). Then each local filter is expressed by its 
respective error covariance and estimate in terms of information contributions given in 
Eq.(13) 

 

1 1 1

_ _^ ^ ^
1 1

( ) ( ) ( ) ( ) ( )

( ) ( )( ( ) ( ) ( ) ( ) [ ( ) ( ( )) ( ) ( )])

T
i i

T i k i
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γ γγ

− − − −

− − −

= +

= + ⋅ − +
 (22) 

It is noted that the local estimates are suboptimal and also conditionally independent given 
their own measurements. The global estimate and the associated error covariance for the 
aggregate fusion filter can be rewritten in terms of the computed estimates and covariances 
from the local filters using the relations 
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1 1 1

1 _ 1 1 _
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For the general case of N local filters i = 1, ··· , N, the distributed filtering architecture is 

described by the following equations 

 

1 1 1 1
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1 1 1
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It is noted that the global state update equation in the above distributed filter can be written 

in terms of the information state vector and of the information matrix 

 =1

=1

ˆ ˆ ˆ ˆ( ) = ( ) ( ( ) ( ))

ˆ ˆ ˆ ˆ( ) = ( ) ( ( ) ( ))

N

i i
i
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i i
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∑

∑
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The local filters provide their own local estimates and repeat the cycle at step k + 1. In turn 
the global filter can predict its global estimate and repeat the cycle at the next time step k + 1 
when the new state x̂ (k + 1) and the new global covariance matrix P(k + 1) are calculated. 
From Eq. (24) it can be seen that if a local filter (processing station) fails, then the local 
covariance matrices and the local state estimates provided by the rest of the filters will 
enable an accurate computation of the system’s state vector. 

3. Distributed Sigma-Point Kalman Filtering 

3.1 Unscented Kalman Filtering at local processing units 
It is also possible to estimate the state vectors of the distributed UAVs which constitute the 

multi-UAV system through the fusion of the estimates provided by local Sigma-Point 

Kalman Filters. This can be succeeded using the Distributed Sigma-Point Kalman Filter, also 

known as Unscented Information Filter (UIF) (Lee et al. 2008), (Lee et al. 2008). First, the 

functioning of the local Sigma-Point Kalman Filters will be explained. Each local Sigma-

Point Kalman Filter generates an estimation of the UAV’s state vector by fusing 

measurement from distributed sensors (e.g. IMU and GPS). Sigma-Point Kalman Filtering is 

proposed (Julier et al. 2000), (Julier et al. 2004), (Särrkä 2007). The Sigma-Point Kalman Filter 

overcomes the flaws of Extended Kalman Filtering. Unlike EKF no analytical Jacobians of 

the system equations need to be calculated as in the case for the EKF. This makes the sigma-

point approach suitable for application in ”black-box” models where analytical expressions 

of the system dynamics are either not available or not in a form which allows for easy 

linearization. This is achieved through a different approach for calculating the posterior 1st 

and 2nd order statistics of a random variable that undergoes a nonlinear transformation. 

The state distribution is represented again by a Gaussian Random Variable but is now 

specified using a minimal set of deterministically chosen weighted sample points. The basic 

sigma-point approach can be described as follows: 
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1. A set of weighted samples (sigma-points) are deterministically calculated using the 
mean and square-root decomposition of the covariance matrix of the system’s state 
vector. As a minimal requirement the sigma-point set must completely capture the first 
and second order moments of the prior random variable. Higher order moments can be 
captured at the cost of using more sigma-points. 

2. The sigma-points are propagated through the true nonlinear function using functional 
evaluations alone, i.e. no analytical derivatives are used, in order to generate a posterior 
sigma-point set. 

3. The posterior statistics are calculated (approximated) using tractable functions of the 
propagated sigma-points and weights. Typically, these take on the form of a simple 
weighted sample mean and covariance calculations of the posterior sigma points. 

It is noted that the sigma-point approach differs substantially from general stochastic 
sampling techniques, such as Monte-Carlo integration (e.g Particle Filtering methods) which 
require significantly more sample points in an attempt to propagate an accurate (possibly 
non-Gaussian) distribution of the state. The deceptively simple sigma-point approach 
results in posterior approximations that are accurate to the third order for Gaussian inputs 
for all nonlinearities. For non-Gaussian inputs, approximations are accurate to at least the 
second-order, with the accuracy of third and higher-order moments determined by the 
specific choice of weights and scaling factors. 
The Unscented Kalman Filter (UKF) is a special case of Sigma-Point Kalman Filters. The 
UKF is a discrete time filtering algorithm which uses the unscented transform for computing 
approximate solutions to the filtering problem of the form 

 
( 1) = ( ( )) ( ) ( ) ( )

      ( ) = ( ( )) ( )

x k x k L k U k w k

y k x k v k

φ
γ

+ + +
+

  (26) 

where x(k)∈Rn is the system’s state vector, y(k)∈Rm is the measurement, w(k)∈Rn is a 

Gaussian process noise w(k)~N(0,Q(k)), and v(k)∈Rm is a Gaussian measurement noise 
v(k)~N(0,R(k)). The mean and covariance of the initial state x(0) are m(0) and P(0), 
respectively. 
Some basic operations performed in the UKF algorithm (Unscented Transform) are 
summarized as follows: 

1. Denoting the current state mean as x̂ , a set of 2n+1 sigma points is taken from the 

columns of the n×n matrix ( ) xxn Pλ+  as follows: 
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λ

λ
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A
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and the associate weights are computed: 
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0 0 2
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      =        =
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where i = 1, 2, ··· ,2n and ┣ = α 2(n + ┢) − n is a scaling parameter, while α, ┚ and ┢ are 
constant parameters. Matrix Pxx is the covariance matrix of the state x. 

2. Transform each of the sigma points as 

 zi = h(xi) i = 0, ··· ,2n  (29) 

3. Mean and covariance estimates for z can be computed as 

 

2
( )

=0

2
( )

=0

ˆ            

ˆ ˆ= ( )( )

n
m i

i
i

n
c i i T

zz i
i

z W z

P W z z z z− −

∑

∑

0
  (30) 

4. The cross-covariance of x and z is estimated as 

 
2

( )

=0

ˆ ˆ= ( )( )
n

c i i T
xz i

i

P W x x z z− −∑0   (31) 

The matrix square root of positive definite matrix Pxx means a matrix = xxA P such that  

Pxx = AAT
 and a possible way for calculation is SVD. 

Next the basic stages of the Unscented Kalman Filter are given: 

As in the case of the Extended Kalman Filter and the Particle Filter, the Unscented Kalman 

Filter also consists of prediction stage (time update) and correction stage (measurement 

update) (Julier et al. 2004), (Särrkä 2007).  

Time update: Compute the predicted state mean x̂ −(k) and the predicted covariance Pxx−(k) as 

 
ˆ ˆ[ ( ), ( )] = ( , ( 1), ( 1))

            ( ) = ( 1) ( 1)

xx d xx

xx xx

x k P k UT f x k P k

P k P k Q k

− −

−

− −

− + −
  (32) 

 

Measurement update: Obtain the new output measurement zk and compute the predicted 

mean ẑ (k) and covariance of the measurement Pzz(k), and the cross covariance of the state 

and measurement Pxz(k) 

 
ˆ ˆ[ ( ), ( ), ( )] = ( , ( ), ( ))
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zz xz d xx
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+
  (33) 

Then compute the filter gain K(k), the state mean x̂ (k) and the covariance Pxx(k), conditional 

to the measurement y(k) 

 

1
          ( ) = ( ) ( )

ˆ ˆ ˆ( ) = ( ) ( )[ ( ) ( )]

( ) = ( ) ( ) ( ) ( )

−

−

−

+ −

−

xz zz

T

xx xx zz

K k P k P k

x k x k K k z k z k

P k P k K k P k K k

  (34) 

 

The filter starts from the initial mean m(0) and covariance Pxx(0). The stages of state vector 

estimation with the use of the Unscented Kalman Filter algorithm are depicted in Fig. 6. 
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Fig. 4. Schematic diagram of the Unscented Kalman Filter loop 

3.2 Unscented Information Filtering 

The Unscented Information Filter (UIF) performs fusion of the state vector estimates which 
are provided by local Unscented Kalman Filters, by weighting these estimates with local 
Information matrices (inverse of the local state vector covariance matrices which are again 
recursively computed) (Lee et al. 2008), (Lee et al. 2008), (Vercauteren &Wang 2005). The 
Unscented Information Filter is derived by introducing a linear error propagation based on 
the unscented transformation into the Extended Information Filtering structure. First, an 
augmented state vector xα

−(k) is considered, along with the process noise vector, and the 
associated covariance matrix is introduced 

 
ˆ ( ) ( ) 0

ˆ ( ) = , ( ) =
ˆ ( ) 0 ( )

x k P k
x k P k

w k Q k
α

α

− −
− −

− −

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

  (35) 

As in the case of local (lumped) Unscented Kalman Filters, a set of weighted sigma points 

( )iX kα
−  is generated as 

 

,0

,

,

ˆ                           ( ) = ( )

ˆ    ( ) = ( ) [ ( ) ( 1)] , = 1, ,

ˆ( ) = ( ) [ ( ) ( 1)] , = 1, ,2

i i

i i

X k x k

X k x k n P k i n

X k x k n P k i n n

α α

α α α α

α α α α

λ

λ

− −

− − −

− − −

+ + −

+ + − +

A

A

  (36) 

where ┣ = α 2(nα + ┢) − nα is a scaling, while 0 ≤ α ≤ 1 and ┢ are constant parameters. The 
corresponding weights for the mean and covariance are defined as in the case of the lumped 
Unscented Kalman Filter 
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( ) ( )
0 0 2

( ) ( )

             =                          =
( ) (1 )

1 1
= , = 1, ,2            = , = 1, ,2

2( ) 2( )

m c

m C
i i

W W
n n

W i n W i n
n n

α α

α α
α α

λ λ
λ λ α β

λ λ

+ + + − +

+ +
A A

  (37) 

where ┚ is again a constant parameter. The equations of the prediction stage (measurement 
update) of the information filter, i.e. the calculation of the information matrix and the 
information state vector of Eq. (13) now become 

 

2

=0

1

ˆ ( ) = ( ) ( )

         ( ) = ( )

n

m x
i i

i

y k Y k W X k

Y k P k

α
− −

− − −

∑   (38) 

where x
iX  are the predicted state vectors when using the sigma point vectors w

iX  in the 
state equation ( 1) = ( ( )) ( ) ( )x w

i iX k X k L k U kφ −+ + . The predicted state covariance matrix is 
computed as 

 
2

( )

=0

ˆ ˆ( ) = [ ( ) ( )][ ( ) ( )]
n

c x x T
i i i

i

P k W X k x k X k x k
α

− − −− −∑   (39) 

As noted, the equations of the Extended Information Filter (EIF) are based on the linearized 
dynamic model of the system and on the inverse of the covariance matrix of the state vector. 
However, in the equations of the Unscented Kalman Filter (UKF) there is no linearization of 
the system dynamics, thus the UKF cannot be included directly into the EIF equations. In- 
stead, it is assumed that the nonlinear measurement equation of the system given in Eq. (1) 
can be mapped into a linear function of its statistical mean and covariance, which makes 
possible to use the information update equations of the EIF. Denoting Yi(k) = γ( x

iX  (k)) (i.e. 
the output of the system calculated through the propagation of the i-th sigma point Xi 

through the system’s nonlinear equation) the observation covariance and its cross-
covariance are approximated by 

 
_ _ˆ ˆ( ) [( ( ) ( ))( ( ) ( )) ]

( ) ( ) ( )

T
YY

T

P k E z k z k z k z k

J k P k J kγ γ

−

−

= − −

≅
  (40) 

 
_ _ˆ ˆ( ) [( ( ) ( ))( ( ) ( )) ]

( ) ( )

T
XY

T

P k E x k x k z k z k

P k J kγ

−

−

= − −

≅
  (41) 

where z(k) = γ(x(k)) and Jγ(k) is the Jacobian of the output equation γ(x(k)). Next, mul- 
tiplying the predicted covariance and its inverse term on the right side of the information 
matrix Eq. (12) and replacing P(k)Jγ(k)T with ( )XYP k−  (k) gives the following representation of 
the information matrix (Lee et al. 2008), (Lee et al. 2008), (Vercauteren &Wang 2005) 

 

1

1 1 1

1 1 1

( ) = ( ) ( ) ( )

     = ( ) ( ) ( ) ( ) ( ) ( ) ( ( ) )

      ( ) ( ) ( ) ( ) ( ( ) )

T

T T T

T T
XY XY

I k J k R k J k

P k P k J k R k J k P k P k

P k P k R k P k P k

γ γ

γ γ

−

− − − − − − − −

− − − − −=

  (42) 
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where P−(k)−1 is calculated according to Eq. (39) and the cross-correlation matrix PXY(k) is 
calculated from 

 
2

( )

=0

ˆ ˆ( ) = [ ( ) ( )][ ( ) ( )]
n

c x T
XY i i i

i

P k W X k x k Y k z k
α

− − −− −∑   (43) 

where ( ) = ( ( ))x
i iY k X kγ  and the predicted measurement vector ˆ ( )z k−  is obtained by 

2 ( )

0
ˆ ( ) = ( )

n m
i ii

z k W Y k−
=∑ . Similarly, the information state vector ik can be rewritten as 

 

1 _

1 1

_ 1 _

1 1 1 _

ˆ( ) ( ) ( ) [ ( ) ( ( )) ( ) ( )]

( ) ( ) ( ) ( )

ˆ ˆ [ ( ) ( ( )) ( ) ( )( ( )) ( ( ) ) ( )]

ˆ( ) ( ) ( ) [ ( ) ( ( )) ( )( ( ) ) ( )]

T T

T

T T T

T
XY XY

i k J k R k z k x k J k x k

P k P k J k R k

z k x k J k x k P k P k x k

P k P k R k z k x k P k P k x k

γ γ

γ

γ

γ

γ

γ

−

− − − −

− − −

− − − − − − −

= − +

= ⋅

⋅ − +

= − +

 (44) 

To complete the analogy to the information contribution equations of the EIF a 
”measurement” matrix HT(k) is defined as 

 1( ) = ( ) ( )T
XYH k P k P k− − −   (45) 

In terms of the measurement matrix H(k) the information contributions equations are 
written as 

 
1

1

ˆ( ) ( ) ( ) [ ( ) ( ( )) ( ) ( )]

( ) ( ) ( ) ( )

T

T

i k H k R k z k x k H k x k

I k H k R k H k

γ− −

−

= − +

=
  (46) 

The above procedure leads to an implicit linearization in which the nonlinear measurement 
equation of the system given in Eq. (1) is approximated by the statistical error variance and 
its mean 

 ( ) = ( ( )) ( ) ( ) ( )z k h x k H k x k u k+0   (47) 

where ˆ ˆ( ) = ( ( )) ( ) ( )u k x k H k x kγ − −−  is a measurement residual term. (47). 

3.3 Calculation of local estimations in terms of UIF information contributions 

Next, the local estimations provided by distributed (local) Unscented Kalmans filters will be 
expressed in terms of the information contributions (information matrix I and information 
state vector i) of the Unscented Information Filter, which were defined in Eq. (46) (Lee et al. 
2008), (Lee et al. 2008), (Vercauteren &Wang 2005). It is assumed that the observation vector 

( 1)iz k +  is available from N different sensors, and that each sensor observes a common state 
according to the local observation model, expressed by 

 ( ) = ( ) ( ) ( ) ( )i i i iz k H k x k u k v k+ +   (48) 

where the noise vector vi(k) is taken to be white Gaussian and uncorrelated between sensors. 
The variance of the composite observation noise vector vk of all sensors is written in terms of 

the block diagonal matrix R(k) = diag[R1(k)T, ··· ,RN(k)T]T. Then one can define the local 

information matrix Ii(k) and the local information state vector ii(k) at the i-th sensor, as follows 
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1

1

ˆ( ) = ( ) ( ) [ ( ) ( ( )) ( ) ( )]

                 ( ) = ( ) ( ) ( )

T
i i i i i i

T
i i i i

i k H k R k z k x k H k x k

I k H k R k H k

γ− −

−

− +
  (49) 

Since the information contribution terms have group diagonal structure in terms of the 
innovation and measurement matrix, the update equations for the multiple state estimation 
and data fusion are written as a linear combination of the local information contribution terms 

 =1

=1

ˆ ˆ( ) = ( ) ( )

( ) = ( ) ( )

N

i
i

N

i
i

y k y k i k

Y k Y k I k

−

−

+

+

∑

∑
  (50) 

Then using Eq. (38) one can find the mean state vector for the multiple sensor estimation 
problem. 
As in the case of the Unscented Kalman Filter, the Unscented Information Filter running at 
the i-th measurement processing unit can be written in terms of measurement update and time 
update equations: 
Measurement update: Acquire measurement z(k) and compute 

 
1 1

1

               ( ) = ( ) ( ) ( ) ( )

or ( ) = ( ) ( ) where ( ) = ( ) ( ) ( )

T

T

Y k P k H k R k H k

Y k Y k I k I k H k R k H k

− − −

− −

+

+
  (51) 

 
1ˆ ˆ ˆ ˆ( ) = ( ) ( ) ( )[ ( ) ( ( )) ( ) ( )]

ˆ ˆ                           or ( ) = ( ) ( )

Ty k y k H k R k z k x k H k x k

y k y k i k

γ− − −

−

+ − +

+
  (52) 

Time update: Compute 

 

1

2

( )

=0

                                  ( 1) = ( ( 1))

ˆ ˆwhere ( 1) = [ ( 1) ( 1)][ ( 1) ( 1)]
n

c x x T
i i i

i

Y k P k

P k W X k x k X k x k
α

− − −

− − −

+ +

+ + − + + − +∑
  (53) 

 

2

( )

=0

ˆ  ( 1) = ( 1) ( 1)

where ( 1) = ( ( )) ( ) ( )

n

m x
i i

i

x w
i i

y k Y k W X k

X k X k L k U k

α

φ

+ + +

+ +

∑   (54) 

3.4 Distributed Unscented Information Filtering for state estimates fusion 

It has been shown that the update of the aggregate state vector of the Unscented Information 
Filter architecture can be expressed in terms of the local information matrices Ii and of the 
local information state vectors ii, which in turn depend on the local covariance matrices P 
and cross-covariance matrices PXY. Next, it will be shown that the update of the aggregate 
state vector can be also expressed in terms of the local state vectors xi(k) and in terms of the 
local covariance matrices Pi(k) and cross-covariance matrices ( )i

XYP k . It is assumed that the 
local filters do not have access to each other row measurements and that they are allowed to 
communicate only their information matrices and their local information state vectors. Thus 
each local filter is expressed by its respective error covariance and estimate in terms of the 
local information state contribution ii and its associated information matrix Ii at the i-th filter 
site. Then using Eq. (38) one obtains 
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Fig. 5. Schematic diagram of the Unscented Information Filter loop 

 
1 1 1

1

                       ( ) = ( ) ( ) ( ) ( )

ˆ ˆ ˆ= ( )( ( ) ( ) ( ) ( ) [ ( ) ( ( )) ( ) ( )])

T
i i i i i

T
i i i i i i i i i

P k P k H k R k H k

x P k P k x k H k R k z k x k H k x kγ

− − − −

− − − −

+

+ − +
  (55) 

Using Eq. (55), each local information state contribution ii and its associated information 

matrix Ii at the i-th filter are rewritten in terms of the computed estimates and covariances of 

the local filters 

 

1 1 1

1 1 1

                      ( ) ( ) ( ) ( ) ( )

ˆ ˆ ˆ( ) ( ) [ ( ) ( ( )) ( ) ( )] ( ) ( ) ( ) ( )

i

T
i i i i

T
i i i i i i i i i

H k R k H k P k P k

H k R k z k x k H k x k P k x k P k x kγ

− − − −

− − − − − −

= −

− + = −
  (56) 

where according to Eq.(45) it holds 1
,( ) = ( ) ( )i i XY iH k P k P k− − − . Next, the aggregate estimates of 

the distributed unscented information filtering are derived for a number of N local filters  

i = 1, ··· , N and sensor measurements, first in terms of covariances (Vercauteren &Wang 

2005), (Lee et al. 2008), (Lee et al. 2008) 

 

1 1 1 1

=1

1 1 1

=1

( ) = ( ) [ ( ) ( ) ]

ˆ ˆ ˆ ˆ( ) = ( )[ ( ) ( ) ( ( ) ( ) ( ) ( ))]
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i i
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− − − − − − −

+ −

+ −

∑

∑
  (57) 

and also in terms of the information state vector and of the information state covariance matrix 

 =1

=1

ˆ ˆ ˆ ˆ( ) = ( ) ( ( ) ( ))

( ) = ( ) [ ( ) ( )]

N

i i
i

N

i i
i
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Y k Y k Y k Y k
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∑

∑
  (58) 
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State estimation fusion based on the Unscented Information Filter (UIF) is fault tolerant. 
From Eq. (57) it can be seen that if a local filter (processing station) fails, then the local 
covariance matrices and local estimates provided by the rest of the filters will enable a 
reliable calculation of the system’s state vector. Moreover, it is and computationally efficient 
comparing to centralized filters and results in enhanced estimation accuracy. 

4. Distributed Particle Filter 

4.1 Particle Filtering at local processing units 
4.1.1 The particle approximation of probability density functions 
One can also estimate the state vector of the UAVs that constitute the multi-UAV system 
through the fusion of estimates provided by local Particle Filters. This can be succeeded 
using the Distributed Particle Filter (DPF). First, the functioning of the local Particle Filters 
will be explained. Each local Particle Filter generates an estimation of the UAV’s state vector 
by fusing measurements from distibuted sensors. Particle Filtering is a method for state 
estimation that is not dependent on the probability density function of the measurements. In 
the general case the equations of the optimal filter used for the calculation of the state-vector 
of a dynamical system do not have an explicit solution. This happens for instance when the 
process noise and the noise of the output measurement do not follow a Gaussian 
distribution. In that case approximation through Monte-Carlo methods can be used (Thrun 
wt al. 2005). A sampling of size N is assumed, i.e. N i.i.d. (independent identically 

distributed) variables ξ1, ξ2, ··· , ξN. This sampling follows the p.d.f. p(x) i.e. ξ1:N~p(x). Instead 

of p(x) the function 
=1

1
( ) ( ) = ( )

NN
ii

p x p x x
N ξ

δ∑0  can be used. It is assumed that all points ξi 

have an equal weighted contribution to the approximation of p(x). A more general approach 

would be if weight factors were assigned to the points ξi, which will also satisfy the 

normality condition 
=1

= 1
N i

i
w∑ . In the latter case 

 
=1

( ) ( ) = ( )
N

N i
i

i

p x p x w x
ξ

δ∑0   (59) 

If p(ξi) is known then the probability P(x) can be approximated using the discrete values of 

the p.d.f. p(ξi) = wi. If sampling over the p.d.f. p(x) is unavailable, then one can use a p.d.f. 
( )p x  with similar support set, i.e. ( ) = 0 ( ) = 0p x p x⇒ . Then it holds 

( )
( ( )) = ( ) ( ) = ( ) ( )

( )

p x
E x x p x dx x p x dx

p x
φ φ φ∫ ∫ . If the N samples of ( )p x  are available at the points 

1 Nξ ξ# #A , i.e. ( ) = ( )i
ip x

ξ
ξ δ #
#  and the weight coefficients wi are defined as 

( )
= ,

( )

i
i

i

p
w

p

ξ
ξ

#
#  then it is 

easily shown that 

 
1:

=1

( )
( ( )) ( ),    where 

= ( ) / ( )

NN
i i

i i i
i

p x
E x w

w p x p x

ξ
φ φ ξ

⎧⎪
⎨
⎪⎩

∑
#

#
# #
∼

0   (60) 

The meaning of Eq. (60) is as follows: assume that the p.d.f. p(x) is unknown (target 

distribution), however the p.d.f. ( )p x  (importance law) is available. Then, it is sufficient to 

sample on ( )p x  and find the associated weight coefficients wi so as to calculate E(φ(x)). 
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4.1.2 The prediction stage 

As in the case of the Kalman Filter or the Extended Kalman Filter the particles filter consists 

of the measurement update (correction stage) and the time update (prediction stage) 

(Rigatos 2009b),(Thrun wt al. 2005). The prediction stage calculates p(x(k)|Z−) where Z− = 

{z(1), z(2), ··· , z(n − 1)} according to Eq. (59). It holds that: 

 1
1=1

( ( 1)| ) = ( ( 1))
N

i
k i

ki

p x k Z w x k
ξ

δ−
−

−
− −∑   (61) 

while from Bayes formula it holds p(x(k)|Z−) = ∫p(x(k)|x(k − 1))p(x(k − 1)|Z−)dx. Using also 
Eq. (61) one finally obtains 

 
1

=1

1

( ( )| ) = ( ( ))

with ( ( )| ( 1) = )

N
i
k i

i k

i i
kk

p x k Z w x k

p x k x k

ξ
δ

ξ ξ

−
−

−

− −−

∑
∼

  (62) 

The meaning of Eq. (62) is as follows: the state equation of the system is executed N times, 

starting from the N previous values of the state vectors 1( 1) = i
kx k ξ −−  

 
ˆ ˆ( 1) = ( ( )) ( ) ( ) ( )

ˆ            ( ) = ( ( )) ( )

x k x k L k u k w k

z k x k v k

φ
γ

+ + +
+

  (63) 

Thus estimations of the current value of the state vector ˆ( )x k  are obtained, and 

consequently the mean value of the state vector will be given from Eq. (62). This means that 

the value of the state vector which is calculated in the prediction stage is the result of the 

weighted averaging of the state vectors which were calculated after running the state 

equation, starting from the N previous values of the state vectors 1
i
kξ − . 

4.1.3 The correction stage 
The a-posteriori probability density is found using Eq. (62). Now a new position 
measurement z(k) is obtained and the objective is to calculate the corrected probability 
density p(x(k)|Z), where Z = {z(1), z(2), ··· , z(k)}. From Bayes law it holds that 

( | ( )) ( ( ))
( ( )| ) =

( )

p Z x k p x k
p x k Z

p Z
 which can be also written as 

 
( ( )| ( )) ( ( )| )

( ( )| ) =
( ( )| ( ), ) ( ( )| )

p z k x k p x k Z
p x k Z

p z k x k Z p x k Z dx

−

− −∫
  (64) 

Substituting Eq. (62) into Eq. (64) and after intermediate calculations one finally obtains 

 

=1

=1

( ( )| ) = ( ( ))
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  (65) 
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Eq. (65) denotes the corrected value for the state vector. The recursion of the Particle Filter 
proceeds in a way similar to the update of the Kalman Filter or the Extended Kalman Filter, 
i.e.: 

• Measurement update: Acquire z(k) and compute 

 

=1

=1

new value of the state vector

( ( )| ) = ( ( ))

with corrected weights 

( ( )| ( ) = )
= and =

( ( )| ( ) = )

N
i
k i

i k

i i

i i ik k
k kN k

i i

k k
j

p x k Z w x k

w p z k x k
w

w p z k x k

ξ
δ

ξ
ξ ξ

ξ

−

− −

−

− −

∑

∑

  (66) 

Resampling for substitution of the degenerated particles 

• Time update: compute state vector x(k + 1) according to the pdf 

 =1

  ( ( 1)| ) = ( ( ))

where ( ( 1)| ( ) = )

N
i
k i

ki

i i
k k

p x k Z w x k

p x k x k

ξ
δ

ξ ξ

+

+

∑
∼

  (67) 

The stages of state vector estimation with the use of the Particle Filtering algorithm are 
depicted in Fig. 6. 
 

 
 

Fig. 6. Schematic diagram of the Particle Filter loop 
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4.1.4 Resampling issues in particle filtering 
The algorithm of particle filtering which is described through Eq. (62) and Eq. (65) has a 

significant drawback: after a certain number of iterations k, almost all the weights i
kw  

become 0. In the ideal case all the weights should converge to the value 1

N
, i.e. the particles 

should have the same significance. The criterion used to define a sufficient number of 

particles is eff

2

=1

1
= [1, ]k N i

ki

N N
w

∈
∑

. When eff
kN  is close to value N then all particles have 

almost the same significance. However using the algorithm of Eq. (62) and Eq. (65) results in 
eff
kN  →1, which means that the particles are degenerated, i.e. they lose their effectiveness. 

Therefore, it is necessary to modify the algorithm so as to assure that degeneration of the 
particles will not take place (Rigatos 2009a), (Thrun wt al. 2005), (Zhang et al. 2005). 

When eff
kN  is small then most of the particles have weights close to 0 and consequently they 

have a negligible contribution to the estimation of the state vector. To overcome this 
drawback of the PF algorithm weakens such particles in favor of particles that have a non-
negligible contribution. Therefore, the particles of low weight factors are removed and their 
place is occupied by duplicates of the particles with high weight factors. The total number of 
particles remains unchanged (equal to N) and therefore this procedure can be viewed as a 
”resampling” or ”redistribution” of the particles set. 
The particles resampling presented above maybe slow if not appropriately tuned. There are 
improved versions of it which substitute the particles of low importance with those of 
higher importance. A first choice would be to perform a multinomial resampling. N 

particles are chosen between 1{ , , }N
k kξ ξA  and the corresponding weights are 1 , , N

k kw wA . The 

number of times each particle is selected is given by [j1, ··· , jn]. Thus a set of N particles is 
again created, the elements of which are chosen after sampling with the discrete distribution 

=1
( )

N i
k ii

k

w x
ξ

δ∑ . The particles 1{ , , }N
k kξ ξA are chosen according to the probabilities { 1 , , N

k kw wA  

}. The selected particles are assigned with equal weights 1

N
. 

Although sorting of the particles’ weights is not necessary for the convergence of the particle 

filter algorithm, there are variants of the resampling procedure of ( , = 1, ,i i
k kw i Nξ A ) which 

are based on previous sorting in decreasing order of the particles’ weights (efficient sorting 
approaches make the complexity of the particle filtering to be O(Nlog(N)), while the 
avoidance of resampling results in a faster algorithm of complexity O(N)). Sorting of 

particles’ weights gives ws[1] > ws[2] > ··· > ws[N]. A random numbers generator is evoked and 

the resulting numbers ui:N~U[0,1] fall in the partitions of the interval [0,1]. The width of 

these partitions is wi and thus a redistribution of the particles is generated. For instance, in a 

wide partition of width wj will be assigned more particles than to a narrow partition of 

witdh wm. A detailed analysis on the tuning of the resampling procedure in Particle Fitlering 
has been given in (Rigatos 2009a). 

4.2 Distributed Particle Filtering for state estimation fusion 
The Distributed Particle Filter performs fusion of the state vector estimates which are 
provided by the local Particle Filters. This is succeeded by fusing the discrete probability 
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density functions of the local Particle Filters into a common probability distribution of the 
system’s state vector. Without loss of generality fusion between two estimates which are 
provided by two different probabilistic estimators (particle filters) is assumed. This amounts 
to a multiplication and a division operation to remove the common information, and is 
given by (Ong et al. 2008), (Ong et al. 2006) 

 
( ( )| ) ( ( )| )

( ( )| )
( ( )| )

A B
A B

A B

p x k Z p x k Z
p x k Z Z

p x k Z Z
∝∪ ∩

  (68) 

where ZA is the sequence of measurements associated with the i-th processing unit and ZB is 
the sequence of measurements associated with the j-th measurement unit. In the 
implementation of distributed particle filtering, the following issues arise: 
1. Particles from one particle set (which correspond to a local particle filter) do not have 

the same support (do not cover the same area and points on the samples space) as 
particles from another particle set (which are associated with another particle filter). 
Therefore a point-to-point application of Eq. (68) is not possible. 

2. The communication of particles representation (i.e. local particle sets and associated 
weight sets) requires significantly more bandwidth compared to other representations, 
such as Gaussian mixtures. 

Fusion of the estimates provided by the local particle filters (located at different processing 
units) can be performed through the following stages. First, the discrete particle set of 
Particle Filter A (Particle Filter B) is transformed into a continuous distribution by placing a 
Gaussian kernel over each sample (Fig. 7) (Musso et al. 2001) 

 Kh(x) = h2K(x)  (69) 

where K() is the rescaled Kernel density and h > 0 is the scaling parameter. Then the 
continuous distribution A (B) is sampled with the other particles set B (A) to obtain the new 
importance weights, so that the weighted sample corresponds to the numerator of Eq. (68) 
(Fig. 8). Such a conversion from a discrete particle probability distribution functions 

( ) ( )

=1
( )

N i i
A Ai

w xδ∑  ( ( ) ( )

=1
( )

N i i
B Bi

w xδ∑ ) into continuous distributions is denoted as 

 ( ) ( ) ( ) ( )

=1 =1

( ) ( ) ( ( ) ( ))
N N

i i i i
A A A B B B

i i

w x p x w x p xδ δ→ →∑ ∑   (70) 

The common information appearing in the processing units A and B should not be taken 
into account in the joint probability distribution which is created after fusing the local 
probability densities of A and B. This means that in the joint p.d.f. one should sample with 
importance weights calculated according to Eq. (68). The objective is then to create an 
importance sampling approximation for the joint distribution that will be in accordance to 
Eq. (68). A solution to this can be obtained through Monte Carlo sampling and suitable 
selection of the so-called ”proposal distribution” (Ong et al. 2008), (Ong et al. 2006)] 
According to the above, for the joint distribution the idea behind Monte Carlo sampling is to 
draw N i.i.d samples from the associated probability density function p(x), such that the 
target density is approximated by a point-mass function of the form 

 ( ) ( )

=1

( ) ( )
N

i i
k k

i

p x w xδ∑0   (71) 
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Fig. 7. Conversion of the particles discrete probability density function to a continuous 
distribution, after allocating a Gaussian kernel over each particle 

where ( )( )i
kxδ  is a Dirac delta mass located at ( )i

kx . Then the expectation of some function  

f (x) with respect to the pdf p(x) is given by 

 ( )( ) = [ ( )] = ( ) ( )p xI f E f x f x p x dx∫   (72) 

the Monte-Carlo approximation of the integral with samples is then 

 ( )

=1

1
( ) = ( )

N
i

N
i

I f f x
N

∑   (73) 

where x(i) 0 p(X) and IN( f )→I( f ) for N→∞. since, the true probability distribution p(x) is 

hard to sample from, the concept of importance sampling is to select a proposal distribution 

( )p x  in place of p(x), with the assumption that ( )p x  includes the support space of p(x). Then 

the expectation of function f (x), previously given in Eq. (72), is now calculated as 

 
( )

( ) = ( ) ( ) = ( ) ( ) ( )
( )

p x
I f f x p x dx f x w x p x dx

p x∫ ∫   (74) 

where w(x) are the importance weights 

 
( )

( ) =
( )

p x
w x

p x
  (75) 

Then the Monte-Carlo estimation of the mean value of function f (x) becomes 

 ( ) ( )

=1

( ) = ( ) ( )
N

i i
N

i

I f f x w x∑   (76) 

For the division operation, the desired probability distribution is 
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( )

( )

( )

( )
( ) =

( )

i
i A

i
B

p x
p x

p x
  (77) 

In that case the important weights of the fused probability density functions become 

 
( )

( )

( ) ( )

( )
( ) =

( ) ( )

i
i A

i i
B

p x
w x

p x p x
  (78) 

which is then normalized so that ( )

=1
( ) = 1 /

N i

i
w x N∑ , where N is the number of particles. 

The next step is to decide what will be the form of the proposal distribution ( )p x . A first 

option is to take ( )p x  to be a uniform distribution, with a support that covers both of the 

support sets of the distributions A and B. 

 ( ) = ( )p x U x   (79) 

Then the sample weights ( )( )ip x  are all equal at a constant of value C. Hence the importance 

weights are 

 
( )

( )

( )

( )
( ) =

( )

i
i A

i
B

p x
w x

p x C
  (80) 

Another suitable proposal distribution that takes more into account the new information re 
ceived (described as the probability distribution of the second processing unit) is given by 

 ( ) = ( )Bp x p x   (81) 

and the important weights are then adjusted to be 

 
( )

( )

( ) 2

( )
( ) =

( )

i
i A

i
B

p x
w x

p x
  (82) 

5. Nonlinear control for autonomous UAV navigation 

5.1 Kinematic model of the UAV 
For the design of the autonomous navigation system of the UAVs a suitable control scheme 
has to be chosen. In this control loop there will be processing of the estimated UAV state 
vector, as obtained through the distributed filtering algorithms which were presented in 
Sections 2 to 4. To this end, the kinematic model the kinematic model of the UAVs has to be 
analyzed first. Based on this kinematic model a flatness-based controller will be derived. 
The UAV dynamics suggest the following structure for constant altitude manoeuvres 
(Léchevin & Rabbath 2006): 

 
1

2

= ( ), = ( ), =

             = , = 0

x vcos y vsin u

v u h

θ θ θ$$ $
$$

  (83) 

where (x,y) is the desired inertial position of the UAV, ┠ is the UAV’s heading, v is the 
UAV’s velocity, h is the UAV’s attitude, and u1, u2 are constrained by the dynamic capability 
of the UAVs namely the heading rate constraint and the acceleration constraint respectively. 
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Fig. 8. Fusion of the probability density functions produced by the local particle filters 

An inertial measurement unit (IMU) of a UAV usually consists of a three axis gyroscope and 
a three axis accelerometer. A vision sensor can be also mounted underneath the body of the 
UAV and is used to extract points of interest in the environment. The UAV also carries a 
barometric pressure sensor for aiding of the platform attitude estimation. A GPS sensor, can 
be also mounted on the board. The sensor data is filtered and fused to obtain estimates of 
the desired entities such as platform and feature position (Vissière et al. 2008). 

5.2 Differential flatness for finite dimensional systems 
Flatness-based control is proposed for steering the UAV along a desirable trajectory (Oriolo 
et al. 2002), (Villagra et al. 2007), (Fliess et al. 1999). The main principles of flatness- based 
control are as follows: A finite dimensional system is considered. This can be written in the 
general form of an ODE, i.e. 

 ( , , , , ), = 1,2, ,i
iS w w w w i q$ $$ A A   (84) 

The quantity w denotes the system variable while wi, i = 1, 2, ··· , q are its derivatives (these 
and can be for instance the elements of the system’s state vector). The system of Eq. (1) is 
said to be differentially flat if there exists a collection of m functions y = (y1, ··· ,ym) of the 
system variables wi, i = 1, ··· , s and of their time-derivatives, i.e. 

 = ( , , , , ), = 1, ,i
iy w w w w i m

αφ $ $$ A A   (85) 

such that the following two conditions are satisfied (Fliess et al. 1999), (Rigatos 2008): 
1. There does not exist any differential relation of the form 

 ( , , , ) = 0R y y yβ$ A   (86) 

www.intechopen.com



 Advanced Strategies for Robot Manipulators 

 

352 

which implies that the derivatives of the flat output are not coupled in the sense of an 
ODE, or equivalently it can be said that the flat output is differentially independent. 

2. All system variables, i.e. the components of w (elements of the system’s state vectors) 
can be expressed using only the flat output y and its time derivatives 

 = ( , , , ), = 1, ,i
i iw ┰ y y y i s

γ$ A A   (87) 

An equivalent definition of differentially flat systems is as follows: 

Definition: The system = ( , )x f x u$ , x∈Rn, u∈Rm is differentially flat if there exist relations h : 

Rn×Rm→Rm, φ: (Rm)r→Rn and ┰: (Rm)r+1→Rm, such that ( )= ( , , , , )ry h x u u u$ A , ( 1)= ( , , , )rx y y yφ −$ A  

and ( 1) ( )( , ,..., , )r ru ┰ y y y y−= $ . This means that all system dynamics can be expressed as a 

function of the flat output and its derivatives, therefore the state vector and the control input 

can be written as ( )( ) ( ( ), ( ),..., ( ))rx y y t y t y tφ= $  and ( )( ( ), ( ),..., ( ))ru ┰ y t y t y t= $ . 

It is noted that for linear systems the property of differential flatness is equivalent to that of 
controllability. 

5.3 Differential flatness of the UAV kinematic model 
It is assumed that the helicopter-like UAV, performs manoeuvres at a constant altitude. 
Then, from Eq. (83) one can obtain the following description for the UAV kinematics 

 = ( ), = ( ), = ( )
v

x vcos y vsin tan
l

θ θ θ φ$$ $   (88) 

where using the analogous of the unicycle robot v is the velocity of the UAV, l is the UAV’s 
length, ┠ is the UAV’s orientation (angle between the transversal axis of the UAV and axis 
OX), and φ is a steering angle. The flat output is the cartesian position of the UAV’s center of 
gravity, denoted as ┟ = (x,y) , while the other model parameters can be written as: 

 3
( )

=     =     ( ) = ( ) /
( )

cos
v tan ldet v

sin v

θ ηη φ ηη
θ

⎛ ⎞
± ⎜ ⎟

⎝ ⎠

$$ $ $$   (89) 

These formulas show simply that ┠ is the tangent angle of the curve traced by P and tan(φ) is 
the associated curvature. With reference to a generic driftless nonlinear system 

 , ,n mq q R w R∈ ∈$   (90) 

dynamic feedback linearization consists in finding a feedback compensator of the form 

 
= ( , ) ( , )

= ( , ) ( , )

q b q u

w c q d q u

ξ α ξ ξ
ξ ξ

+
+

$
  (91) 

with state ξ ∈ Rv and input u ∈ Rm, such that the closed-loop system of Eq. (90) and Eq. (91) 
is equivalent under a state transformation z = T(q, ξ) to a linear system. The starting point is 
the definition of a m-dimensional output ┟ = h(q) to which a desired behavior can be 
assigned. One then proceeds by successively differentiating the output until the input 
appears in a non-singular way. If the sum of the output differentiation orders equals the 
dimension n + v of the extended state space, full input-state-output linearization is obtained 
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(In this case ┟ is also called a flat output). The closed-loop system is then equivalent to a set 
of decoupled input-output chains of integrators from ui

 to ┟i. The exact linearization 
procedure is illustrated for the unicycle model of Eq. (21). As flat output the coordinates of 
the center of gravity of the vehicle is considered ┟ = (x,y). Differentiation with respect to 
time then yields (Oriolo et al. 2002), (Rigatos 2008) 

 
( ) 0

= =
( ) 0

x cos v

y sin

θ
η

θ ω
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

$
$

$
  (92) 

showing that only v affects η$ , while the angular velocity ┱ cannot be recovered from this 

first-order differential information. To proceed, one needs to add an integrator (whose state 
is denoted by ξ) on the linear velocity input 

 
( )

= ,    = =
( )

cos
v

sin

θ
ξ ξ α η ξ

θ
⎛ ⎞

⇒ ⎜ ⎟
⎝ ⎠

$ $   (93) 

where α denotes the linear acceleration of the UAV. Differentiating further one obtains 

 
( ) ( ) ( ) ( )

= =
( ) ( ) ( ) ( )

cos sin cos sin

sin cos sin cos

θ θ θ ξ θ α
η ξ ξθ

θ θ θ ξ θ ω
−⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞

+⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
$ $$$   (94) 

and the matrix multiplying the modified input (α,┱) is nonsingular if ξ ≠ 0. Under this 
assumption one defines 

 1

2

( ) ( )
=

( ) ( )

cos sin u

sin cos u

α θ ξ θ
ω θ ξ θ

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
  (95) 

η$$  is denoted as 

 1 1

2 2

= = =
u

u
u

η
η

η
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

$$
$$

$$
  (96) 

which means that the desirable linear acceleration and the desirable angular velocity can be 
expressed using the transformed control inputs u1 and u2. Then, the resulting dynamic 
compensator is (return to the initial control inputs v and ┱) 

 
1 2

2 1

= ( ) ( )

                 =

( ) ( )
=

u cos u sin

v

u cos u sin

ξ θ θ
ξ

θ θω
ξ

+

−

$
  (97) 

Being ξ∈R, it is n + v = 3 + 1 = 4, equal to the output differentiation order in Eq. (29). In the 
new coordinates 

 

1

2

3

4

      =

      =

= = ( )

= = ( )

z x

z y

z x cos

z y sin

ξ θ
ξ θ

$
$

  (98) 
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The extended system is thus fully linearized and described by the chains of integrators, in 
Eq. (29), and can be rewritten as 

 1 1

2 2

=

=

z u

z u

$$
$$

  (99) 

The dynamic compensator of Eq. (97) has a potential singularity at ξ = v = 0, i.e. when the 
UAV is not moving, which is a case never met when the UAV is in flight. It is noted 
however, that the occurrence of such a singularity is structural for non-holonomic systems. 
In general, this difficulty must be obviously taken into account when designing control laws 
on the equivalent linear model. 
A nonlinear controller for output trajectory tracking, based on dynamic feedback 
linearization, is easily derived. Assume that the UAV must follow a smooth trajectory 

(xd(t),yd(t)) which is persistent, i.e. for which the nominal velocity 
1

2 2 2= ( )d d dv x y+$ $  along the 

trajectory never goes to zeros (and thus singularities are avoided). On the equivalent and 
decoupled system of Eq. (32), one can easily design an exponentially stabilizing feedback for 
the desired trajectory, which has the form 

 
1 1 1

2 1 1

= ( ) ( )

= ( ) ( )

d p d d d

d p d d d

u x k x x k x x

u y k y y k y y

+ − + −

+ − + −

$$ $ $

$$ $ $
  (100) 

and which results in the following error dynamics for the closed-loop system 

 1 1

2 2

= 0

= 0

x d x p x

y d y p y

e k e k e

e k e k e

+ +

+ +

$$ $

$$ $
  (101) 

where ex = x − xd and ey = y − yd. The proportional-derivative (PD) gains are chosen as kp1 > 0 

and kd1 > 0 for i = 1, 2. Knowing the control inputs u1, u2, for the linearized system one can 

calculate the control inputs v and ┱ applied to the UAV, using Eq. (91). The above result is 
valid, provided that the dynamic feedback compensator does not meet the singularity. In 
the general case of design of flatness-based controllers, the following theorem assures the 
avoidance of singularities in the proposed control law (Oriolo et al. 2002): 
Theorem: Let ┣11, ┣12 and ┣21, ┣22, be respectively the eigenvalues of two equations of the 
error dynamics, given in Eq. (91). Assume that, for i = 1,2 it is ┣11 < ┣12 < 0 (negative real 
eigenvalues), and that ┣i2 is sufficiently small. If 

 
0

0 0

( )
min

( )
xd

t

yd

x t

y t≥

⎛ ⎞⎛ ⎞
≥ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

$ $
$ $

ε
ε

 (102) 

with 0 = (0) 0x x ≠$ $ε ε  and 0 = (0) 0y y ≠$ $ε ε , then the singularity ξ = 0 is never met. 

6. Simulation tests 

6.1 Autonomous UAV navigation with Extended Information Filtering 
It was assumed that m = 2 helicopter models were monitored by n = 2 different ground 

stations. At each ground station an Extended Kalman Filter was used to track each UAV. By 
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fusing the measurements provided by the sensors mounted on each UAV, each local EKF 

was able to produce an estimation of a UAV’s motion. Next, the state estimates obtained by 

the pair local EKFs associated with each UAV were fused with the use of the Extended 

Information Filter. This fusion-based state estimation scheme is depicted in Fig. 2. As 

explained in Section 2 the weighting of the state estimates of the local EKFs was performed 

using the local information matrices. The distributed fitering architecture is shown in Fig. 9. 

 

 

Fig. 9. Distributed Filtering over WSN 

Next, some details will be given about the local EKF design for the UAV model of Eq. (88). 
The UAV’s continuous-time kinematic equation is: 

 ( ) = ( ) ( ( )), ( ) = ( ) ( ( )), ( ) = ( )x t v t cos t y t v t sin t t tθ θ θ ω$$ $   (103) 

The IMU system provides measurements or the UAV’s position [x,y] and the UAV’s 

orientation angle ┠ over a sampling period T. These sensors are used to obtain an estimation 

of the displacement and the angular velocity of the UAV v(t) and ┱(t), respectively. The IMU 

sensors can introduce incremental errors, which result in an erroneous estimation of the 

orientation ┠. To improve the accuracy of the UAV’s localization, measurements from the 

GPS (or visual sensors) can be used. On the other hand, the GPS on this own is not always 

reliable since its signal can be intermittent. Therefore, to succeed accurate localization of the 

UAV it is necessary to fuse the GPS measurements with the IMU measurements of the UAV 

or with measurements from visual sensors (visual odometry). 

The inertial coordinates system OXY is defined. Furthermore the coordinates system O′X′Y′ 
is considered (Fig. 10). O′X′Y′ results from OXY if it is rotated by an angle ┠. The coordinates 

of the center of symmetry of the UAV with respect to OXY are (x,y), while the coordinates of 
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Fig. 10. Reference frames for the UAV 

the GPS or visual sensor that is mounted on the UAV, with respect to O′X′Y′ are ,i ix y′ ′ . The 

orientation of the GPS (or visual sensor) with respect to OX′Y′ is iθ ′ . Thus the coordinates of 

the GPS or visual sensor with respect to OXY are (xi,yi) and its orientation is ┠i, and are given 
by: 

 

( ) = ( ) ( ( )) ( ( ))

( ) = ( ) ( ( )) ( ( ))

                 ( ) = ( )

i i i

i i i

i i

x k x k x sin k y cos k

y k y k x cos k y sin k

k k

θ θ
θ θ

θ θ θ

′ ′+ +
′ ′− +

+
  (104) 

For manoeuvres at constant altitude the GPS measurement (or the visual sensor 

measurement) can be considered as the measurement of the distance from a reference 

surface P j. A reference surface P j
 in the UAVs 2D flight area can be represented by j

rP  and 
j

nP , where (i) j
rP  is the normal distance of the plane from the origin O, (ii) j

nP  is the angle 

between the normal line to the plane and the x-direction. 

The GPS sensor (or visual sensor i) is at position xi(k),yi(k) with respect to the inertial 

coordinates system OXY and its orientation is ┠i(k). Using the above notation, the distance of 

the GPS (or visual sensor i), from the plane P j is represented by ,j j
r nP P  (see Fig. 10): 

 ( ) = ( ) ( ) ( ) ( )j j j j
i r i n i nd k P x k cos P y k sin P− −   (105) 

Assuming a constant sampling period Δtk = T the measurement equation is z(k + 1) = γ(x(k)) 

+ v(k), where z(k) is the vector containing GPS (or visual sensor) and IMU measures and v(k) 

is a white noise sequence ~N(0,R(kT)). 

By definition of the measurement vector one has that the output function is ┛(x(k)) = 

[x(k),y(k), ┠(k),d1(k)]T. The UAV state is [x(k),y(k), ┠(k)]T and the control input is denoted by 
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U(k) = [v(k),┱(k)]T. To obtain the Extended Kalman Filter (EKF), the kinematic model of the 

UAV is linearized about the estimates ˆ( )x k  and ˆ ( )x k−  the control input U(k − 1) is applied. 

The measurement update of the EKF is 

1ˆ ˆ ˆ( ) = ( ) ( ( ))[ ( ( )) ( ) ( ( )) ( )]

ˆ ˆ ˆ( ) = ( ) ( )[ ( ) ( ( ))]

( ) = ( ) ( ) ( )

T T

T

K k P k J x k J x k P k J x k R k

x k x k K k z k x k

P k P k K k J P k

γ γ γ

γ

γ

− − − − − −

− −

− −

+

+ −

−

 

 

The time update of the EKF is 

ˆ ˆ( 1) = ( ( )) ( ) ( ( )) ( )

ˆ ˆ( 1) = ( ( )) ( ) ( )

TP k J x k P k J x k Q k

x k x k L k U k

φ φ

φ

−

−

+ +

+ +
 

 

( ( )) 0 1 0 ( ) ( )

ˆwhere ( ) = ( ( )) 0 and ( ( )) = 0 1 ( ) ( )

0 0 0 1

Tcos k v k sin T

L k Tsin k J x k v k cos T

T
φ

θ θ
θ θ

−⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟−⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

  (106) 

 

while Q(k) = diag[σ2(k),σ2(k),σ2(k)], with σ2(k) chosen to be 10−3 and ˆˆ ˆ ˆ( ( )) = [ ( ), ( ), ( )]Tx k x k y k kφ θ , 

ˆˆ ˆ ˆ( ( )) = [ ( ), ( ), ( ), ( )]Tx k x k y k k d kγ θ , i.e. 

 

ˆ( )

ˆ( )
ˆ( ( )) =

ˆ( )

( )) ( ) ( ) ( )j j j
r i n i n

x k

y k
x k

k

P x k cos P y k sin P

γ
θ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟− −⎝ ⎠

  (107) 

 

In the calculation of the observation equation Jacobian one gets 

 

1 0 0

0 1 0
ˆ( ( )) =

0 0 1

( ) ( ) { ( ) ( )}

T

j j j j
n n i n i n

J x k

cos P sin P x cos P y sin P

γ

θ θ

−

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟′ ′− − − − −⎝ ⎠

  (108) 

 

The UAV is steered by a dynamic feedback linearization control algorithm which is based 

the flatness-based control analyzed in Section 5: 

 

1 1 1

2 2 2

1 2

2 1

= ( ) ( )

= ( ) ( )

= ( ) ( )

( ) ( )
= , =

d p d d d

d p d d d

u x K x x K x x

u y K y y K y y

u cos u sin
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Under the control law of Eq. (109) the dynamics of the tracking error finally becomes 

 1 1

2 2

= 0

= 0

x d x p x

y d x p y

e K e K e

e K e K e

+ +

+ +

$$ $

$$ $
  (110) 

where ex = x − xd and ey = y − yd. The proportional-derivative (PD) gains are chosen as Kp1 

and Kd1, for i = 1, 2. 
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Fig. 11. Autonomous navigation of the multi-UAV system when the UAVs state vector is 
estimated with the use of the Extended Information Filter (a) tracking of circular reference 
trajectory (b) tracking of a curve-shaped reference trajectory 

Results on the performance of the Extended Information Filter in estimating the state vectors 

of multiple UAVs when observed by distributed processing units is given in Fig. 11. Using 

distributed EKFs and fusion through the Extended Information Filter is more robust 

comparing to the centralized EKF since (i) if a local processing unit is subject to a fault then 

state estimation becomes is still possible and can be used for accurate localization of the 

UAV, as well as for tracking of desirable flight paths, (ii) communication overhead remains 

low even in the case of a large number of distributed measurement units, because the 

greatest part of state estimation is performed locally and only information matrices and state 

vectors are communicated between the local processing units, (iii) the aggregation 

performed on the local EKF also compensates for deviations in state estimates of local filters 

(which can be due to linearization errors). 

6.2 Autonomous UAV navigation with Distributed Particle Filtering 
Details on the implementation of the local particle filters are given first. Each local particle 

filter provides an estimation of the UAV’s state vector using sensor fusion. The UAV model 

described in Eq. (103), and the control law given in Eq. (109) are used again. 
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The measurement update of the PF is 
=1

( ( )| ) = ( ( ))
N i

k ii
k

p x k Z w x k
ξ

δ
−

∑  with 

=1
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=

( ( )| ( ) = )

i i

i k k
k N j j
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w p z k x k
w

w p z k x k

ξ

ξ
− −

−∑
 where the measurement equation is given by ˆ( ) = ( ) ( )z k z k v k+  

with z(k) = [x(k), y(k), ┠(k), d(k)]T, and v(k) =measurement noise. 

The time update of the PF is 
=1

( ( 1)| ) = ( ( ))
N i

k ii
k

p x k Z w x k
ξ

δ+ ∑  where ( ( 1)| ( ) = )i i
k k

p x k x kξ ξ −+∼  

and the state equation is ˆ = ( ( )) ( ) ( )x x k L k U kφ− + , where φ(x(k)), L(k), and U(k) are defined in 

subsection 6.1. At each run of the time update of the PF, the state vector estimation ˆ ( 1)x k− +  

is calculated N times, starting each time from a different value of the state vector i
kξ . 

Although the Distributed Particle Filter can function under any noise distribution in the 
simulation experiments the measurement noise was assumed to be Gaussian. The obtained 
results are given in Fig. 12. 
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Fig. 12. Autonomous navigation of the multi-UAV system when the UAVs state vector is 
estimated with the use of the Distributed Particle Filter (a) tracking of circular reference 
trajectory (b) tracking of a curve-shaped reference trajectory 

In the simulation experiments it was observed that the Distributed Particle Filter, for  
N = 1000 particles, succeeded more accurate state estimation (smaller variance) than the EIF 
and consequently enables better tracking of the desirable trajectories by the UAVs. This 
improved performance of the DPF over the EIF is due to the fact that the local EKFs that 
constitute the EIF introduce cumulative errors due to the EKF linearization assumption 
(truncation of higher order terms in the Taylor expansion of Eq. (2) and Eq. (4)). Comparing 
to the Extended Information Filter, the Distributed Particle Filter demands more 
computation resources and its computation cycle is longer. However, the computation cycle 
of PF can be drastically reduced on a computing machine with a fast processor or with 
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parallel processors (Míguez 2007). Other significant issues that should be taken into account 
in the design of the Distributed Particle Filter are the consistency of the fusion performed 
between the probability density functions of the local filters and the communication 
overhead between the local filters. 
The simulation results presented in Fig. 12 show the efficiency of the Distributed Particle 
Filtering in providing accurate localization for the multi-UAV system, as well as for 
implementing state estimation-based control schemes. The advantages of using Distributed 
Particle Filtering are summarized as follows: (i) there is robust state estimation which is not 
constrained by the assumption of Gaussian noises. The fusion performed between the local 
probability density functions enables to remove outlier particles thus resulting in an 
aggregate state distribution that confines with accuracy the real state vector of each UAV. If 
a local processing unit (local filter) fails the reliability of the aggregate state estimation will 
be preserved (ii) computation load can be better managed comparing to a centralized 
particle filtering architecture. The greatest part of the necessary computations is performed 
at the local filters. Moreover the advantage of communicating state posteriors over raw 
observations is bandwidth efficiency, which is particularly useful for control over a wireless 
sensor network. 

7. Conclusions 

The paper has examined the problem of localization and autonomous navigation of a multi-
UAV system based on distributed filtering over sensor networks. Particular emphasis was 
paid to distributed particle filtering since this decentralized state estimation approach is not 
constrained by the assumption of noise Gaussian distribution. It was considered that m 
UAV (helicopter) models are monitored by n different ground stations. The overall concept 
was that at each monitoring station a filter should be used to track each UAV by fusing 
measurements which are provided by various UAV sensors, while by fusing the state 
estimates from the distributed local filters an aggregate state estimate for each UAV should 
be obtained. 
The paper proposed first the Extended Information Filter (EIF) and the Unscented 
Information Filter (UIF) as possible approaches for fusing the state estimates obtained by the 
local monitoring stations, under the assumption of Gaussian noises. It was shown that the 
EIF and UIF estimated state vector can be used by a flatness-based controller that makes the 
UAV follow the desirable trajectory. The Extended Information Filter is a generalization of 
the Information Filter in which the local filters do not exchange raw measurements but send 
to an aggregation filter their local information matrices (inverse covariance matrices which 
can be also associated to the Fisher Information matrices) and their associated local 
information state vectors (products of the local Information matrices with the local state 
vectors). In case of nonlinear system dynamics, such as the considered UAV models, the 
calculation of the information matrices and information state vectors requires the 
linearization of the local observation equations in the system’s state space description and 
consequently the computation of Jacobian matrices is needed. 
In the case of the Unscented Information Filter there is no linearization of the UAVs 
observation equation. However the application of the Information Filter algorithm is 
possible through an implicit linearization which is performed by approximating the 
Jacobian matrix of the system’s output equation by the product of the inverse of the state 
vector’s covariance matrix (Fisher information matrix) with the cross-covariance matrix 
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between the system’s state vector and the system’s output. Again, the local information 
matrices and the local information state vectors are transferred to an aggregation filter 
which produces the global estimation of the system’s state vector. 
Next, the Distributed Particle Filter (DPF) was proposed for fusing the state estimates pro- 
vided by the local monitoring stations (local filters). The motivation for using DPF was that 
it is well-suited to accommodate non-Gaussian measurements. A difficulty in implementing 
distributed particle filtering is that particles from one particle set (which correspond to a 
local particle filter) do not have the same support (do not cover the same area and points on 
the samples space) as particles from another particle set (which are associated with another 
particle filter). This can be resolved by transforming the particles set into Gaussian mixtures, 
and defining the global probability distribution on the common support set of the 
probability density functions associated with the local filters. Suitable importance 
resampling is proposed so as to derive the weights of the joint distribution after removing 
the common information contained in the probability density functions of the local filters. 
The state vector which is estimated with the use of the DPF was again used by the flatness-
based controller to make each UAV follow a desirable flight path. 
Comparing to centralized state estimation and control the proposed distributed state 
estimation and control schemes have significant advantages: (i) they are fault tolerant: if a 
local processing unit is subject to a fault then state estimation is still possible and accurate, 
(ii) the computation load is distributed between local processing units and since there is no 
need to exchange a large amount of information, the associated communication bandwidth 
is low. In the case of the Extended Information Filter and of the Unscented Information 
Filter the information transmitted between the local processing units takes the form of the 
information covariance matrices and the information state vectors. In the case of Distributed 
Particle Filtering the information transmitted between the local processing units takes the 
form of Gaussian mixtures. The performance of the Extended Information Filter and of the 
Distributed Particle Filter was evaluated through simulation experiments in the case of a 2-
UAV model monitored and remotely navigated by two local stations. 
Comparing the DPF to the EIF through simulation experiments it was observed that the 
Distributed Particle Filter, succeeded more accurate state estimation (smaller variance) than 
the EIF and consequently enabled better tracking of the desirable trajectories by the UAVs. 
This improved performance of the DPF over the EIF is explained according to to the fact that 
the local EKFs that constitute the EIF introduce cumulative errors due to the EKF 
linearization assumption. It was also observed that the Distributed Particle Filter demands 
more computation resources than the Extended Information Filter and that its computation 
cycle is longer. However, the computation cycle of the DPF can be drastically reduced on a 
computing machine with a fast processor or with parallel processors. Other issues that 
should be taken into account in the design of the Distributed Particle Filter are the 
consistency of the fusion performed between the probability density functions of the local 
filters and the communication overhead between the local filters. 
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