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1. Introduction 

Being an inherently open loop unstable mechanical system with highly nonlinear dynamics 
and with the number of actuators less than the number of degrees of freedom, the inverted 
pendulum system is a perfect benchmark for the design of a wide range of classical and 
contemporary control techniques. There are a number of different versions of the inverted 
pendulum systems offering a variety of control challenges. The most common types are the 
single inverted pendulum on a cart (Ohsumi & Izumikawa, 1995; Åström & Furuta, 2000; 
Yoshida, 1999), the double inverted pendulum on a cart (Zhong & Rock, 2001), the double 
inverted pendulum with an actuator at the first joint only (Pendubot) (Spong, 1996; 
Graichen & Zeitz, 2005; Fantoni et al., 2000), the double inverted pendulum with an actuator 
at the second joint only (Acrobot) (Spong, 1994; 1995; Hauser & Murray, 1990), the rotational 
single-arm pendulum (Furuta et al., 1991; 1992) and the rotational two-arm pendulum 
(Yamakita & Furuta, 1999). Beyond non-mobile inverted pendulum robots, wheeled 
inverted pendulum robots or commonly known as balancing robots (e.g., Segway 
(Browning et al., 2005), Quasimoro (Salerno & Angeles, 2003), and Joe (Grasser et al., 2002)) 
have induced much interests by researchers. 
The control techniques involved in various types of inverted pendulum systems are also 
numerous, ranging from simple conventional controllers to advanced control techniques 
based on modern nonlinear control theory. A vast range of contributions exists for the 
stabilization of different types of inverted pendulums (Mori et al., 1976; Chaturvedi et al., 
2008; Angeli, 2001). Besides the stabilization aspect, the swing-up of various types of single 
and double inverted pendulum(s) is also addressed in the literature. Examples include 
classic single pendulum on a cart (Åström et al., 2008; Åström & Furuta, 2000), Acrobot and 
Pendubot (Fantoni et al., 2000; Spong, 1994; 1995; Graichen et al., 2007; Brown & Passino, 
1997) and the rotary double inverted pendulum (Yamakita et al., 1993; 1995). In addition to 
the stabilization and swing-up of different kinds of inverted pendulum robots, trajectory 
tracking of these underactuated systems has gained attention by researches (Cho & Jung, 
2003; Chanchareon et al., 2006; Hung et al., 1997; Magana & Holzapfel, 1998). There are two 
major approaches to construct the trajectory tracking controller for such nonlinear systems. 
The first one is based on system inversion (Devasia et al., 1996; Wang & Chen, 2006) and the 
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second approach is based on output regulation theory (Isidori & Byrnes, 1990; Qian & Lin, 
2002; Hirschorn & Aranda-Bricaire, 1998). Extensive controller developments have also been 
achieved by researchers for mobile inverted pendulum robots over the last decade (Salerno 
& Angeles, 2007; Pathak et al., 2005; Tsuchiya et al., 1999). 
This chapter studies a novel underactuated wheeled manipulator (WAcrobot) comprising an 
underactuated 2-DOF planar manipulator or an unstable double inverted pendulum 
(Acrobot) combined with a balancing robot. The WAcrobot has two independent driving 
wheels in same axis, and two gyro type sensors to determine the inclination angular velocity 
of two arms and rotary encoders to know wheels and arms rotation individually. Due to its 
configuration with two coaxial wheels, each wheel is coupled to a geared dc motor. The 
manipulator is able to do stationary U-turns while keeping balance and manipulating. Such 
manipulator is of interest because it has a small foot-print and can turn on dime. The design, 
dynamic modeling and tracking control of this novel mobile manipulator is discussed in this 
chapter for the first time. This chapter aims at achieving three different types of trajectory 
tracking control tasks for a) wheels, b) first or second arm and c) wheels and one of the arms 
simultaneously, while the WAcrobot stabilization is guaranteed by the system internal 
equilibria calculation. The tracking controller is designed using the Gain Scheduling method 
that is based on the idea of the linearisation of the system equations around certain 
operating points and design of a linear controller for each region of operation (Lawrence & 
Rugh, 1993; Shamma & Athans, 1990a)]. For the design of the linear controller, we consider 
the Linear Quadratic Regulator (LQR) model to stabilize the WAcrobot around any point 
over the equilibrium manifold. We verified the effectiveness of the designed control system 
via numerical simulation visualized by graphical simulation to illustrate the physical 
response of the WAcrobot. 
In the following sections of this chapter the dynamic model of the wheeled manipulator 
(WAcrobot) is firstly presented. Then the equilibrium manifold of the WAcrobot is 
investigated. After that the stabilization controller based on LQR technique is proposed. 
Then by employing Gain Scheduling method, for any given trajectory of wheels and/or 
arm(s), the trajectories of the rest of DOF of the WAcrobot is determined such that during 
the trajectory tracking the WAcrobot system is stabilized. Numerical and graphical 
simulations for three types of tracking control tasks are given to show the effectiveness of 
the proposed scheme. 

2. Dynamics of WAcrobot 

The mechanism of the WAcrobot is shown in Figure 1 schematically. The WAcrobot 
(Wheeled Acrobot) is an underactuated mechanical system consisting of an underactuated 
planar manipulator (Acrobot), a double inverted pendulum robot with an actuator at the 
second joint only (Figure 1-a), which is combined with a balancing robot (Figure 1-b) or 
equipped with two actuated wheels and has the capability to be as an underactuated 
wheeled manipulator. The mathematical model of the WAcrobot can be derived using the 
Euler-Lagrange equation. The form of the Euler-Lagrangian equation used here is: 

 =
d L L
dt q q

τ
⎡ ⎤∂ ∂

−⎢ ⎥∂ ∂⎣ ⎦$
 (1) 
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Fig. 1. WAcrobot, Acrobot (a) and Wheeled Inverted Pendulum (b) 

where L = T – V is a Lagrangian, T is kinetic energy, V is potential energy, τ = [τ1 0 τ2]T is the 
input generalized force vector produced by two actuators at wheels and second arm,  
q = [q1 q2 q3]Tε R3

 is generalized coordinate vector which is selected as q = [θ1 θ2 θ3]T where θ1, 
θ2 and θ3 are angular positions of wheels, first arm, and second arm of the WAcrobot, 
respectively. The kinetic and potential energies of the WAcrobot’s components in terms of 
generalized coordinates can be determined as: 

                2 2 2 2
1 1 2 3 1 1 3 3 3 3 3 3 2 2 3 3

1 1
2 2/ ( ( ) ) / ( ) ( )   =    c cI m m m l m l I m l l cos Tθ θ θ θ θ+ + + + + +$ $ $ $  (2) 

 2 2 2 2
3 3 2 3 2 2 3 2 3 3 2 3 2 3 3 3 2 3

1
2/ (2 ( ) )c c c c cm cos l l m l m l m l I I m l lθ θ θ θ+ + + + + + +$ $ $  

                     1 2 2 3 2 2 3 3 2 3 1 2 3 1 3 2 3 1 3(( ) ( ) ( )) ( )c c cl m l m l cos m l cos m l l cosθ θ θ θ θ θ θ θ θ+ + + + + +$ $ $ $  

                            1 2 3 1 3 3 2 3 2 2 3 2 2( ) ( ) ( ) ( )    =    c cm m m l g m l cos g m l m l cos g Vθ θ θ+ + + + + +  (3) 

Differentiating the Lagrangian (L = T – V) by generalized coordinate vector θ and θ$  yields 
Euler-Lagrange Equation (1) as: 

          2
1 2 3 1 1 1 1 3 3 2 3 2 2 2 3 2 2 1(( ) ) ( ( ) ( )( ))    =    c cm m m l I l l m cos cos m l m lθ θ θ θ θ τ+ + + + + + +$$ $$  (4) 

2
3 1 3 2 3 3 1 3 3 2 3 2 3 2 2 2 2( ) ( ( ) ( ) ( ))c c cm l l cos l l m sin l m l m sinθ θ θ θ θ θ θ+ + − + + +$$ $  

                    2
1 3 3 2 3 3 1 3 3 2 3 2 3( ) 2 ( )c cl l m sin l l m sinθ θ θ θ θ θ θ− + − +$ $ $  
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                1 3 3 2 3 2 2 3 2 2 1 3 3 3 2 3 3( ( ) ( ) ( )) ( ( ))    =    0c c c cl l m cos m l m l cos m l l l cosθ θ θ θ θ θ+ + + + +$$ $$  (5) 

    2 2 2 2
2 2 3 3 2 2 3 3 2 3 3 2 3 2 3 3 3( ( ) 2 ( )) ( )c c c cm l m l l I I m l l cos m l l sinθ θ θ θ+ + + + + + −$$ $  

         3 3 2 3 3 2 2 2 2 3 2 3 3 2 3( ( ) ( ) ( )) 2 ( )c c cm l sin m l m l sin g m l l sinθ θ θ θ θ θ− + + + − $ $  

 2
1 3 3 2 3 1 3 3 3 2 3 2 3 3 3 3 2( ) ( ( )) ( )    =    c c c cl l m cos m l l l cos m l Iθ θ θ θ θ θ τ+ + + + +$$ $$ $$  (6) 

       2
2 3 3 3 2 3 3 2 3( ) ( )c cl l m sin l m sin gθ θ θ θ+ − +$  

Equations (4), (5) and (6) can be put into the frequently used compact form (Spong & Block, 
1995): 

 ( ) ( , ) ( ) =M C Gθ θ θ θ θ θ τ+ +$$ $ $  (7) 

where θ = [θ1
 θ2

 θ3]T∈R3 is the generalized coordinate vector, M(θ )∈R3×3 is the symmetric 
positive definite inertia matrix, C(θ,θ$ )θ$ ∈R3 contains Coriolis and centrifugal terms, 
G(θ )∈R3 contains gravitational terms and τ = [τ1

 0 τ2]T is the input generalized force vector. 
Furthermore, 

 
11 12 13

21 22 23

31 32 33

( ) = ,
M M M

M q M M M
M M M

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (8) 

where 

                                    2
11 1 2 3 1 1= ( )M m m m l I+ + +  

12 21 1 3 3 2 3 2 2 2 3 2= = ( ( ) ( )( ))c cM M l l m cos cos m l m lθ θ θ+ + +  
                                    13 31 3 1 3 2 3= = ( )cM M m l l cos θ θ+  

                                    2 2 2
22 2 2 3 3 2 2 3 3 2 3 3= ( ) 2 ( )c c cM m l m l l I I m l l cos θ+ + + + +  

                                    23 32 3 3 3 2 3= = ( ( ))c cM M m l l l cos θ+  

                                    2
33 3 3 3= cM m l I+  

and 

 1 2 3( , ) = [ ]TC H H Hθ θ θ$ $  (9) 

where 

                                    2
1 1 3 3 2 3 2 3 2 2 2 2= ( ( ) ( ) ( ))c cH l l m sin l m l m sinθ θ θ θ− + + + $  

                               2
1 3 3 2 3 3 1 3 3 2 3 2 3( ) 2 ( )c cl l m sin l l m sinθ θ θ θ θ θ θ− + − +$ $ $  

                     2
2 3 2 3 3 2 3 3 2 3 3 3= 2 ( ) ( )c cH m l l sin m l l sinθ θ θ θ θ− −$ $ $  

                     2
3 2 3 3 3 2= ( )cH l l m sin θ θ+ $  
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and 

 1 2 3( ) = [ ]TG G G Gθ  (10) 

where 
                                          1 = 0G  

2 3 3 2 3 3 2 2 2 2= ( ( ) ( ) ( ))c cG m l sin m l m l sin gθ θ θ− + + +  

                           3 3 3 2 3= ( )cG l m sin gθ θ− +  
and g is the gravitational acceleration. The parameters of the WAcrobot are defined in Table 
1. Equation (7) represents the underactuated and nonlinear system of the WAcrobot 
including two input torques applied to wheels and second arm (τ1 and τ2), two active DOFs 
(θ1 and θ3) and one passive DOF (θ2). 
 

θi (i = 1,2, 3)  Angular rotation of the wheels and arms  
mi (i = 1,2, 3)  Mass of wheels and arms  
lci(i = 2, 3)  Length from the joint to the center of the gravity of the arms  
li(i = 1, 2,3)  Radius of the wheels and length of arms  
Ii(i = 1,2,3)  Inertia moment around the center of gravity  

Table 1. Definition of Parameters 

3. Tracking control 

The tracking controller of the WAcrobot is designed using the Gain Scheduling method 
based on the linearisation of the system equations around certain equilibrium points in a 
first stage followed by the design of a linear controller for each region of tracking operation 
in a second stage. For the design of the linear controller, we consider the Linear Quadratic 
Regulator (LQR) model to stabilize the WAcrobot around any operating point over the 
equilibrium manifold. 

3.1 Equilibrium manifold 

Underactuated mechanical systems generally have equilibria which depend on both their 
kinematic and dynamic parameters (Bortoff & Spong, 1992). In these systems, to track a 
trajectory while balancing is guaranteed, it is vital to consider the equilibrium manifold. 
Beyond the unforced equilibria of the WAcrobot, (θ,θ$ ) = (θ1,π, 0, 0, 0,0) (lower or pendent 
equilibrium) and (θ,θ$ ) = (θ1, 0, 0, 0, 0,0) (upper or inverted equilibrium), it has a manifold of 
forced equilibrium points. Generally the WAcrobot is at rest or particularly at equilibrium 
point whenever 1eq

θ , 2eq
θ$  and 3eq

θ$  are zero and the joint torque τeq = [τ1eq 0 τ2eq ]
T

 is such that 
to equalize G(θ) in Equation (7). So this set of equilibrium points consists of all states where 

 = = 0eq eqθ θ$$ $  (11) 

 ( ) =eq eqG θ τ  (12) 

If the outputs that are required to track a trajectory include the first arm, it follows from 
Equations (7), (10), (11) and (12) that: 
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Fig. 2. Equilibrium set points according to the different values of parameter C 

                                                          1 = 0
eq

τ  

 2 3 2 2 2 2= ( ) ( )
eq eqcm l m l gsinτ θ+  (13) 

     3 2 2 2
3 2 2

3 3

= [ ( ) ( )]
eq eq eq

c

c

m l m l
arcsin sin

m l
θ θ θ+

+ −  (14) 

Since the value of the absolute angular position of the second arm with respect to the 
vertical direction 3 3 2=a

eq eq eq
θ θ θ+  cannot be imaginary, the condition for the existence of the 

equilibrium from Equation (14) may be written: 

 3 2 2 2

3 3

= 1c

c

m l m l
C

m l
+

≤  (15) 

Figure 2 illustrates equilibrium set points derived from Equation (14) according to different 
values of parameter C from Equation (15). It demonstrates how value of parameter C affects 

3
a

eq
θ  corresponding to any given 2eq

θ  in which the WAcrobot is stabilized. By decreasing 

parameter C, the required 3
a

eq
θ , corresponding to the desired 2eq

θ  to stabilize the robot, 

decreases and to decrease parameter C, the second arm should be long and heavy which is 
not suitable. On the other hand, for any given angular position of the first arm, if the second 
arm is long and heavy, it needs smaller angular changes to stabilize the WAcrobot and vice 
versa. Therefore there needs to be a trade-off between the ranges of the rotational motions of 
arms and the volume and weight of the WAcrobot. In particular, for any given m3, if the 
specification of the first arm (m2, l2 and lc2) are given, Equation (15) is only true if lc3 ≥ (m3l2 + 
m2lc2)/m3 and for any given lc3, it is only true if m3 ≥ m2lc2/(lc3 –l2). Considering l2 = 2lc2 and l3 = 
2lc3, we can simplify Equation (15) as: 

 3 2

2 3

(2 )
l m
l m

≥ +  (16) 
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From the other point of view, if the trajectory tracking of the second arm is desired, it 
follows from Equations (7), (10), (11) and (12) that: 

                                                               1 = 0
eq

τ  

 2 3 3 3= ( )a
ceq eq

m l gsinτ θ−  (17) 

                          3 3
2 3

3 2 2 2

= [ ( ) ( )]ac

eq eq
c

m l
arcsin sin

m l m l
θ θ−

+
 (18) 

Since the value of the angular position of the first arm ( 2eq
θ ) cannot be imaginary, the 

condition for the existence of the equilibrium from Equation (18) is: 

 1 3 3

3 2 2 2

= 1c

c

m l
C

m l m l
− ≤

+
 (19) 

Considering l2 = 2lc2 and l3 = 2lc3, we can simplify Equation (19) as: 

 3 2

2 3

(2 )
l m
l m

≤ +  (20) 

3.2 Stabilization 
The balancing controller is designed using the well known Linear Quadratic Regulator 
(LQR) method based on the linearised plant model around any equilibrium point. The LQR 
is a controller for state variable feedback in such a way that u = –Kx is the input so that the 

value of K is obtained from minimization of the cost function J = 0
∞∫ (x’Qx + u’Ru)dt where 

matrix Q and R are positive semidefinite matrix and symmetric positive definite matrix that 
penalize the state error and the control effort, respectively. 

3.3 Gain scheduling 
Jacobian linearisation or linearisation about an equilibrium point is the technique for 
transforming original system models into equivalent models with simpler form. Since the 
linearization is about a single point, trajectory tracking can only be guaranteed in a 
sufficiently small region of states about that point. There are several methods for 
circumventing this problem; one of the most common is Gain Scheduling (Shamma & 
Athans, 1990b). Control of nonlinear systems by Gain Scheduling is based on the idea of the 
linearising the system equations around certain operating points, and the design of a linear 
controller for each region of operation over the entire motion envelope (Cloutier et al., 1996; 
Dorato et al., 1994; Langson, 1997). The controller coefficients are varied continuously 
according to the value of the scheduling variable. In fact, this can be performed in a more or 
less continuous fashion using a technique called extended linearisation (Baumann & Rugh, 
1986). 
In broad terms, according to (WJ & Shamma, 2000), the design of a gain scheduled controller 
for nonlinear plant of the WAcrobot can be described with a six-step procedure, though 
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various technical methods are available in each step. The first step involves finding  

3
a

eq
θ  or 2eq

θ  in all operating points, for each desired 2eq
θ  or 3

a

eq
θ , using Equations 14 or 18 

respectively. The second step is the calculation of the joint torque required to keep the 
WAcrobot at desired 2eq

θ  (or 3
a

eq
θ ) and calculated 3

a

eq
θ  (or 2eq

θ ). The third step is the 

computation of a linear parameter varying model for the plant. The most common approach 
is to linearise the nonlinear plant around a selection of equilibrium points. This results in a 
family of operating points. The fourth step is to design a family of controllers for the 
linearised models in each operating point. Because of the linearised model, linear controller 
design methods such as LQR can be used to stabilize the system around the operating point. 
The fifth step is the actual Gain Scheduling. Gain Scheduling involves the implementation of 
the family of linear controllers such that the controller coefficients are scheduled according 
to the current value of the scheduling variables which are 2eq

θ  or 3
a

eq
θ . The last step is the 

performance assessment that can be performed analytically or by using extensive 
computational analysis and simulation. 

3.4 Computational analysis and simulation 
In order to verify the validity of the Gain Scheduling method for trajectory tracking of 
different types of reference trajectories in the WAcrobot, we carried out computational 
analyses and visual simulations using MATLAB/Simulink® package integrated with 
ADAMS® simulation software. Three types of tracking control tasks for wheels and/or 
arm(s) have been evaluated which are presented in this section. The simulations are 
performed with the following parameters given in Table 2. 
 

Wheels/Arms Wheels First arm Second arm 
mi [kg] 1.22 0.28 0.72 
li [m] 0.05 0.15 0.45 
lci [kg] — 0.075 0.225 

Ii [kg.m2] 1.53E-003 5.98E-004 1.3138E-002 

Table 2. Parameters of the WAcrobot 

In table 2, parameter l, for wheels, means radius while for arms means length. From 
Equation (15) and Table 2, we obtain C=0.763. It is supposed that the WAcrobot starts the 
trajectory tracking from its unforced inverted equilibrium position. Therefore the initial 
conditions are as follow: 

θ1 = 0   θ2 = 0   θ3 = 0   1θ$ = 0   2θ$ = 0   3θ$ = 0   τ1 = 0   τ2 = 0 

Q and R in the optimal regulators for simulations are designed as: 

Q = diag([10, 100, 100, 0, 0,0]) 

                                                         R = diag([0.1, 0.1]) 

It must be noted that in order to have better sense of motion, the angular position and 
velocity of the second arm are considered as absolute states and are plotted with respect to 
the vertical direction not relative to the first arm. 
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3.4.1 Wheels tracking 
The control objective is that the wheels to follow a trajectory with linear segments and 
parabolic blends while both arms are balancing inverted close to their initial positions. 
Practically this task is that the WAcrobot smoothly starts moving at x = 0 (m) and gently 
stops at x = 1.5 (m) while both arms are stabilized during the movement. Figure 3 shows the 
computational analysis results. In this figure the responses of angular position and velocity 
of the wheels and arms as well as applied torques to actuated DOFs are shown respectively. 
Tracking errors are calculated for the linear position and velocity of the WAcrobot, as shown 
in Figure 4. It should be noted that this control task can be defined as tracking problem for 
wheels while the arms, instead of being at inverted position, are at any point over the 
equilibrium manifold. Assume that the WAcrobot is balanced while the first arm is at 1 
(rad). In this case the absolute angular position of the second arm and the input torque for 
the second joint required to keep the arms balanced at the specified angular positions, are 
calculated using Equations (13) and (14). Therefore the initial conditions for this simulation 
are as follow: 

θ1 = 0   θ2 = 1   θ3 = –0.7343   1θ$ = 0   2θ$ = 0   3θ$ = 0   τ1 = 0   τ2 = –1.065 

Figure 5 demonstrates a superimposed snapshot of the graphical simulation for two 
tracking problems of the WAcrobot’s wheels while the arms are at the inverted position and 
are at another point over the equilibrium manifold. It is clear from both numerical and 
graphical simulations that the WAcrobot’s wheels track a specified trajectory while both 
arms are close to the inverted position or a defined position over the equilibrium manifold 
at all times during the movement. 
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Fig. 3. The simulation responses of positions, velocities and torques for the wheels tracking 
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Fig. 5. Superimposed snapshot of the visualized simulation of the wheels tracking task while 
the arms are in inverted position (left) and are not in inverted position (right) 
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Fig. 6. The desired and calculated trajectories for the wheels, arms and time-varying torque 

3.4.2 Arms tracking 
Another tracking control objective defined for the WAcrobot is that the first arm to follow a 
trajectory with linear segments and parabolic blends while the WAcrobot’s wheels are fixed 
in the initial position. Practically this task is that the first arm to smoothly start rotating from 
the inverted position and stop at a special angular position while wheels have no rotation 
during the tracking. To make the first arm to track the desired trajectory, the second arm 
should also track a calculated trajectory to make the WAcrobot stabilized during the 
tracking motion. Therefore the tracking problem for the first arm is also a tracking problem 
for the second arm. Figure 6 shows the desired and calculated trajectories for the first and 
second arm as well as the calculated time-varying torque required to be applied at the 
second joint to keep the WAcrobot balanced. Tracking errors of the linear and angular 
positions and velocities of the wheels, first arm and second arm are displayed in Figure 7 
from top to bottom, respectively. 
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Fig. 7. Tracking errors of the positions and velocities of the wheels and arms for arms 
tracking 

Simulation results are shown in Figure 8. In this figure the simulation responses of angular 
positions and velocities of wheels and arms as well as applied torques to actuated degrees of 
freedom are demonstrated, respectively. To show the correlation between the computational 
analysis results and the WAcrobot physical response, the graphical simulation is prepared 
and is shown in Figure 9. 
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Fig. 8. The simulation responses of positions, velocities and torques for the first arm tracking 
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Fig. 9. Snapshots of the visualized simulation for the arms tracking task 

3.4.3 Wheels and arm tracking 
The most complicated task is that the first arm to follow a trajectory while the wheels are 
tracking another specified trajectory. In other words, this task is that the first arm to track 
the trajectory while the WAcrobot starts moving from the initial position (x = 0 (m)) and stop 
at x = 1.6 (m) smoothly. Both specified trajectories are linear segments with parabolic blends 
and are shown in Figure 10. Also the calculated trajectories for the angular position of the 
second arm as well as the input torque required at the second joint are also plotted in Figure 
10. 
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Fig. 10. The desired and calculated trajectories for the wheels, arms and time-varying torque 
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Fig. 11. The Simulink® block diagram of the WAcrobot system with tracking controller 

The WAcrobot system with gain scheduling tracking controller simulated in Simulink® is 
illustrated in Figure 11. Figure 12 shows the simulation results of the wheels and arm 
tracking task. In this figure the simulation responses of the angular positions and velocities 
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of wheels and arms as well as applied torques to actuated DOFs are shown. Figure 13 
respectively displays the tracking errors of the linear and angular positions and velocities of 
the wheels and arms from top to bottom. Figure 14 shows a superimposed snapshot of the 
visualized simulation of the WAcrobot while wheels are tracking the specified trajectory 
and the first arm is tracking another specified trajectory simultaneously. The simulation 
results illustrate the effectiveness of the proposed control methodology and the developed 
theory. 
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Fig. 12. The simulation responses of positions, velocities and torques for the manipulator 
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Fig. 13. Tracking errors of the positions and velocities of the wheels and arms 

www.intechopen.com



 Advanced Strategies for Robot Manipulators 

 

104 

 
Fig. 14. Superimposed snapshot of the graphical simulation of the wheels and arms tracking 

4. Conclusion 

In this chapter the WAcrobot, a novel underactuated manipulator which is the combination 
of a well-known double inverted pendulum (Acrobot) and a wheeled inverted pendulum, 
was proposed and the tracking control algorithm of this mobile manipulator was 
investigated. The balancing controller is designed using the well known Linear Quadratic 
Regulator (LQR) method and the tracking controller was designed on the basis of the Gain 
Scheduling control strategy. Three different types of trajectory tracking tasks were 
investigated including tracking of a) wheels, b) first or second arm and c) wheels and first or 
second arm simultaneously. 
This chapter also provided numerical and graphical simulation results to validate the 
obtained theoretical results and to demonstrate the correlation between the numerical 
results and the WAcrobot physical response. Simulation results illustrated good 
performance results for different tracking controls designed based on the Gain Scheduling 
method. 
Research into the control of this novel robotic system is just in the beginning and there are a 
number of research problems that remain to be addressed. It would be desirable to develop 
the theory of robust and adaptive controller for swing-up control problem of the WAcrobot. 
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