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On Saturated PID Controllers for Industrial
Robots: The PA10 Robot Arm as Case of Study

Jorge Orrante-Sakanassi, Victor Santibafez and Ricardo Campa
Instituto Tecnoldgico de la Laguna
Mexico

1. Introduction

Industrial robots are naturally equipped with classical PID controllers, which theoretically
assure semi-global asymptotic stability of the closed-loop system equilibrium for the
regulation case (see, e.g., Arimoto & Miyazaki (1984), Arimoto et al., (1990), Kelly (1995b),
Ortega et al., (1995), Alvarez-Ramirez et al., (2000), Kelly et al., (2005), Meza et al., (2007)).
Uniform ultimate boundedness of the closed-loop solutions can be concluded when the
desired position is a function of time (some stability analyzes for this case can be found in
the works of Kawamura et al. (1988), Wen & Murphy (1990), Qu & Dorsey (1991), Rocco
(1996), Cervantes & Alvarez-Ramirez (2001), Choi & Chung (2004), and Camarillo et al,,
(2008)), but to the authors” knowledge, so far there is not a proof of global regulation for
such controller.

In the search of a practical globally stable PID regulator, some nonlinear control structures
based on the classical PID controller, which assure global asymptotic stability of the closed-
loop system, have emerged. Some works that deal with global nonlinear PID regulators
based on Lyapunov theory and passivity theory have been reported by Arimoto (1995),
Kelly (1998), Santibafiez & Kelly (1998a), and Meza & Santibafiez (1999). Recently, a
particular case of the class of nonlinear PID global regulators originally proposed in
(Santibafiez & Kelly, 1998a) was presented by Sun et al., (2009).

On the other hand, it is well known that saturation phenomena in robot control systems are
intrinsically present when the actuators are driven by sufficiently large control signals. If
these physical constraints are not considered in the controller design they may lead to a lack
of the stability properties.

Even though no one of the controllers mentioned above considers the influence of the
saturation phenomena, there are some works that have been reported to solve this
saturation problem in PD-like controllers for the case of regulation tasks (Kelly &
Santibafiez, 1996; Colbaugh et al., 1997a; Loria et al., 1997; Santibafiez & Kelly, 1997; 1998b).
Solutions without considering velocity measurements and with gravity compensation are
treated in (Loria et al., 1997). A full-state (position and velocity) feedback solution with
adaptive gravity compensation is presented in (Zergeroglu et al., 2000). More recently, new
schemes dealing with this regulation problem of robot manipulators with bounded inputs
have been presented by Zavala & Santibafiez (2006), Zavala & Santibafiez (2007), Dixon
(2007), Alvarez-Ramirez et al., (2003), and Alvarez-Ramirez et al., (2008). An adaptive
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218 Advanced Strategies for Robot Manipulators

approach involving task-space coordinates, and considering the uncertainities of the
kinematic model of the robot manipulator is proposed in Dixon (2007). Also, for the
bounded input tracking case, the following works have appeared in the control literature:
Loria & Nijmeijer (1998), Dixon et al., (1999), Santibafiez & Kelly (2001), Moreno et al.,
(2008a), Moreno et al., (2008b), Aguinaga-Ruiz et al., (2009), Zavala-Rio et al., (2010).

Few saturated PID controllers (that is, bounded PID controllers taking into account the
actuator torque constraints) have been reported: for the case of semiglobal asymptotic
stability, a saturated linear PID controller was presented in (Alvarez-Ramirez et al., 2003)
and (Alvarez-Ramirez et al., 2008); for the case of global asymptotic stability, saturated
nonlinear PID controllers were introduced in (Gorez, 1999; Meza et al., 2005; Santibanez et
al., 2008). The work introduced by Gorez (1999) was the first bounded PID-like controller in
assuring global regulation; the latter works, introduced in (Meza et al, 2005) and
(Santibafiez et al., 2008), also guarantee global regulation, but with the advantage of a
controller structure which is simpler than that presented in Gorez (1999). A local adaptive
bounded regulator was presented by Laib (2000).

Most of nonlinear PID global regulators for robot manipulators are based on the energy-
shaping methodology. There are two approaches: those controllers which do not take into
account the effects of actuator saturations, and those which consider the saturation
phenomena introduced only by the actuators. However, the actuators are not the only
components of the closed-loop system that produce saturation constraints; there exist other
devices, such as the servo-drivers and the output electronics of the control computer,
presenting saturation effects.

In the practice, industrial robots are equipped with a position control computer which
produces the commands of desired joint velocities to the joint actuator servo-drivers. In such a
sense, Santibafiez et al. (2010) recently proposed a new saturated nonlinear PID regulator for
robot manipulators that considers the saturation phenomena of both the control computer, the
velocity servo-drivers and the torque constraints of the actuators. The structure of this
controller is closer to the structure of the practical PID controllers used in the industry. Fig. 1
shows the scheme that was considered to design such saturated nonlinear PID controller; in
this figure the constraints over the input and output commands of the servo driver and the
torque constraints of the actuators are clearly shown. Notice that because a cascade connection
of two saturation blocks can be reduced to only one saturation function, and for simplicity, the
saturation of the velocity PI loop and the saturation of the actuators, are both represented by
one saturation block in Fig. 1; also, the driver is assumed to have an ideal inner torque
controller. In such a work a proportional outer position loop and a PI inner velocity loop
constitute the main structure of the controller, which is intrinsic to the industrial robots if we
consider the typical low-level controllers in the actuator servo-drivers.

The contribution of this chapter is twofold: first, we present a variant of the work presented
by Santibafiez et al. (2010), where now the controller is composed by a saturated velocity
proportional (P) inner loop, provided by the servo-driver, and a saturated position
proportional-integral (PI) outer loop, supplied by the control computer (see Fig. 2). Such a
controller also has a structure that naturally matches that of the practical industrial robots.
Secondly, we present an experimental evaluation on the PA10-7C robot arm, comparing the
nonlinear PID regulator previously reported in Santibafiez et al. (2010) and the controller
proposed in this chapter.

By following similar steps as those given in Santibafiez et al. (2010) we employ the singular
perturbation theory to analyze the exponential stability of the equilibrium of the closed-
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Fig. 1. Practical nonlinear PID controller with bounded torques for robot manipulators.
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Fig. 2. Variant of the practical PID controller with bounded torques for robot manipulators.

loop system. This result guarantees that exponential stability of the classical PID linear
regulator in industrial robots is preserved even though the saturation phenomena due to the
electronic devices and/or the actuators are present.

The remainder of this chapter is organized as follows: Section 2 states the dynamic model of
a serial n-link rigid robot manipulator in open-loop, some of its properties, as well as some
considerations, assumptions and definitions that are useful throughout the analysis. The
proposed control scheme is presented in Section 3. Section 4 shows the singularly perturbed
system to analyze. Section 5 states the stability analysis and proves that the control objective
is achieved. Section 6 is devoted to the real-time experimental evaluation carried out on the
PA-10 robot arm. The conclusions of the work are presented in Section 7.

Throughout this chapter, we use the notation Amin{A(x)} and Amax{A(x)} to indicate the
smallest and largest eigenvalues, respectively, of a symmetric positive definite bounded
matrix A(x), for any x € R". Also, we define Amin{A} as the greatest lower bound (infimum) of
AminfA(x)}, for all x € R”, that is, Amin{A} = infi " Amin{A(x)}. Similarly, we define Ama{A} as
the least upper bound (supremum) of Amax{A(x)}, for all x € R”, that is, Amax{A} = supxcr”
Amax{A(x)}. The norm of vector x is defined as || x || = m and that of matrix A(x) is defined
as the corresponding induced norm ||A(x)|| = \/ Zmax{A(x)T A(x)} .

2. Preliminaries

2.1 Robot dynamics
The dynamics of a serial n-link rigid robot, without the effect of friction, can be written as
(Spong & Vidyasagar, 1989):
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220 Advanced Strategies for Robot Manipulators

M(q)q+C(9,9)9+8(q) = 7 Q)

where g, q,§ € R"are the vectors of joint positions, velocities and accelerations, respectively,
7 € R"is the vector of applied torques, M(q) € R™" is the symmetric positive-definite inertia
matrix, C(g,q) € R™" is the matrix of centripetal and Coriolis torques, and g(q) € R" is the
vector of gravitational torques obtained as the gradient of the robot potential energy U(g), i.e.

oU(q)

8(‘7)=7' 2)

We assume that all the joints of the robot are of the revolute type.

2.2 Properties of the robot dynamics
We recall two important properties of dynamics (1) which are useful in our paper:

Property 1. The matrix C(g,4) and the time derivative M (q) of the inertia matrix satisfy
(Koditschek, 1984; Ortega & Spong, 1989):

1 . .
qT{EAﬂq)—CWAD}q=0 vV q,qeR".

0
Property 2. The gravitational torque vector g(q) is bounded for all g € R". This means that

there exist finite constants y; > 0 such that (Craig, 1998):

Sup |gl(q)|s7/l i=1,2,'-',1’l, (3)
geR"

where gi(q) stands for the i-th element of g(q). Equivalently, there exists a constant k" such
that ||g(9)|| < k', for all g € R". Furthermore, there exists a positive constant kg such that

for all g € R", and ||g(x) — g(W)|| < kel|x — y||, for all x,y € R". Moreover, a simple way to

Kg 21| max
1].9

A less restrictive constant k,. can be computed by:
1

compute k, is:

28i(q)

J where i=1,2,...n and j=1,2,...n. 4)

gi(9)

kg. >n[max J where i=1,2,...n and j=1,2,...n. )
1

jq
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2.3 Useful theorems
Here, we recall two versions of the Mean-Value Theorem, which are key in finding the less

restrictive constants k. related with the gravitational torque vector.
1

Theorem 1. [Kelly et al., (2005), p. 384] Consider the continuous function fi R" — R. If
f(z1,22 . .., zn) has continuous partial derivatives then, for any constant vectors x,y € R", we have

- 4T

z=¢

2= ¢

where & € R" is a vector suitably chosen on the line segment which joins vectors x and y. 0

Theorem 2. [Kelly et al. (2005), p.385] Consider the continuous vectorial function f: R" — R™. If

fi(z1,2z2 . . . ,zu) has continuous partial derivatives for i =1, . .., m, then, for each pair of vectors
x,y € R"and each @ € R" there exists & € R" such that:

- felo=of L ey, )
z=¢

where & € R" is a vector on the line segment that joins vectors x and y. 0

2.4 Problem formulation
Before presenting the formulation of the control problem, we recall some useful definitions.

Definition 1. The hard saturation function is denoted by sat(x;k) eR", where

Sat(xl,'kl) X1 k1
t(xr k k

sat(x; k) = 54 (x2 2) , X = x:z , k= :2 ,
sat(x,,;k,) X, k,

with k; being the i-th saturation limit, i = 1,2, . . . ,n, and each element of sat(x;k) is defined as:

X; if | X; |S ki
sat(xi;ki) = ki if X; > ki
—k: if X; < _ki

1

www.intechopen.com



222 Advanced Strategies for Robot Manipulators

Furthermore, the control scheme proposed in this chapter involves special saturation
functions which fit in the following definition.

Definition 2. [Zavala & Santibanez (2006)] Given positive constants ! and m, with [ < m, a
function Sat(x; I,m) : R—R: x — Sat(x; [,m) is said to be a strictly increasing linear saturation
function for (I,m) if it is locally Lipschitz, strictly increasing, C2 differentiable and satisfies:

1. Sat(x; [,m)=xwhen |x| <1

2. |Sat(x; m)| <mforall x € R. O

For instance, the following saturation function is a special case of the linear saturation given
in Definition 2:

x+1

—lﬂm—l)tanh[ j if x<-I
m-—1

Sat(x;I,my= x if [x|<] 8)

H(m-1) tanh(

x—_ll] if x>1

n saturation functions of the form (8) can be joined together in an n x 1 saturation function
vector denoted by Sat(x; [,m), i.e.,

Sat(xq;l;,my)
Sat(x-;l,,m
Sat(x;I,m)= ( 2: 2/1M2) /
Sat(x,,;1,,m,)
where x, [, m eR”, that is,
X1 h 1y
X2 I my
Y=L I= N Al
X l m

Consider the robot dynamic model (1). Assume that each joint actuator is able to supply a
known maximum torque 7;"** so that:

| 7; |< 7™, i=12,...,n )

where 7; stands for the i-th entry of vector 7. In other words, if u; represents the control
signal (controller output) before the actuator, related to the i-th joint, then

7; = rlmaxsat( :\;X ], (10)

4]

fori=1,...,n, where sat(") is the standard hard saturation function. We also assume:

Assumption 1. The maximum torque 7;"®* of each actuator satisfies the following condition:
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" >y, (11)

where y; was defined in Property 2, withi=1,2, ...n. O
This assumption means that the robot actuators are able to supply torques in order to hold
the robot at rest for all desired joint positions g; € R".

The control problem is to design a controller to compute the torque 7 €R" applied to the
joints, satisfying the constraints (9), such that the robot joint positions g tend asymptotically
toward the constant desired joint positions gq.

3. Proposed control scheme

In this section we present a nonlinear PID controller which can be seen as a practical version
of the classical PID control of robot manipulators.
The proposed nonlinear PID controller has the form:

r = Sat[K,,[Sat(K,,j+ w*;lpl,m D= ql Ly, my] (12)

. t
w = K OL7 dr (13)

where K, K,y and K, are diagonal positive definite matrices. This control law is formed by
two loops: an outer joint-position proportional-integral PI loop and an inner joint-velocity
proportional P loop, and considers the saturation effects existing in the output of the control
stage (see Figure 2), where Sat[K}, [Sat(K,,,q + w*,l;i,m;i) —ql; l,my] is a vector where each
element is a saturation function as in Definition 2 for some (l,,m,), where I, and m, are
vectors with elements [,; and m,, respectively, and i = 1,2, ... ,n. The control law (12) can be
rewritten as:

t = Sat[Sat(K,q+ w; [, m,;)—Kyq; 1, m,] (14)
t
w = Ki'[ g dr (15)
0
where
K, =K, Ky, Ki = Ky Kipy, Ky = Kpppy L= Ky Ly 11 5= Ky

and the following assumption is satisfied.
Assumption 2: The saturation limits of the PI and P loops satisfy:

Vi <lpi, <mp; (16)
i < lPl <my, < T, (17)
0
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224 Advanced Strategies for Robot Manipulators

Remark: In practice, the saturation constraints of the electronic devices and the actuators
are, in fact, hard saturations like those in Definition 1. However, with the end of carrying
out the stability analysis, they can be aproximated by linear saturation functions like those
defined in Definition 2, with [ < m, and [ arbitrarily close to m.

In order to simplify the notation, henceforth, we will omit, in the argument, the limits of the
saturation functions.

4. Singularly perturbed system

4.1 Closed-loop system
By substituting (14) into the robot dynamics (1), we obtain

T L ]
| . _ . N

—| 4 |=| M(a) " [Sat[Sat(K, 7+ w) - K, 1-C(9,)4- 8(a)] (18)
Lw] | K;q i

which is an autonomous differential equation with a unique equilibrium point given by
[§7 gTwT’ =[0T 0T g(q4)T |" € R*, where we have used Assumption 2, and (3), to get that
Sat(Sat(w)) — g(94) = 0 implies w = g(q4). In order to move the equilibrium point of (18) to the
origin, we apply the change of variables x = w — g(74). Now the new closed-loop system is
given by:

j —q
| =| M) M satisat(K, 3+ x+ g(a.0) - Kyl Cla.di-g(a)] | (19)
L] | K;q _

The previous closed-loop system can be studied as a singularly perturbed system. To this
end, system (19) can be described as two first-order differential equations as follows:

—x = Kiq (20)

dt
[ ! . (21)

afi
dtM M(q) " [Sat[Sat(K, i+ x+ (7 1)) - Kol Clg.0)i— 8(0)]

Moreover, by choosing the integral gain matrix as K; = ¢K; , where K:is a diagonal
positive-definite matrix and £ > 0 is a small parameter, and letting t = et be a new time-
scale (t' is a slow time compared to t), we can rewrite (20)-(21) as

—x = K;q (22)
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On Saturated PID Controllers for Industrial Robots: The PA10 Robot Arm as Case of Study 225

dlq =q

8—'|:~:| = -1 - . oy . (23)
dt'| g M(q) " [Sat[Sat(K, g+ x+ g(94)) — K, q]1-C(q.4)q - &(q)]

where, in the forthcoming analysis, and in accordance with the singular perturbation theory,
x in (23) will be treated as a fixed parameter, due to its slow variation.

4.2 Equilibrium points
For each fixed x representing the frozen variable as a fixed parameter in (23), the
equilibrium points are the solutions of the nonlinear system:

g = 0, (24)
Sat[Sat[K g+ x+ g(q4)11- 8(q) = 0. (25)
According to Definition 2 and Assumption 2, (25) can be written as:
K,q+ x+ g(q4) - 8(q)=0. (26)
Now, the Contraction Mapping Theorem (Kelly et al., 2005; Khalil, 2002), guarantees that
(26) has a unique solution § = hi(x) € R" provided that
k, >k, (27)

is satisfied (see Appendix A).

Then we have that, for each x € R", the unique equilibrium point of (23) is:

{Z}{ hlé x)} h( x)eR2". (28)

Consequently, we have that:

x=h7\(§)=-K,4- 8(9.)+ 8(q) (29)

which we will use later on.

4.3 Overall singularly perturbed system
In order to proceed with the stability analysis, we shift the equilibrium point of (23) to the
origin. To this end, we make the following change of variables:

t ag(ty—h

{ i )Hq< ) ﬂx)} 60
Yat) q(t)

which implies that § = y1 + hi(x). Then, (22)-(23) can be now represented by the new

variables as a singularly perturbed system given by
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226 Advanced Strategies for Robot Manipulators

PR Ki[y1+ ha(x)] (31)
i} , *
Y1 —yz—g{%ix)}&[yﬁ hq(x)]
5% = (32)
2 M(q g~y 1-T1(x)) " [Sat[Sat[K,,(y1— hy(x)) +x+8(9 2)] - K,y 2]
—C(qa=y1=h1(x) Yy 2)y 2~ 8(9 4=y 1=h1(x))]

5. Stability analysis

According to the theory of singularly perturbed systems (Khalil, 2002), the origin of (22)-
(23) is asymptotically stable if and only if the origin of (31)-(32) is asymptotically stable. It is
important to remember that x is a fixed parameter in (23) and (32), this is because t' and x
are varying slowly since, in the t time scale, they are given by (Khalil, 2002):

t'=ty+et, x=x(ty+et), (33)

being to the initial time. The setting of ¢ = 0 freezes these variables at +' = fopand x = x(to)

(initial conditions).

By simplicity, we divide the stability analysis in two parts:

e  First, we will prove asymptotic stability and local exponential stability of the origin of a
saturated PD controller with desired gravity compensation plus a constant vector x,
which can be seen as a constant control input.

e Second, based on a theorem of singularly perturbed systems, we will prove that the
origin of (22)-(23) is locally exponentially stable.

5.1 Stability analysis of a Saturated PD Controller with Desired Gravity Compensation
plus a constant vector x

The control law that describes the proposed Saturated PD Controller with Desired Gravity
Compensation plus a constant vector x is given by:

7= Sat[Sat(Kpé+ x+ g(q4)— K, g1 (34)

By substituting (34) into the robot dynamics (1), we obtain

1m= B o 5)
dt| q | | M(q) "[Sat[Sat(K,q+ x+ g(q 1)) —Kyq]1-C(q,9)9— 8(q)]

whose equilibrium points are the solutions of the nonlinear equations (24)-(25) and they

T T
have already been proven to have a unique solution [éT qTJ = [h 1(0F OT} , provided

that kp, > kg. is satisfied.
1 1
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5.1.1 Asymptotic stability analysis
To carry out the stability analysis of the equilibrium of (35), we propose the following
Lyapunov function candidate, which is inspired from one in (Alvarez-Ramirez et al., 2008):

W(.4) =4 M(@)i+ Wa(3) @9

where

7

i i p

Wi@) = Y| “SatlSat(h, i+ xi+ i@ )+ U(0.-0)
i=1

Z hy (x)
| satlSatk, 1+ x i+ gi(g )M - U(q - ()
=1

By following similar steps to those given by Zavala & Santibafiez (2007) (see Appendix B)
we prove that (36) is a positive definite and radially unbounded function, provided that
kpi >kgj . The time derivative of W(g7,q) along the trajectories of (35), and after some
algebraic simplifications, results in:

W(3,4) =q" Sat[Sat(K,, 3+ x+ g(q ) — K, 14" Sat[Sat(K, 3+ x+ g(q4))]. (37)

Finally, by using the following property of linear saturation functions (Santibafiez et al.,
2010):

g;[Sat(z; — 4;) — Sat(z;)] < — | Sat(z; - §;) - Sat(z;) |

we have that W(3,4) is upper bounded by:

S . _ . 2
W(q,q)S—HSat[Sat(qu+ x+ 8(94)) — Kyq]—Sat[Sat(K, g + x+ g(qd))]H <0.
Thus W(§,q) is a negative semidefinite function and we can conclude stability of the

T T
equilibrium point [E]T qT} =[h1(x)T OT} e R of (35). We can use the LaSalle’s

Invariance Principle (Kelly et al., 2005) to conclude that the equilibrium point is, in fact,
globally asymptotically stable. To this end, let us define Q as:

Q={3.qeR" W(3,4)=01={4=0,4eR"}.
Notice that, from (35),

q(t)=0= q(t)= 0= Sat[Sat(K, g+ x+ g(q4))] - 8(74-9) =0.

Furthermore, under the assumption (27) we can assure that

Sat[Sat(K, 7+ x+ g(q4)]- §(94-9) =0= = hq(x).
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228 Advanced Strategies for Robot Manipulators

Therefore, from LaSalle’s Invariance Principle we conclude that the equilibrium point

T T
[ﬁT qT} = [hl(x)T OT} e R?" of (35) is globally asymptotically stable.

5.1.2 Local exponential stability analysis

Before proceeding with the stability analysis of this section, we recall a useful existing
lemma presented in (Kelly, 1995a).

Lemmal. Consider the nonlinear system:

y=A(y)y+B(y) f(v), (38)

where y € R", A(y) and B(y) are m>m nonlinear functions of y, and f (y) is a mx1 nonlinear
function of y. Assume that f (0) = 0; hence, y = 0 € R" is an equilibrium point of the system
(38). Then, the linearized system of (38) around the equilibrium y = 0 is given by:

3'/={A(0)+B(O)%;O)}y- (39)

0
In order to prove that the equilibrium point of the closed-loop system (35) is locally
exponentially stable, we consider a local linearization of the closed-loop system around the

T T
equilibrium point [c}T qT} = [hl(x)T OT} e R?" (Khalil, 2002). In the neighborhood of
this equilibrium point, the closed-loop system (35) can be represented by:
M(q)q+C(q,9)q+ g(q9) - K, g+ K- x— g(q,4) =0. (40)

A local change of variables y; = § — hi(x), and y> = g leads to:
M(q 4= y1= ha(x)) Y2+ C(q 4= Y1~ 111(x), Y2)y 2

+ 89— y1= h1(x)) = Kply 1+ h1(x)]+ Ky y 2= x= 8(94) =0

whose unique equilibrium is the origin, provided that (27) is satisfied. The previous
equation can be written as:

y=A(y) y+B(y) f(v)- (41)

where,

o d| U

y At Yo

0 -1

0 —M(q4~ y1- h1(x)) ' [Ky +C(q 4~ y1— ha(x), ¥2)]

=
S
I

T
0 M(q4-y1- hqy(x))"
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0
fly) = {Kp[yﬁ hi(x)]+ x+ 84— 8(G 4~ y1— h1(x))}.

According to Lemma 1, the linearized system from (41), around the equilibrium y = 0, has
the form (39), with:

B = 0 0 }
0 Mg ()"
of© _ [0 0
oy K 0
which can be compacted in:
diyr|_ 0 -1 Y1
g 4 (42)
At Y2 ] | M(q4=h(x))" K -M(q4=hq(x))" K, || Y2
]

where K is given by:

K* =K — ag(q i~ Y1 _hl(x))
g Y1

Notice that if (27) is satisfied then K isa positive definite matrix (Hernandez-Guzman et
al., 2008). To analyze the stability of the origin of (42), we propose the Lyapunov function
candidate:

1 1 x
WL(y1/y2)=Eng(q = m(x)y 2+ yiK'y, (43)
which is a positive definite function. The time derivative along the trajectories of (42) is:
Wyiy2) = yaM@a ha@)iar yiK i
= ¥alK y1-Koyol- y1K'y o= -y 5K,y
which is a negative semidefinite function. By using the LaSalle’s Invariance Principle we can

conclude global asymptotic stability of the closed-loop system (42). To this end, let us define
Q as:

Q={y1,y2eR":W(y1,y2)=0}={ y,=0, y,eR"}. (44)
Notice that, from (42):

Yo(H)=0= 7o(t)=0= M(q 4~ hq(x)) K y1=0. (45)
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230 Advanced Strategies for Robot Manipulators

Furthermore, under assumption (27) we can assure that

M(q 4~ h1(x)) 'K y1=0= y,=0.

Therefore, from LaSalle’s Invariance Principle we conclude that the origin of the linear
system (42) is globally asymptotically stable. This implies that the eigenvalues of | in (42) are
located in the left-hand side of the complex plane (see Theorem 4.5 in Khalil (2002)), and
hence, the origin of the linear system (42) is exponentially stable (see e.g. Theorem 4.11 in
Khalil (2002) that shows that, for linear systems, uniform asymptotic stability of the origin is
equivalent to exponential stability). According to this, exponential stability of the origin for
the linear system (42) implies the local exponential stability of the origin for the nonlinear
system (41) (see e.g. Theorem 4.13 in Khalil (2002)).

Finally, we can conclude that the equilibrium point of the nonlinear system (35) is locally
exponentially stable. So we have proven the following:

Proposition 1. Under Assumption 2, and (27), the control law (34) guarantees global
asymptotic stability and local exponential stability of the closed-loop system (35) with

| 7;(t)[< 7" foralli=1,2,..,nand t 2 0.

5.2 Stability analysis of the singularly perturbed system.
To prove the exponential stability of the origin of (22)-(23), we recall an existing theorem:
Theorem 3 (Khalil, 2002): Consider the singularly perturbed system

x = f(t'x,z¢) (46)

ez =g(t'x,z,e¢). 47)

Assume that the following are satisfied for all (t',x,€) € [0,00) x B, x [0, €], with B, = {x € R":

[x[| =< 7}:

a. f(t,0,0,&) =0and g(#,0,0,¢)=0.

b. The equation 0= g(t,x,z,0) has an isolated root z = h(t',x ) such that h(t,0) = 0.

c. The functions f, g, h and their partial derivatives up to the second order are bounded for z —
h(t,x) e B, withB,={y € R : |ly|| < p}.

d.  The origin of the reduced system

x =f(¥x,ht,x),0) (48)
is exponentially stable.
e.  The origin of the boundary-layer system
dy , :
i = g(t',x,y+ h(t',x),0) (49)

is exponentially stable, uniformly in (t' ,x).
Then, there exists €* > 0 such that, for all € < e *, the origin of (46)-(47) is exponentially stable. 0
We are now ready to present our main contribution.
Proposition 2. Consider the robot dynamics (1) in closed-loop with the practical saturated
PID control law (12). Under Assumption 2, and (27), the origin of the closed-loop system
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(22)-(23) is locally exponentially stable, and therefore, the equilibrium point of (18) is locally
exponentially stable. Besides | 7 (f)| < 7" foralli=1,2,..,nand t 2 0. 0
Proof. Notice that (46)-(47) correspond to (22)-(23), respectively, with

f(t'x,z,e) = K;g

gt x,z,e) = 4 . K . e
| M(q) "[Sat[Sat(K, g+ x+ g(q.4)) - Ky q1-C(q,9) - 8(9)]
z = _El e R?".
4

In order to complete the stability analysis, we are going to check each item of the Theorem 3.
a) By substituting x = ¢ = g =0in (22)-(23), it is straightforward to verify this assumption.
b) This item is easily fulfilled by noting that the root of g(t',x,z,&) has been obtained in
Section 4.2, where it was proven that, for each x € R", the unique root of (23) is z = h(x) =
[(x)" 0"]" € R*", provided that (27) is satisfied. On the other hand, we know from (28) that
§ = hi(x), and therefore, when x = 0 we have that § = /;(0); then, from (29), 0 = hi' (§) =
—[KpKpe g+ g(q0) — (94 — g)] which under assumption (27) has a unique solution §= 0.
Hence, 1(0) = [l1(0)" 0"]" = [070"]" and assumption b) is verified.
c) This is straightforward given that the right-hand side of (22)-(23) is C2.
d) By substituting the isolated root z = h(x) and € = 0 in (22), thatis ¢ = hi(x) and g =0, we
obtain the so-called reduced system, which is given by:

A o=Kh (x) (50)
ar - !
whose unique equilibrium point results from hi(x) = 0 and is given by x = h{l 0 =0
provided that (27) is satisfied. Comparing the reduced system (50) with the terms used in
Theorem 3, we have x = f(t',x,h(t,x),0) = K;hl(x).
On the other hand, to analyze the origin of the reduced system (50), let us define the
quadratic Lyapunov function candidate

*

V(=7 1K) x 6
which satisfies

=l (NP 2 V)2 2 Al (K2 2

and hence, it is a positive definite and radially unbounded function. The time derivative
along the trajectories of (50) is given by:

*

V(x)=x (K ) x= xThy(x). (53)
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Consider (29) with g = hi(x):

x==Kph(x) = g(q4) + 8(q.4= h(x)), (54)
substituting in (53) we have

hix = hy(x)' [-K,h(x)- g(q.2)+ 8(q4~ h(x))]

= hy(x) Ky hy(x) + ha(0)T[-8(0.4) + 8(9.4— ha(x))]

hl(x)T{K . 28(2) }hl(x)
2= ¢

P 0z

IN

where we use Theorem 2, and

K +@g_(z) (55)

Poooz

z=¢
is a positive definite matrix provided that

N | 281()
k, > <D for i=1,...,n. 56
b Qma{ o (56)

j=1 )

is satisfied (Hernandez-Guzman et al., 2008).
Note that (27) implies (56). Therefore

V(x)<- hl(x)T{Kp +533+ZZ)

] I1(5) <~ {K,ﬂ + B

}lliu(x)ll2 (57)

z=¢ z=¢

Notice that, due to h(0) = 0, the time derivative (53) is a negative definite function and we
can conclude global asymptotic stability of the origin of (50).
Moreover, we have that:

x| x'x
= [-K,hy(x)-8(7)+ §(q 4= ha()] =K h(x) - 8(7.4)+ 8(q4— ha(x))]
= hq(x)"Kj hy(x)+2h4(x) K= §(q.4) + 8(94~ ha(x))]
+- 8(qa)+ 8(q.4~ R - 8(q0) + 8( g 4~T1(x))]
S Dmax (K12 + 2k g Ao 1K} + K21y ()]

= [imax{Kp} + kg]2 ||h1(x)||2 )
Then

I 2 > 1 2’ 8
Il = 5
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and we have that

o8(z)
—/Imm{KﬂaZ Z_é} ,
] (59)

V(x)<
PR

Therefore, from (52) and (59), we can conclude that x = 0 is a globally exponentially stable
equilibrium point for the reduced system (50) provided that (27) is satisfied (see Theorem
4.10, Khalil (2002)). So we have verified the assumption d) of Theorem 3.

e) By setting ¢ = 0 and considering that g% = E;—]: in (32), we obtain the boundary-layer
system:
Y1 ~Y2
A = M@ e me| satSat(Ky (v mE) s+ x)Kava || 60
v2 ~C(q = y1~ h1(x), y2)y2~ 8(da= y1— ha(x)) ]
dy 8(tx,y+ h(t,x),0)

dt

where, according to (33), x is frozen at x = x(fo ), which corresponds to the robotic system
under the Saturated PD Controller with Desired Gravity Compensation plus a constant
vector x, whose unique equilibrium point is the origin, provided that (27) is satisfied.

The stability analysis of (60) has already been carried out in the previous subsection, where
we concluded, in accordance with Proposition 1, that the origin of (60) is asymptotically
stable and locally exponentially stable, uniformly in x. The uniformity in x is given
straightforward with the asymptotic stability of the origin of (60) because it is an
autonomous system. This checks the assumption e). Finally, we conclude, in accordance
with Theorem 3, that the equilibrium point of the closed-loop system (18) is locally
exponentially stable for a sufficiently small e. Under Assumption 2 the constraints (9) are
trivially satisfied. This completes the proof. 0

6. Experimental results

6.1 The PA10 robot system

The Mitsubishi PA10 arm is an industrial robot manipulator which completely changes the
vision of conventional industrial robots. Its name is an acronym of Portable General-Purpose
Intelligent Arm. There exist two versions (Higuchi et al., 2003): the PA10-6C and the PA10-
7C, where the suffix digit indicates the number of degrees of freedom of the arm. This work
focuses on the study of the PA10-7CE model, which is the enhanced version of the PA10-7C.
The PA10-7CE robot is a 7-dof redundant manipulator with revolute joints. Figure 3 shows
a diagram of the PA10 arm, indicating the positive rotation direction and the respective
names of each of the joints. The PA10 arm is an open architecture robot; it means that it
possesses (Oonishi, 1999):
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e A hierarchical structure with several control levels.
¢  Communication between levels, via standard interfaces.
e An open general-purpose interface in the higher level.

Axis

Fig. 3. Mitsubishi PA10-7CE robot

This scheme allows the user to focus on the programming of the tasks at the higher level of
the PA10 system, without regarding on the operation of the lower levels. The control
architecture of the PA10-7CE robot arm has been modified in order to have access to the
low-level signals and configure it in both torque and velocity modes (Ramirez, 2008).

6.2 Numeric values of the parameters for the PA10-7CE.
The vector of gravitational torques for the PA10-7CE is (Ramirez, 2008):

2@ =[21(0) @) - g@]

where
gi(q) = 0
2 (q) = 9.81(-6.9472sin(q,) — 3.1393(cos(q, ) cos(g3)sin(q4) + sin(q, ) cos(q4))

~0.004(((~c0s(45) c0s(43)c0s(q4) + sin(q,)sin(4))cos(qs)
+c08(42)sin(g3)sin(gs))sin(ge) ~ (cos(4)cos(q3)sin(q4) + sin(q) cos(44))c0s(qe))
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g3(q) = 9.81(3.1393sin(g,)sin(g3)sin(q,4) — 0.004((sin(g, ) sin(g3) cos(q4) cos(qs)
+sin(q, ) cos(q3)sin(qs))sin(qe ) + sin(q ) sin(q3) sin(q, ) cos(qs )

84(9) = 9.81(-3.1393(sin(q;) cos(q3)cos(q4) + cos(q; )sin(qy)) — 0.004((sin(q2) cos(q3 ) sin(q4)
—c08(q)c0s(q4)) cos(q5)sin(qe ) — (sin(q2) cos(q3) cos(q4) + cos(q2)sin(q4)) cos(qe)))

85(7) = 9.81(-0.004(-sin(gs)(-sin(q,)cos(q3)cos(q4)
—cos(q;)sin(qy)) +sin(q,)sin(q3)cos(qs))sin(qe )

86(q) = 9.81(-0.004(((~sin(q2)cos(q3) cos(q4) — cos(q2)sin(q4)) cos(qs)
+sin(q;)sin(qz)sin(qs)) cos(qe) + (sin(q, ) cos(q3)sin(q4) — cos(q,) cos(q4))sin(q )))

87(q) =0

The following expressions recall how the parameters of interest can be found:

8i(q)

8i(q)

k, >n max
i,j, q

, kg 21 max
; !
i

' 2.,.2 2
yizsuplgi@)], kK= \r+rd+. 72
q
The numerical values of the parameters for the PA10-7CE are shown in Table 1. The table
also shows the torque and velocity saturation limits of each joint, which are employed to
select the corresponding limits of the saturation functions in the controller.

Parameter | Joint1 | Joint2 | Joint3 | Joint4 | Joint5 | Joint6 | Joint7 Units
kgz- 0 909.58 | 216.39 | 43225 | 0.8240 | 1.3734 0 [Nm/rad]
Vi 0 129.94 | 3091 61.75 | 0.11772 | 0.1962 0 [Nm]
T 232 232 100 100 14.5 14.5 14.5 [Nm]
(e 1 1 2 2 27 2 2 [rad/s]
kq 909.58 [Nm/rad]
k' 147.1513 [Nm]

Table 1. Numerical values of the parameters for the PA10-7CE

In order to illustrate the stability results described in the previous pages, this section shows
a real-time experiment essay on the PA10-7CE robot system, using the controller proposed
in this chapter, given by equation (12) and labeled in this section as Sat(Sat(PI)+P)), and the
controller presented in Santibafiez et al. (2010), labeled Sat(Sat(P)+PI),whose equation is
given by
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;= Sat[KpdSat(KpC(j; Ly ) = Kygd + ;1 mpl} 61)

w = KidJ;[Sat(Kpcq(r); lp, my)— q(r)] dr

where K4, Ky, Kig € R™" are diagonal positive definite matrices, and we take o = 1 (see

Fig. 1).
Each of the experiments consisted in taking the robot from the vertical home position

(where g = 0) to the following desired position: g, = [—% 5555 -3 %]T rad.

6.3 Sat(Sat(Pl)+P) scheme

Table 2 shows the values of the gains and the saturation limits for each joint of the proposed
control scheme (12). It is easy to check that the assumptions (16), (17) and (27) are fulfilled.
Figure 4 shows the evolution of the position error for each joint. It can be seen that transient
responses are relatively fast (lower than 1 second for joints 4 to 7 and lower than 2 seconds
for joints 1 to 3) without overshoot. The steady state error for each joint is lower than 0.4
degrees. Figure 5 shows the applied torque for each joint. The torques evolve inside of the
prescribed limits. For the joints 4 to 7 the torques reach, sometimes, the permitted torque
limits, confirming in this way the stability theoretical result.

Gain | Joint1l | Joint2 | Joint3 | Joint4 | Joint5 | Joint6 | Joint7 Units
Kyp 10.0 100.0 60.0 60.0 50.0 35.0 30.0 [1/s]
K; 0.01 0.01 0.3 0.01 0.5 0.01 0.01 [1/s2]
Ky 90.0 150.0 35.0 85.0 10.0 6.0 12.0 [Nm s/rad]
l;,i 0.95 0.95 1.75 1.75 55 55 55 [rad/s]
my |1 1 1.9 1.9 6 6 6 [rad/s]
Iy 185 185 75 75 12 12 12 [Nm]
my 200 200 80 80 13 13 13 [Nm]

Table 2. Values of the control parameters selected for the Sat(Sat(PI)+P) scheme

6.4 Sat(Sat(P)+Pl) scheme

Table 3 shows the values of the gains and the saturation limits for each joint of the control
scheme (61). The parameters of the controller have been chosen in such a way that
assumptions for the controller (61), given in (Santibafiez et al., 2010), are satisfied. Figure 6
shows the position error for each joint. Slightly slower transient responses were obtained,
but without overshoot. The steady state errors are similar to those obtained for the
Sat(Sat(Pl)+P) scheme. Figure 7 shows the evolution of the applied torques, which are more
noisy than those of the proposed scheme.
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Fig. 4. Position errors for the (Sat(Sat(PI)+P)) scheme
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Fig. 5. Applied torques for the Sat(Sat(PI)+P) scheme
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Gain | Joint1l | Joint2 | Joint3 | Joint4 | Joint5 | Joint6 | Joint7 Units
Kpe 3.0 15.0 8.0 8.0 1.2 2.25 1.0 [1/s]
Kpa 40.0 280.0 45.0 110.0 15.0 12.0 8.0 [Nm s/rad]
Kia 15.0 18.0 10.0 12.0 5.0 8.0 4.0 [Nm/rad]

Iy 0.95 0.95 1.75 1.75 55 55 55 [rad/s]
my 1 1 1.9 1.9 6 6 6 [rad/s]
Lyi 185 185 75 75 12 12 12 [Nm]
My 200 200 80 80 13 13 13 [Nm]

Table 3. Values of the control parameters selected for the Sat(Sat(P)+PI) scheme

7. Conclusions

In this chapter we have proposed an alternative to the saturated nonlinear PID controller
previously presented by Santibafiez et al. (2010) which, also, results from the practical
implementation of the classical PID controller, by considering the natural saturations of the
electronics in the control computer, servo drivers, and actuators. The stability analysis of the
closed-loop system is carried out by using the singular perturbation theory. Based on auxiliary
Lyapunov functions, we prove local exponential stability of the equilibrium point of the closed-
loop system. It is also guaranteed that, regardless of the initial conditions, the delivered actuator
torques evolve inside the permitted limits. Experimental results confirm the proposed analysis.
Furthermore, the theoretical result explains why the classical linear PID regulator used in
industrial robot manipulators preserves the exponential stability in spite of entering the
saturation zones inherent to the electronic control devices and the actuator torque constraints.

8. Acknowledgement
This work is partially supported by PROMEP, DGEST, and CONACYT (grant 60230), Mexico.

9. References

Aguifaga-Ruiz, E.; Zavala-Rio, A.; Santibafiez, V. & Reyes, F. (2009). Global trajectory
tracking through static feedback for robot manipulators with bounded inputs. IEEE
Transactions on Control Systems Technology, Vol. 17, No. 4, pp. 934-944.

Alvarez-Ramirez, J.; Cervantes, 1. & Kelly, R. (2000). PID regulation of robot manipulators:
Stability and performance. Systems and Control Letters, Vol. 41, pp. 73-83.

Alvarez-Ramirez, J.; Kelly, R. & Cervantes, 1. (2003). Semiglobal stability of saturated linear
PID control for robot manipulators. Automatica, Vol. 39, pp. 989-995.

Alvarez-Ramirez, J.; Santibafiez, V. & Campa, R. (2008). Stability of robot manipulators
under saturated PID compensation. IEEE Transactions on Control Systems Technology,
Vol. 16, No. 6, pp. 1333-1341.

Arimoto, S. (1995). Fundamental problems of robot control: Part I, Innovations in the realm
of robot servo-loops. Robotica, Vol. 13, pp. 19-27.

www.intechopen.com



240

Advanced Strategies for Robot Manipulators

i [rad] 72 [rad]
0 — e '7-[/3*\
| \
—/4 - /6 \\\
—x/2 042 e D o e e e e e
o 2 & & & 10 0o 2 & & 8 10
t[s] t [s]
75 [rad] s [rad]
b
71’/ \ 7.[/3_
,\ 1\
\
/4 \\ /6
i \\ 2
0____E.________,____ 00—+ - T
o 2 4+ & 8 10 o 2 4 & 5 1
t[s] t[s]
22 ] gs [rad] 0 4o [rad]
\
/4 -1/4 -
04 —===== = = ===== -m/2
0 2 s 6 8 10 o 2 i 6 8§ 10
t[s] t [s]
Q7 [rad]
/2
1\
/4 4
0________._______
T T T T | \
0 2 4 6 8 10

Fig. 6. Position errors for the Sat(Sat(P)+PI) scheme

www.intechopen.com

t[s]



On Saturated PID Controllers for Industrial Robots: The PA10 Robot Arm as Case of Study 241

10+ 11 [I\ﬁll]
200 4 72 [Nm]
_10 —
_30 |
_50 T T T T T T T 1
0 2 4 6 8 10
t[s]
5 73 [Nm] - 14 [Nm]

=
a1
J

T [Nm]

=
o

o a1

=157 T T I T T T 1
0 2 4 6 8 10
t[s]
15:1'7 [Nm]
103
53
:M
Og_.__._.___________________
-5
-10 3
_15: T T T T T T T 1
0 2 4 6 8

Fig. 7. Applied torques for the Sat(Sat(P’)+PI) scheme

www.intechopen.com



242 Advanced Strategies for Robot Manipulators

Arimoto, S. & Miyazaki, F. (1984). Stability and robustness of PID feedback control for robot
manipulators of sensory capability. In: Robotics Researches: First International
Symposium, M. Brady and R.P. Paul (Eds.), pp. 783-799, MIT Press.

Arimoto, S.; Naniwa, T. & Suzuki, H. (1990). Asymptotic stability and robustness of PID local
feedback for position control of robot manipulators. Proceedings of the International
Conference on Automation Robotics and Computer Vision, Singapore, June 1990.

Camarillo, K.; Campa, R.; Santibafiez, V. & Moreno J. (2008). Operational space control of
industrial robots using their own joint velocity PI controllers: Stability analysis and
experiments. Robotica, Vol 26, pp. 729-738.

Cervantes, I. & Alvarez-Ramirez, J. (2001). On the PID tracking control of robot
manipulators. Systems and Control Letters, Vol. 42, pp. 37-46.

Choi, Y. & Chung, W. K. (2004). PID trajectory tracking control for mechanical systems.
Springer-Verlag, 2004.

Colbaugh, R.; Barany, E. & Glass, K. (1997) Global regulation of uncertain manipulators
using bounded controls. Proceedings of the IEEE International Conference on Robotics
and Automation, Albuquerque, NM, April 1997.

Craig, J. J. (1998). Adaptive Control of Mechanical Manipulators, Addison-Wesley, 1998.

Dixon, W. E. (2007). Adaptive regulation of amplitude limited robot manipulators with
uncertain kinematics and dynamics. IEEE Transactions on Automatic Control, Vol. 52,
No. 3, pp. 488-493.

Dixon, W. E,; de Queiroz, M. S.; Zhang, F. & Dawson, D. M. (1999). Tracking control of robot
manipulators with bounded torque inputs. Robotica, Vol. 17, pp. 121-129.

Gorez, R. (1999). Globally stable PID-like control of mechanical systems. Systems and Control
Letters, Vol. 38, pp. 61-72.

Hernandez-Guzman, V.; Santibafiez V. & Silva-Ortigoza R. (2008). A new tuning procedure
for PID control of rigid robots. Advanced Robotics, Vol. 22, pp. 1007-1023.

Higuchi, M.; Kawamura, T.; Kaikogi, T.; Murata, T. & Kawaguchi, M. (2003). Mitsubishi clean
room robot. Mitsubishi Heavy Industries, Ltd., Technical Review, Vol. 40, No. 5, 2003.

Horn, R. A. & Johnson, C. R. (1985). Matrix Analysis, Cambridge University Press.

Kawamura, S.; Miyasaki, F. & Arimoto, S. (1988). Is a local linear PD feedback control law
effective for trajectory tracking of robot motion?. Proceedings of the IEEE Conference
on Robotics and Automation, Philadelphia, PA., March 1988.

Kelly, R. (1995a). Regulation of robotic manipulators: Stability analysis via the Lyapunov’s
first method. Technical report, CICESE, Ensenada, Mexico.

Kelly R. (1995b). A tuning procedure for stable PID control of robot manipulators. Robotica,
Vol. 13, No. 2, pp. 141-148.

Kelly R. (1998). Global positioning of robot manipulators via PD control plus a class of
nonlinear integral actions. IEEE Transactions on Automatic Control, Vol. 43, No. 7, pp.
934-938.

Kelly R. & Moreno, J. (2001). Learning PID structures in an introductory course of automatic
control. I[EEE Transactions on Education, Vol. 44, No. 4, pp. 373-376.

Kelly, R. & Santibafiez, V. (1996). A class of global regulators with bounded control actions
for robot manipulators. Proceedings of the IEEE Conference on Decision and Control,
Kobe, Japan, December 1996.

Kelly, R.; Santibafiez, V. & Loria, A. (2005) Control of Robot Manipulators in Joint Space,
Springer-Verlag, 2005.

Khalil, H. (2002). Nonlinear Systems, Prentice Hall, 2002.

Koditschek, D. (1984). Natural motion for robot arms. Proceedings of the IEEE Conference on
Decision and Control, Las Vegas, NV, December 1984.

www.intechopen.com



On Saturated PID Controllers for Industrial Robots: The PA10 Robot Arm as Case of Study 243

Laib, A. (2000). Adaptive output regulation of robot manipulators under actuator
constraints. IEEE Transactions on Robotics and Automation, Vol. 16, pp. 29-35.

Loria, A.; Kelly, R,; Ortega, R. & Santibafiez, V. (1997). On global output feedback regulation
of Euler-Lagrange systems with bounded inputs. I[EEE Transactions on Automatic
Control, Vol. 42, pp. 1138-1143.

Loria, A. & Nijmeijer, H. (1998). Bounded output feedback tracking control of fully actuated
Euler-Lagrange systems. Systems and Control Letters, Vol. 33, pp. 151-161.

Meza, J. L. & Santibafiez, V. (1999). Analysis via passivity theory of a class of nonlinear PID
global regulators for robot manipulators. Proceedings of the IASTED International
Conference on Robotics and Applications, Santa Barbara, CA, October 1999.

Meza, ]. L.; Santibafiez, V. & Campa, R. (2007). An estimate of the domain of attraction for
the PID regulator of manipulators. International Journal of Robotics and Automation,
Vol. 22, No. 3, pp. 187-195.

Meza, J. L.; Santibafiez, V. & Hernandez, V. (2005). Saturated nonlinear PID global regulator
for robot manipulators: Passivity based analysis. Proceedings of the 16th IFAC World
Congress, Prague, Czech Republic, 2005.

Moreno, ]J.; Santibafiez, V. & Campa, R. (2008a). A class of OFT controllers for torque-
saturated robot manipulators: Lyapunov stability and experimental evaluation.
Journal of Intelligent and Robotic Systems, Vol. 51, pp. 65-88.

Moreno, J.; Santibafiez, V. & Campa, R. (2008b). An output feedback tracking control of
robot manipulators with bounded torque input. International Journal of Control,
Automation, and Systems, Vol. 6, No. 1, pp. 76-85.

Oonishi, K. (1999). The open manipulator system of the MHIPA-10 robot. Proceedings of the
International Symposium on Robotics, Tokio, Japan, October 1999.

Ortega, R.; Loria, A. & Kelly, R. (1995). A semiglobally stable output feedback PI2D regulator
for robot manipulators, IEEE Transactions on Automatic Control, Vol. 40, No. 8, pp.
1432-1436.

Ortega, R. & Spong, M. (1989). Adaptive motion control of rigid robots: a tutorial.
Automatica, Vol. 25, No. 6, pp. 877-888.

Qu, Z. & Dorsey, ]J. (1991). Robust PID control of robots, International Journal of Robotics and
Automation, Vol. 6, No. 4, pp. 228-235.

Ramirez, C. (2008). Dynamic modeling and torque-mode control of the Mitsubishi PA10-
7CE robot. Master’s thesis (in Spanish). Instituto Tecnologico de la Laguna,
Torreon, Mexico, December 2008.

Reyes, R. & Kelly, R. (2001). Experimental evaluation of model-based controllers on a
direct- drive robot arm. Mechatronics, Vol. 11, No. 3, pp. 267-282.

Rocco, P. (1996). Stability of PID control for industrial robot arms, IEEE Transactions on
Robotics and Automation, Vol. 12, No. 4, pp. 606-614.

Santibafiez, V.; Camarillo, K.; Moreno-Valenzuela, J. & Campa, R. (2010). A practical PID
regulator with bounded torques for robot manipulators. International Journal of
Control Automation and Systems, Vol. 8, No. 3, pp. 544-555.

Santibafez,V. & Kelly, R. (1997). On global regulation of robot manipulators: Saturated
linear state feedback and saturated linear output feedback, European Journal of
Control, Vol. 3, pp. 104-113.

Santibafiez, V. & Kelly, R. (1998a). A class of nonlinear PID global regulators for robot
manipulators. Proceedings of the IEEE International Conference on Robotics and
Automation, Leuven, Belgium, May 1998.

Santibafiez, V. & Kelly, R. (1998b). A new set-point controller with bounded torques for
robot manipulators, IEEE Transactions on Industrial Electronics, Vol. 45, pp. 126-133.

www.intechopen.com



244 Advanced Strategies for Robot Manipulators

Santibafiez, V. & Kelly, R. (2001). Global asymptotic stability of bounded output feedback
tracking control for robot manipulators, Proceedings of the IEEE International
Conference on Decision and Control, Orlando, FL, December 2001.

Santibafiez, V.; Kelly, R.; Zavala-Rio, A. & Parada, P. (2008). A new saturated nonlinear PID
global regulator for robot manipulators, Proceedings of the 17th IFAC World Congress,
Seoul, Korea, July 2008.

Spong, M. & Vidyasagar, M. (1989). Robot Dynamics and Control, John Wiley and Sons, 1989.

Sun, D.; Hu, S.; Shao, X. & Liu, C. (2009), Global stability of a saturated nonlinear PID
controller for robot manipulators. IEEE Transactions on Control Systems Technology,
Vol. 17, No. 4, pp. 892-899.

Teel, A. R. (1992). Global stabilization and restricted tracking for multiple integrators with
bounded controls. Systems and Control Letters, Vol. 18, No. 3, pp. 165-171.

Wen, J. T. & Murphy, S. (1990). PID control for robot manipulators, CIRSSE Document 54,
Rensselaer Polytechnic Institute, May 1990.

Zavala-Rio, A.; Aguinaga-Ruiz, E. & Santibanez, V. (2010). Global trajectory tracking
through output feedback for robot manipulators with bounded inputs. Asian
Journal of Control. To appear.

Zavala-Rio, A. & Santibafiez, V. (2006) Simple extensions of the PD-with-gravity-
compensation control law for robot manipulators with bounded inputs, IEEE
Transactions on Control Systems Technology, Vol. 14, No. 5, pp. 958-965.

Zavala-Rio, A. & Santibafiez, V. (2007) A natural saturating extension of the PD-with-
desired-gravity compensation control law for robot manipulators with bounded
inputs, IEEE Transactions on Robotics, Vol. 23, No.2, pp. 386-391.

Zergeroglu, E.; Dixon, W.; Behal, A. & Dawson, D. (2000). Adaptive set-point control of
robotic manipulators with amplitude-limited control inputs, Robotica, Vol. 18, pp.
171-181.

Appendix A
In this section we prove that (26) has a unique solution § = h(x) eR", provided that

8i(q)

k, >k, =2n
p. ~ K. {max 56]]-

1 1 q/]

J where i=1,2,..n and j=1,2,...n.

To this end, notice that we can rewrite (26) as

[ 81(0)-81(94)—x1 |
r~ kP1
i £2(9)—82(q4)—x2
q2 k
7= | " = f@4.2) (©2)
LI g (9) - 8u(9.0)— %,
kPn

If f (g, qa) satisfies the Contraction Mapping Theorem (Kelly et al., 2005; Khalil, 2002), then
(62) has a unique solution g *. Considering this, we have
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819~ 0)—81(92)— %1~ 81(9 4~ w)+ 81(q 1) + X7 |
k
P1

$2(94~0)—82(94)— % —8o(g 4~ W)+ $2(g4) + X2

|f (. q0)- f(w, q4) = kp,

8194~ 9)—81(94) =%, — 81(q 4~ W)+ ,(94) + Xy
k

P i

81(94—v)—81(94—w)

kPl

82(94=v)—&2(q4—w)
- k

” (63)

8n(94—0) — 8 (94— w)
L kp, ]

Using Theorem 1, we can rewrite gi(qs— v) — gi(q4 — w) as

gi(z agi(z 0g;(z
8000 -gig-w) =B -0+ B @, o) $ BN w0, (69
21 | e 0z =t 0z, .

where & is a vector on the line segment that joins vectors w and v, and, by substituting in
(63), we obtain

81(q4—v)— 8194~ w)

kP1

82(74=v)—82(94—w)
|f(.gq0)-fwaqy)| = kp,

81(74=0)— 8n(q4—w)

kPn i
@L(Z) (wl_vl)_k@gli(z) (w2—02)+...+@g17(2) (wn_vn)
024 _— 0z, =g 0z, 2=¢,
kPl
@327(2) (wl_vl)+m (w2—02)++m (wn_vl’l)
_ 621 Z=§2 622 Z=§2 aZn Z=§2
sz
M (wl_vl)_i_m (wz—vz)-f-...-‘ragni(Z) (wn_vn)
024 =g 0z, - 0zy, =g,
i kpn -
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= |Alw-2]|
< A~
where
1 9g1(2) 1 9g1(2) 1 a(2)
kl’l 521 z=§1 kP1 822 z=§1 kP1 62” z=§1
1 085(2) 1 085(2) 1 0g(2)
A= kpz 821 Z=§2 kP2 622 Z=§2 kpz 8211 Z=§2 (65)

R AC) 1 %8u(2) 1 agu(2)
kpn a Z]' Z=§n kpn a 22 Z=§n kpn a Zn Z:é:n

If |A|| <1, then f (g, qa) fulfills the Contraction Mapping Theorem. Now notice that

JA]| = Amax {AT A}, (66)

. . 09:(z
By defining %i(2) = Agj;i , we have that
Z .
] Z=§i
Agn A8y A Agn A8 AZ1n
kPl sz kPn kPl kPl kP1
Ag1p A8 Agn2 A8 Agx Agon
T
ATA= kPl sz kPn sz sz sz
Agln Ag2n Agnn Agnl AgnZ Agnn
L kpl kPZ kpn B L kpn kpn kpn a
Agh 5 Agh e Agh Ag1pA1 | AZ21A8% \ [ ] A28 211881 | Agn ARy 1%, A811A8
i ks ky kp kp3 ky kpi ko Ky
Ag12A%1 | A8714A%2 A A81A8n2 Agh + Ag% L)+ A A%12A%1n A28 L) A8y2A8n2
= | it kp3 Ky kot kp3 Ky kni kp3 Ky
Ag1AGy | ASnAn | ASnASwm  AS19081n Mg, | MGl ASh, A, ASm
kpt kp3 Koy kp kp3 kpa [ kon |

Considering (5) and (27), we have that each element in A"A fulfills
T aye s 1
|ATAG <. (67)

Now, knowing that the eigenvalues of any matrix B, where b;; denotes its ij-th element, fulfill
(Horn & Johnson, 1985):
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| A I ”{max{ | b | }:l Vk=1,.,n
0]

we obtain that

MAATAY <A AT Ay <n
)

maquTA(i,j)n}nH -1

and consequently we have that ||A|| = Amax {ATA} <31 =1. Therefore, we get ||f (v, qa)-
fw, ga)|| < ||A|l|lw —v|| where ||A]| is strictly smaller than the unity. Hence, we have that (26)

has a unique solution § = h(x) € R" provided that:

kp' > n{max agl(q)
i ;

q.j | 94;

J where i=1,2,..n and j=1,2,...n.

Appendix B

The positive definiteness and radial unboundedness analysis of W(q,4) is dealt in this
appendix. The Lyapunov function candidate V(7,4 ) can be written as:

W@d) = 5 "M@ Wi(d)

with
Wi(g) = ij‘ Zi[sat[Sat(kpin+xi+gi(q d))}@(n)}dn
i=1
—ifoh” (XTSa{Sat(kpi i 9.0) [0 o ©8)
where i

s1(n) = &10a, ~1,94, 494, )
82(n) = 804, ~G1.9a, ~12/-94 )

gn(rn) = gn(%ll _éll%lZ _‘iZf"'/qdn _rn)

Notice that the positive definiteness and the radial unboundedness of Wi( 7,9 ) implies the
positive definiteness and the radial unboundedness of W( 4,4 ).

Let us define a region /i where the saturation functions of the P and PI parts of the
controller work in their linear section, such that:

By =1q [k rivxi+gi(qa) | <L, and [ ky, rivxidgi( g 4) | <1y, ).

Notice that, in this region we have that Sat[Sat(k,, §; + xi+ gi(qa))] = k, k,_g; + xi+ gi(4). For
this case, we will show that Wi(§) is a strictly convex function with a unique minimum
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point at g = hi(x). To this end, we evaluate Wi(g) at g = hi(x) and obtain its gradient and
Hessian:
a) Wi(q)lg=p.(x) can be written as:

1

Wi(7)|

4 _
) Zj‘ol[kpin"'xi"'gi(qd)—gi(ri)}drz‘
i=1

q=hy (x)

L hl,* (x _
—ZIO )[kpiri+xi+gi( q d)—gi(n-)}dri-
i=1

=0
b) The gradient of Wi(g ) with respect to g is given by:

W1 (g . .

# =K, i+ x+ 8(q4)— 8(94- 7)=0. (69)
Under assumption (27), and by using the Contraction Mapping Theorem, (69) has a
unique solution g = hy(x), that is, a unique critical point.

c) The Hessian of Wi(q ) with respect to g is given by:

W) 08D _
~2 p p
oq aq
which is a positive definite function for all § € R" provided that (Hernandez-Guzman
et al., 2008):

gi(9)
o (70)

n
by > S

=1

Note that (27) implies (70).
Therefore, in the linear region S, Wi(q) is a strictly convex function with a unique minimal
point g = hi(x) which implies that Wi(g — hi(x)) is a locally positive definite function.
Also notice that the gradient of Wi( g ) with respect to g is given globally by

oW1(9)
oq

= Sat| Sat(K, 3+ x+ 8(0.0) |- 2(a 4~ @) 71)

which, under Assumption 2, will have a unique critical point for all g, eR withi =12, ...
,1, and hence, the minimum point of Wi (g ) results to be a global minimum point g = hy(x).
In order to prove radially unboundedness of Wi(§), it is possible to prove that outside of
the region £ the function Wi( g ) can be lower bounded by straight lines of the type

Wﬁi = k’Bli

qi _hli(x)

where kzq and ¢; are suitable constants. So, | g; = hy, (x)| —o implies Wy — o fori=1,2,.
.. ,n; therefore W( g )— «as || q || = o, which proves that W( g ) is radially unbounded.
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