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1. Introduction 

Modern industrial robots are mostly (human) arm-inspired mechanisms with serially 
arranged discrete links. When it comes to industrial environment where the workspace is 
structured and predefined this kind of structure is fine. This type of robots are placed in 
carefully controlled environments and kept away from human and their world.  
When it comes to robots that must interact with the natural world, it needs to be able to 
solve the same problems that animals do. The rigid structure of traditional robots limit their 
ability to maneuver and in small spaces and congested environments, and to adapt to 
variations in their environmental contact conditions. For improving the adaptability and 
versatility of robots, recently there has been interest and research in “soft” robots. In 
particular, several research groups are investigating robots based on continuous body 
“continuum” structure. If a robot’s body is soft and/or continuously bendable it might 
emulate a snake or an eel with an undulating locomotion (Walker & Carreras, 2006). 
An ideal tentacle manipulator is a non-conventional robotic arm with an infinite mobility. It 
has the capability of takeing sophisticated shapes and of achieving any position and 
orientation in a 3D space. Behavior similar to biological trunks, tentacles, or snakes may be 
exhibited by continuum or hyper-redundant robot manipulators (Walker et al., 2005). Hence 
these manipulators are extremely dexterous, compliant, and are capable of dynamic 
adaptive manipulation in unstructured environments, continuum robot manipulators do not 
have rigid joints unlike traditional rigid-link robot manipulators. The movement of the 
continuum robot mechanisms is generated by bending continuously along their length to 
produce a sequence of smooth curves. This contrasts with discrete robot devices, which 
generate movement at independent joints separated by supporting links. 
The snake-arm robots and elephant’s trunk robots are also described as continuum robots, 
although these descriptions are restrictive in their definitions and cannot be applied to all 
snake-arm robots (Hirose, 1993). A continuum robot is a continuously curving manipulator, 
much like the arm of an octopus (Cowan & Walker, 2008). An elephant’s trunk robot is a 
good descriptor of a continuum robot (Hutchinson, S.; Hager et al., 1996). The elephant’s 
trunk robot has been generally associated with an arm manipulation – an entire arm used to 
grasp and manipulate objects, the same way that an elephant would pick up a ball. As the 
best term for this class of robots has not been agreed upon, this is still an emerging issue. 
Snake-arm robots are often used in association with another device meant to introduce the 
snake-arm into the confined space.  
However, the development of high-performance control algorithms for these manipulators 
is quite a challenge, due to their unique design and the high degree of uncertainty in their 
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dynamic models. The great number of parameters, theoretically an infinite one, makes very 
difficult the use of classical control methods and the conventional transducers for position 
and orientation.” must be moved after the paragraph “An ideal tentacle manipulator is a 
non-conventional robotic arm with an infinite mobility. It has the capability of takeing 
sophisticated shapes and of achieving any position and orientation in a 3D space. These 
systems are also known as hyper redundant manipulators and, over the past several years, 
there has been a rapid expanding interest in their study and construction. 
An ideal tentacle manipulator is a non-conventional robotic arm with an infinite mobility. It 
has the capability of takeing sophisticated shapes and of achieving any position and 
orientation in a 3D space. These systems are also known as hyper redundant manipulators 
and, over the past several years, there has been a rapid expanding interest in their study and 
construction. 
The control of these systems is very complicated and a great number of researchers tried to 
offer solutions for this difficult problem. In (Hemami, 1984); (Suzumori et al., 1991) it 
analyses the control by cables or tendons meant to transmit forces to the elements of the arm 
in order to closely approximate the arm as a truly continuous backbone. Also, Mochiyama 
has investigated the problem of controlling the shape of an HDOF rigid-link robot with two-
degree-of-freedom joints using spatial curves (Mochiyama & Kobayashi, 1999). Important 
results were obtained by Chirikjian (Chirikjian, 1993) who laid the foundations for the 
kinematic theory of hyper redundant robots. His results are based on a “backbone curve” 
that captures the robot’s macroscopic geometric features. 
The inverse kinematic problem is reduced to determining the time varying backbone curve 
behaviour (Takegaki & Arimoto, 1981). New methods for determining “optimal” hyper-
redundant manipulator configurations based on a continuous formulation of kinematics are 
developed. In (Gravagne & Walker, 2001), Gravagne analysed the kinematic model of 
“hyper-redundant” robots, known as “continuum” robots. Robinson and Davies (Robinson 
& Davies, 1999) present the “state of art” of continuum robots, outline their areas of 
application and introduce some control issues. The great number of parameters, 
theoretically an infinite one, makes very difficult the use of classical control methods and the 
conventional transducers for position and orientation. 
The lack of no discrete joints is a serious and difficult issue in the determination of the 
robot’s shape. A solution for this problem is the vision based control of the robot, kinematics 
and dynamics. 
The research group from the Faculty of Automation, Computers and Electronics, University 
of Craiova, Romania, started working in research field of hyper redundant robots over 25 
years ago. The experiments started on a family of TEROB robots which used cables and DC 
motors. The kinematics and dynamics models, as well as the different control methods 
developed by the research group were tested on these robots. Starting with 2008, the 
research group designed a new experimental platform for hyper redundant robots. This new 
robot is actuated by stepper motors. The rotation of these motors rotates the cables which by 
correlated screwing and unscrewing of their ends determine their shortening or prolonging, 
and by consequence, the tentacle curvature (Blessing & Walker, 2004). Segments were 
cylindrical in the initial prototype, and cone-shaped in actual prototype. The backbone of 
the tentacle is an elastic cable made out of steel, which sustains the entire structure and 
allows the bending. Depending on which cable shortens or prolongs, the tentacle bends in 
different planes, each one making different angles (rotations) respective to the initial 
coordinate frame attached to the manipulator segment – i.e. allowing the movement in 3D. 
Due to the mechanical design it can be assumed that the individual cable torsion, 
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respectively entire manipulator torsion can be neglected. Even if these phenomena would 
appear, the structure control is not based on the stepper motors angles, but on the 
information given by the robotic vision system which is able to offer the real spatial 
positions and orientations of the tentacle segments.  
 

 
Fig. 1. A tentacle arm prototype 

2. Kinematics 

In order to control a hyper-redundant robot it has to develop a method to compute the 
positions for each one of his segments (Immega & Antonelli, 1995). By consequence, given a 
desired curvature S*(x, tf) as sequence of semi circles, identify how to move the structure, to 
obtain s(x, t) such that  

 *lim ( , ) ( , )
ft t fs x t S x t→ =  (1) 

where x is the column vector of the shape description and tf is the final time (see Fig. 2). 
 

 
Fig. 2. The description of the desired shape 
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To describe the tentacle’s shape we will consider two angles (α, θ) for each segment, where θ 
is the rotation angle around Z-axis and α is the rotation angle around the Y-axis (see Fig. 2). 
To describe the movement we can use the roto-translation matrix considering θ = 2β as 
shown in Fig. 3. 
 

 

Fig. 3. Curvature and relation between θ and β 

The generic matrix in 2D that expresses the coordinate of the next segment related to the 
previous reference system can be written as follow: 

 
( ) ( )
( ) ( )

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅⋅⋅

⋅⋅⋅
−

100

)cos(L2cos2sin

)sin(L2sin2cos

βββ
βββ

 (2) 

In 3D space we cannot write immediately the dependence that exists between two segments. 
This relation can be obtained through the pre-multiplication of generic roto-translation 
matrix. One of the possible combinations to express the coordinate of the next segment 
related to the frame coordinate of the previous segment is the following: 

 : ( ) ( ) ( ) ( )i i i i i i i i
generic z y y zR R Tr V R Rθ α θ= ⋅ ⋅ ⋅  (3) 

where ( )i i
zR θ  and ( )i i

yR α  are the fundamental roto-translation matrix having 4x4 elements 
in 3-D space, and Try(Vi) is a 4x4 elements matrix of pure translation in 3-D space and where 
Vi is the vector describing the translation between two segments expressed in coordinate of 
i-th reference system.e main problem remains to obtain an imposed shape for the tentacle 
arm. In order to control the robot, we need to obtain the relation between the position of the 
wires and the position of the segment. 
Here, a decoupled approach is used for the robot control scheme. Thus the segments are 
controlled separately, without considering the interaction between them. Considering the 
segments of the tentacle separately, then (α, θ)i is the asigned coordinate of i-th segment. 
Having as purpose to command the robot to reach the position (α, θ)i the following relation 
is useful: 

  0CBL
R θ

θ
= ∀ ≠  (4) 

centre 

original position of the
segment 

L

θ

β

2β
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where R represents the curvature’s radius of the central bone and CBL  is a constant, equal to 
the length of the central bone. 
Once we have θ  and α together as parameters of the desired shape, and after we obtained R, 
we can compute the corresponding lengths of the wires. Depending on the types of wires 
and on the structure of the tentacle, we must choose the way to compute the length of each 
wire. 
For the hard wire, made from the same material as the central bone, and by consequence 
having the same elasticity, referring to Fig. 4, we can write: 
 

 
Fig. 4. Different types of wires. 

 
1 1

2 2

3 3

w

w

w

L R

L R

L R

θ
θ
θ

= ⋅⎧
⎪ = ⋅⎨
⎪ = ⋅⎩

 (5) 

For the soft wires, we can write: 

 

[ ] ( )

[ ] ( )

[ ] ( )
⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

⋅⋅=

⋅⋅=

⋅⋅=

i/

i/sin
RL

i/

i/sin
RL

i/

i/sin
RL

33w

22w

11w

θ
θθ

θ
θθ

θ
θθ

 (6) 

where Lwn is the length of the n-th wire and Ri is the radius of the curvature of the real i-th 
wire.  
Farther it can be written: 

 ( ) cos( )n nR R R α= − Δ ⋅  (7) 

where ΔR is constant equal to the distance between the center and the wires and αn is: 
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1

2

3

120

240

α α
α α
α α

= −⎧
⎪ = ° −⎨
⎪ = ° −⎩

 (8) 

Obviously the equations (5) and (6), become the same for i → ∞. 
In order to reach the desired shape in a finite time tf, we should choose the appropriate law 
for the time variation of the displacements and speed for the three wires, going from the 
home position to the final position. For each instant, the wires must be moved in order to 
avoid elongation or compression of it self.   
The reference systems for each segment are oriented with the X-axes passing through the 
first wire. That means that the angles considered between the wires and the desired 
directions are as in the equation (8). 
We can obtain the correlation between these angles and the bending direction of the 
segment. E.g. if the direction is α =2/3π, that means we intend to bend the tentacle in the 
direction of the second wire with the imposed value of θ  degrees. In this case, if we will 
move the second wire of ΔLw2, we should move the first and third wires with ΔLw2/2 and 
with the apropiate speed in order to maintain this relation during the movement. 
Once we know the angle α, we can obtain the value ( )cosi iR R αΔ = Δ ⋅ , defining the 
displacements of the wires. 
The algorithm that we are using, assigns the speed of the wires proportional to ΔRi in order 
to go from the home position (θ =0, α =0) to the position (α, θ)i with a constant speed of the 
motors. 
In fact, given the final time tf and the starting time ti, after we obtained the displacement of 
the wires we impose the speed in order to reach the desired position in (tf-ti) seconds. 
So the speed is: 

 
( )

( )
wi f CB

wi

f i

L t L
L

t t

−
=

−
$  (9) 

Our structure does not have encoders. Counting the impulses given to the motors, we can 
evaluate the lengths [Lw1, Lw2, Lw3]. We use these values in order to obtain (α ,θ)i. The 
algorithm’s steps are the following. 
For the n-th rigid wire: 

 cos( )wn CB nL L Rθ α= − ⋅ Δ ⋅  (10) 

Considering the equation (8) and (10), evaluating these for all the wires we can obtain: 

 

3

1

3

1

3

1

cos( ) 0

1
    

3

1

3

i
i

i
i

wii

R R

L L

α
=

=

=

⎧
=⎪

⎪
⎪⎪ =⎨
⎪
⎪

=⎪
⎪⎩

∑

∑

∑

 (11) 

Considering again the equation (10) for the first and second wires, we can write: 

 1 1 2 2cos( ) cos( )w wL R L Rθ α θ α+ Δ ⋅ ⋅ = + Δ ⋅ ⋅  (12) 
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Replacing the (8) we obtain θ in function of α: 

 
( ) ( )

1 22

3cos 3 sin
w wL L

R
θ

α α
−

= ⋅
Δ −

 (13) 

And considering the eq. (10) for the third wire: 

 
( ) ( ) ( )( )

( ) ( )
1 2

3 1

2 3cos 3 sin

3cos 3 sin

w w

w w

L L
L L

α α

α α

⋅ − ⋅ −
= +

−
 (14) 

Finally the α angle can be obtained using the function atan2. 

 ( )( )2 3 1 2 3atan2 3 ,2w w w w wL L L L Lα = − − −  (15) 

where atan2 is an extension of arctan(y/x) on more quadrant having the following form: 

 

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

<=
−

>=

>
<<−
≥<+

0y ,0xif
2

0y ,0xif
2

0xif)x/yatan(

0y ,0xif)x/yatan(

0y ,0xif)x/yatan(

π

π

π
π

 (16) 

The same methodology can be applied for a tronconical robot. The following paragraphs 
will show how the equations change. The geometry of one segment for the 2D case is 
described in Fig. 6. The curvature’s angle θ of the segment is considered as the input 
parameter, while the lengths L1 and L2 of the control wires are the outputs. 
 

 

Fig. 5. Projection of the wire to get the α direction 
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Fig. 6. The geometry of one segment. 

The radius R of the segment curvature is obtained using equation (17): 

 
H

R
θ

=  (17) 

where H is the height of the segment. The following lengths are obtained from Fig. 5, based 
on the segment curvature: 

 11 4 1 12 1 2

21 3 1 22 2 2

2 2

2 2

L CP R D L CP R D

L CP R D L CP R D

= = + = = +

= = − = = −
 (18) 

where D1 and D2 are the diameters of the segment end discs. Based on the Carnot theorem, 
the lengths A1 and A2 are then obtained:  

 
2 2 2 2

1 11 12 11 12

2 2 2 2
2 21 22 21 22

2 cos

2 cos

A L L L L

A L L L L

θ

θ

= + − ⋅ ⋅ ⋅

= + − ⋅ ⋅ ⋅
 (19) 

The control wires curvature radius R1 and R2 are given by the relations (20): 

 1 1 2 22 sin 2 2 sin 2R A R Aθ θ= ⋅ = ⋅  (20) 

Finally, the lengths of the control wires are obtained as in (21): 

 
1 1 1

2 2 2

2

2

/ 2 sin

/ 2 sin

w

w

L R A

L R A

θ

θ

θ θ

θ θ

= ⋅ = ⋅ ⋅

= ⋅ = ⋅ ⋅
 (21) 

For the 3D case, a virtual wire is considered, which gives the α direction of the curvature. 
Considering one virtual wire in the direction of the desired curvature having length 
calculated as follows. Firstly the following lengths are computed: 

 
11 1 1 12 2 1

21 1 2 22 2 2

31 1 3 22 2 3

2 cos( ) 2 cos( )

2 cos( ) 2 cos( )

2 cos( ) 2 cos( )

L R D L R D

L R D L R D

L R D L R D

α α
α α
α α

= + ⋅ = + ⋅
= + ⋅ = + ⋅
= + ⋅ = + ⋅

 (22) 
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where αn is according to Fig. 5: 

 
1

2

3

120

240

α α
α α
α α

= −⎧
⎪ = ° −⎨
⎪ = ° −⎩

 (23) 

Based on (19) and (20) the curvature radiuses R1, R2 and R3 of the three control wires are 
then obtained. Finally the lengths of the control wires are computed with (24): 

 
1 1

2 2

3 3

w

w

w

L R

L R

L R

θ
θ
θ

= ⋅
= ⋅
= ⋅

 (24) 

Apart from the system presented we can obtain two useful relations: 

 

3

1

3

1

cos( ) 0

1

3

i
i

wii
L L

α
=

=

⎧
=⎪⎪

⎨
⎪ =⎪⎩

∑

∑
 (25) 

The second equation of (25), can be utilized to estimate the virtual compression or the 
extension of the central bone. We call that virtual compression because before we compress 
the central bone, the robot will twist to find the shape to guaranty the wrong length of the 
wires. 

3. Dynamics 

3.1 Theoretical model 

The essence of the tentacle model is a 3-dimensional backbone curve C that is parametrically 
described by a vector ( ) 3r s ∈R  and an associated frame ( ) 3 3sϕ ×∈R  whose columns create 
the frame bases (Fig. 7a) (Ivănescu et al., 2006). 
 

 
Fig. 7. Tentacle system parameters. 
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The independent parameter s is related to the arc-length from the origin of the curve C, a 
variable parameter, where 

 ( )0
1

N

i i
i

l l l
=

= + Δ∑  (26) 

or 

 0l l u= +  (27) 

where 0l  represents the length of the N elements of the arm in the initial position and 

 
1

N

i
i

u l
=

= Δ∑  (28) 

 

determines the control variable of the arm length. 
The position of a point s on curve C is defined by the position vector, 

 ( )srr =  (29) 

when [ ].l,0s ∈  For a dynamic motion, the time variable will be introduced, ( )t,srr = . 

We used a parameterization of the curve C based upon two "continuous angles" ( )sθ  and 

( )sq  and length variable u (Fig. 4). 

At each point ( )t,sr , the robot’s orientation is given by a right-handed orthonormal basis 

vector { }zyx e,e,e  and its origin coincides with point ( )t,sr , where the vector ex is tangent 

and ez is orthogonal to the curve C. The position vector on curve C is given by 
 

 ( ) ( ) ( ) ( )[ ]Tt,szt,syt,sxt,sr =  (30) 

where  

 ( ) ( ) ( )∫ ′′′=
s

0

sdt,sqcost,ssint,sx θ  (31) 

 ( ) ( ) ( )∫ ′′′=
s

0

sdt,sqcost,scost,sy θ  (32) 

 ( ) ( )∫ ′′=
s

0

sdt,sqsint,sz  (33) 

with [ ].s,0s ∈′ We can adopt the following interpretation: at any point s the relations (31)-

(33) determine the current position and ( )sΦ determines the robot’s orientation, and the 

robot’s shape is defined by the behaviour of functions ( )sθ  and ( )sq . The robot “grows” 

from the origin by integrating to get ( )t,sr , [ ]ul,0s 0 +∈ . The velocity components are 
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 ( )
0

sin sin cos cos
s

xv q q q dsθ θ θ′ ′ ′ ′ ′ ′ ′= − +∫ $$  (34) 

 ( )∫ ′′′′−′′′−=
s

0
y sdcosqcoscosqsinqv θθθ $$  (35) 

 ∫ ′′=
s

0
z sdqcosqv $  (36) 

 uvu
$=  (37) 

For an element dm, kinetic and gravitational potential (Douskaia, 1998) energy will be 

 ( )2
u

2
z

2
y

2
x vvvvdm

2

1
dT +++=  (38) 

 zgdmdV ⋅⋅=  (39) 

Where 

 dsdm ρ=  (40) 
From (13)-(15) we obtain 

 ( )∫ ∫⎜⎜
⎜

⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
′′′′+′′−=

l

0

2
s

0

sdcosqcossinqsinq
2

1
T θθθρ $$  (41) 

 ( ) +⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
′′′′−′′′−+ ∫

2
s

0

sdsinqcoscosqsinq θθθ $$   

 dsu
2

1
dssdqcosq

l

0

2

2
s

0
∫∫ +

⎟⎟
⎟

⎠

⎞

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
′′′ $$ ρ   

 ∫ ∫ ′′=
l

0

s

0

dssdqsingV ρ  (42) 

The elastic potential energy will be approximated by two components, one determined by 
the bending of the element 

 ( )∑
=

+=
N

1i

2
i

2
i

2

eb q
4

d
kV θ  (43) 

and the other is given by the axial tension/compression energy component 

 2
ea ku

2

1
V =  (44) 
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where we assumed that each element has a constant curvature and a uniform equivalent 
elasticity coefficient k, assumed constant on all the length of the arm. 
The total elastic potential energy will be 

 eaebe VVV +=  (45) 

We will consider ( ) ( )t,sF,t,sF qθ  the distributed forces on the length that determine motion 
and orientation in the θ - plane, q - plane and ( )tFu , the force that determines axial motion, 
assumed constant along the length of the arm. 

3.2 Dynamic model 

In this paper, the manipulator model is considered a distributed parameter (Ivanescu, 2002). 
system defined on a variable spatial domain [ ]l,0=Ω   and  the spatial coordinate is denoted 
by s. 
The dynamic model of this manipulator with hyper-redundant configurations can be 
obtained, in general form, from Hamilton partial differential equations of the distributed 
parameter model, 

 
( )

( )s,t

H

t

s,t

δν
δω

=
∂

∂
 (46) 

 
( )

( )
( )s,tF

s,t

H

t

s,t
+−=

∂
∂

δω
δν

 (47) 

where ω  and ν  are the generalized coordinates and momentum densities, respectively, and 
( ) ( )/δ δ⋅ ⋅  denotes a functional partial derivative. 

The state of this system at any fixed time t is specified by the set ( ) ( )( )s,t,s,t νω , where 
[ ] .uq Tθω =  The set of all functions of Ω∈s  that νω ,  can take on at any time is state 

function space ( ).ΩΓ  We will consider that ( ) ( ).L2 ΩΩΓ ⊂  
The control forces have the distributed components along the arm, ( ) ( ) [ ]l,0s,s,tF,s,tF q ∈θ  
and a lumped component ( ).tFu  
A practical form of dynamic model expressed only as a function of generalised coordinates 
is derived by using Lagrange equations developed for infinite dimensional systems, 

 
( ) ( ) ( ) ( ) θδθ

δ
δθ

δ
δθ

δ
θδ
δ

F
s,t

V

s,t

V

s,t

T

s,t

T

t
e =++−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

$  (48) 
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V

s,tq

V
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⎠

⎞
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⎝

⎛

∂
∂

δ
δ

δ
δ

δ
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e F

u

V

u

V

u

T

u

T

t
=

∂
∂

+
∂
∂

+
∂
∂

−⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

$
 (50) 

where ( ) ( )⋅⋅∂∂ δδ /,/  denote classical and functional partial derivatives (in Gateaux sense]), 

respectively. 
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In Appendix 1 the dynamic model of this ideal spatial tentacle manipulator will be 
developed and the difficulties to obtain a control law will be easily inferred. 
The great number of parameters - theoretically an infinite number of parameters - the 
complexity of the dynamic model make the application of the classical algorithms meant to 
obtain the control law very difficult. In much of the literature concerned with the control of 
these systems, the complexity of the problem is emphasized and various methods that 
compensate all nonlinear terms in dynamics in real time are developed in order to reduce 
the complexity of control systems. Also, simplified procedures are introduced or the 
difficult components are neglected in order to generate a particular law for position or 
motion control. In all these cases, these methods require a large amount of complicated 
calculation so that it is difficult to implement these methods with usual level controllers. In 
addition, the reliability of these methods may be lost when a small error in computation or a 
small change in the system's parameters occurs. 

3.3 Unconstrained control 

The artificial potential is a potential function whose points of minimum are attractors for a 
dissipative controlled system. It was shown that the control of robot motion to a desired 
point is possible if the function has a minimum in the desired point. In this section we will 
extend this result for the infinite dimensional model of the tentacle manipulator with 
variable length. 
We consider that the initial state of the system is given by 

 ( ) [ ]T0000 l,q,s,0 θωω ==  (51) 

 ( ) [ ]T0 0,0,0s,0 ==νν  (52) 

 ( ) ( ) [ ]000 l,0s,s,0qq,s,0 ∈== θθ  (53) 

 ( )0ll0 =  (54) 

corresponding to the initial position of the manipulator defined by the curve 0C  

 ( ) ( )( ) [ ]θ ∈0 0 0 0 0: , , , 0,C s q s l s l  (55) 

The desired point in ( )ΩΓ  is represented by a desired position of the arm, the curve dC , 

[ ]Tdddd l,q,θω =  , 
[ ]Td 0,0,0=ν  

( ) ( )( ) [ ]ddddd l,0s,l,sq,s:C ∈θ  
(56) 

The system motion (48)-(5) corresponding to a given initial state ( )00 , νω  defines a trajectory 
in the state function space ( )ΩΓ . The control problem of the manipulator means the motion 
control by the forces uq F,F,Fθ  from the initial position 0C  to the desired position dC . From 
the viewpoint of mechanics, the desired position ( )dd ,νω  is asymptotically stable if the 
potential function of the system has a minimum at ( )( ) ( )( ) [ ]l,0s,s,s, dd ∈= νωνω  and the 
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system is completely damped. As a control problem in this paper the results of will be 
extended for the infinite dynamic systems.  
We will consider the control forces, 

 ( )
( ) ( ) ( )s,t

F
s,t

V

s,t

V
s,tF d

e

δθ
Πδ

δθ
δ

δθ
δ

θθ −−+=  (57) 

 ( )
( ) ( ) ( )tu

F
tu

V

tu

V
tF ud

e
u ∂

∂
−−

∂
∂

+
∂
∂

=
Π

 (58) 

The first two terms compensate the gravitational and elastic potential, the third components 
assure the damping control and the last terms define the new artificial potential introduced 
in order to assure the motion to the desired position. The minimum points of this potential 
must be identical with desired positions of the manipulator, as attractors of its motion. For 
example, the potential Π can be selected as a functional of generalised coordinates, 

 ( ) ( )( ) ( )( )( ) ( )2
d0

l

0

2
d

2
d luldssqqsu,q, −++−+−= ∫ θθθΠ  (59) 

The control law (57)-(59) modifies the system potential and the Lagrange equation (48)-(50) 
(Masoud & Masoud, 2000) become 

 
( ) ( ) ( ) d

F
s,ts,t

T

s,t

T

t
θδθ

Πδ
δθ

δ
θδ
δ

=+−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

$  (60) 

 
( ) ( ) ( ) dqF

s,tqs,tq

T

s,tq

T

t
=+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂
∂

δ
Πδ

δ
δ

δ
δ
$

 (61) 

 
duF

uu

T

u

T

t
=

∂
∂

+
∂
∂

−⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂ Π

$
 (62) 

The force components 
ddd uq F,F,Fθ  represent the damping components of the control and 

have the form 

 ( ) ( ) ( )∫ ′′′−=
l

0

sdt,ss,sKt,sF
d

θθθ
$  (63) 

 ( ) ( ) ( )∫ ′′′−=
l

0
qq sdt,sqs,sKt,sF

d
$  (64) 

 ( ) ( )tuKtF uud
$−=  (65) 

where ( ) ( )s,sK,s,sK q ′′θ  are positive definite specified spatial weighting functions on 
( )ΩΩ ×  and uK  is a positive constant. For practical reasons, the derivative components of 
the control have the form 
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 ( ) ( ) ( )sksss,sK θθ δ ⋅′−=′  (66) 

 ( ) ( ) ( )sksss,sK qq ⋅′−=′ δ  (67) 

3.4 Constrained control 

Let B be the region of the state (Ceah & Wang, 2005) space where the mechanical system 

motion is not admissible, its complement B  is the region of admissible movements and B∂  
is the boundary of B. The control problem is to determine the potential function ( )u,q,θΠ  

which would determine the motion to the desired position ( ) ( )( ) [ ]l,0s,s,s dd ∈νω  and it does 

not penetrate the constrained area B. In terms of the artificial potential, this means that this 

functional should have a single stationary point in B  and grows without limit when the 
system penetrates the boundary B∂ . 
We will consider the following artificial potential, 

 ( ) ( ) ( ){ }u,q,,u,q,maxu,q, 21 θΠθΠθΠ =  (68) 

where ( )u,q,1 θΠ  is the artificial potential for unconstrained problem and ( )u,q,2 θΠ  is the 

potential for constrained control problem. 

( )u,q,2 θΠ  is a non-negative, continuous functional defined in B  and 

 ( ) ∞=
→

u,q,lim 2
0d

θΠ  (69) 

where d is the distance between the current state ( )u,q,θ  and the boundary B∂ . 

3.5 Appendix 1 

We will consider a spatial tentacle model, an ideal system, neglecting friction and structural 
damping. We assume a uniformly distributed mass with a linear density ρ [kg/m].  
We will use the notations: 

( ) [ ] [ ]ft,0t,,0s,t,sqq ∈∈= l  ( ) [ ] [ ]ft,0t,,0s,t,s ∈∈= lθθ  

( ) [ ] [ ]ft,0t,s,0s,t,sqq ∈∈′′=′  
( ) [ ] [ ]ft,0t,,0s,
t

t,sq
q ∈∈

∂
∂

= l$  

( ) [ ] [ ]ft,0t,s,0s,
t

t,sq
q ∈∈′

∂

′∂
=′$  

( ) [ ] [ ]f2

2

t,0t,s,0s,
t

t,sq
q ∈∈′

∂

′∂
=′$$  

( ) [ ] [ ]f2

2

t,0t,s,0s,
t

t,sq
q ∈∈′′

∂

′′∂
=′′$$  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

( ) [ ] [ ]fqq t,0t,,0s,t,sFF ∈∈= l  ( ) [ ]fuu t,0t,tFF ∈=  
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From (60)-(62), it results, 

( )( )(∫ ∫ −′′′+′′−′′′′′
s

0

s

0

qcosqcosqqcosqsinqsinq$$ρ ( )+′−′′′′′′ θθθ sinqsinqcos$$  

( )( )+′′′−′′−′′′′′+ qcosqsincosqsinqcosq 2 θθ$ ( )θθθ ′′−′′′′′ cosqsinqcos2$ ( )) +′′′′−′′′′′− sdsdqqsinqq $$  

∫ =+′′+
s

0
q

2 Fqkd
2

1
sdqcosgρ  

( )(∫ ∫ +′−′′′′′′
s

0

s

0

sinqcosqsinq θθρ $$ ( ) −′−′′′′′′ θθθ cosqcosqcos$$ ( )+′−′′′′′′ θθsinqcosqcosq 2$  

( )−′−′′′′′′+ θθθ sinqcosqcos$ ( )) θθθθθ Fkd
2

1
sdsdcosqcosqsinq 2 =+′′′′−′′′′′′′$$  

u
2 Fkuu

2

1
u =++ $$$ ρρ  

4. Visual servoing system 

4.1 Camera system 

In the Appendix 2 the dynamic model of the 3D spatial hyper redundant arm is 
determinated. Two video cameras provide two images of the whole robot workspace. The 
two images planes are parallel with XOY and ZOY planes from robot coordinate frame, 
respectively (Fig. 8). The cameras provide the images of the scene stored in the frame 
grabber’s video memory being displayed on the computer screens (Hannan & Walker, 
2005); (Kelly, 1996). Related to the image planes, two dimensional coordinate frames, called 
screen coordinate frames or image coordinate systems are defined. Denote 

1SX , 
1SY  and 

2SZ , 
2SY , respectively, the axes of the two screen coordinate frames provided by the two 

cameras. The spatial centers for each camera are located at the distances D1 and D2, with 
respect to the XOY and ZOY planes, respectively. The orientation of the cameras arround 
the optical axes with respect to the robot coordinate frame, are noted with ψ  and φ , 

respectively. A point P in the coordinate frame is 

 P=[ x, y, z]T (70) 

The description of a point P in the two screen coordinate frames are denoted by 

 2SP =[ 1Sx ,
2Sy ] (71) 

 2SP =[
2Sz ,

2Sy ] (72) 

Geometric optics are used to model the mapping between the robot Cartesian space and the 
screen coordinate systems. We assume that the quantization and the lens distortion effects 
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are negligible. The description of the point P=[ x, y, z]T in the robot coordinate frame is given 
in terms of screen coordinate frames as 

 ( ) ⋅⋅
+−

⋅=⎥
⎦

⎤
⎢
⎣

⎡
)(R

xDy

x

11

1
1

s

s

1

1 φ
λ

λα
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡

1

1

y

x

12

11

c

c

o

o

y

x
 (73) 

for the 
111 SSS YOZ  frame and 

 ( ) ⋅⋅
+−

⋅=⎥
⎦

⎤
⎢
⎣

⎡
)(R

xDy

z

22

2
2

s

s

2

2 φ
λ

λα
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡

2y

z

22

21

c

c

o

o

y

z
2  (74) 

for the 
222 SSS YOZ  frame, where [

1xc ,
1yc ]T and [

2zc ,
2yc ]T the image centers, 1α  and 2α  are 

the scale factors of the length units in the front image planes given in pixel/m,  R(ψ ) and 
R( φ ) are the rotation matrices generated by clockwise rotating the cameras about their 
optical axes by ψ  and φ  radians, respectively, and [O11, O12]T and [O21, O22]T represent the 
distances between the optical axes and the XOY and ZOY planes, respectively.  
 

 
Fig. 8. Camera system 

In Fig. 9 the frames corresponding to the screen images of the two cameras are presented. 
From the relations (73), (74),  we obtain 

 ( ) ⎥
⎦

⎤
⎢
⎣

⎡
⋅

+−
⋅=⎥

⎦

⎤
⎢
⎣

⎡
y

x

xDy

x

11

1
1

s

s

1

1

Δ
Δ

λ
λ

α
Δ
Δ

 (75) 

 ( ) ⎥
⎦

⎤
⎢
⎣

⎡
⋅

+−
⋅=⎥

⎦

⎤
⎢
⎣

⎡
y

z

xDy

z

22

2
2

s

s

2

2

Δ
Δ

λ
λ

α
Δ
Δ

 (76) 
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and the orientation angles for each plane will be 

 θ
Δ
Δ

Δ
Δ

θ tg
y

x

y

x
tg

1

1

s

s
s ===  (77) 

hence 

  )s()'s(s θθ = , ]l,0[s∈ , ]'l,0['s ∈  (78) 

for the plane 
111 SSS YOZ  and  

y

z

y

z
tgq

2s

s
s

2

Δ
Δ

Δ
Δ

==  

 

 
 

Fig. 9. Image frames 

This relation allows the computation of the orientation angle sq  in the plane 
222 SSS YOZ  

 
)s(cos

1
)s(tgq)''s(tgqs θ
⋅= , ]l,0[s∈ , ]''l,0[''s ∈  (79) 

where, ''s,'s and ''l,'l  represent the projections of the variable s and the length l in the two 

planes, respectively. The projection of the forces on the two planes can be easily inferred and 
the relations (77)-(79), 

 θθ FF
s

=  (80) 

 θ222
qq cosqsinqcosFF

s
⋅+⋅=  (81) 

4.2 Servoing system 

The control system is an image – based visual servo control where the error control signal is 
defined directly in terms of image feature parameters. The desired position of the arm in the 
robot space is defined by the curve Cd, 

 ))s(q),s((:C ddθ  , ]l,o[s∈  (82) 

or, in the two image coordinate frames 
111 SSS YOZ  and 

222 SSS YOZ , by the projection of the 

curve C, 
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 ))'s((:C d
s

d
s1

θ , ]'l,0['s ∈  (83) 

 ))''s(q(:C d
s

d
s2

, ]''l,0[''s ∈  (84) 

Define the motion errors as 

 )s()s,t()s,t(e dθθθ −= , ]l,0[s∈  (85) 

 )s(q)s,t(q)s,t(e dq −= , ]l,0[s∈  (86) 

or, in the image coordinate frames, by ]'l,0['s ∈ , ]''l,0[''s ∈  

 )'s()'s,t()'s,t(e d
sss

θθθ −=  (87) 

 )''s(q)''s,t(q)''s,t(e d
sssq −=  (88) 

The global control system is presented in Fig. 10. The control problem of this system is a 
direct visual servocontrol but we do not use the clasical concept of the position control 
where the error between the robot end-effector and target is minimized (Grosso et all., 1996). 
 

 
Fig. 10. The global control system 

In this paper we will use the control of the curve’s shape in each point of the mechanical 
structure. The method is based on the particular structure of the system defined as a 
“backbone with two continuous angles )s(θ  and q(s)”. The control of the system is based on 
the control of the two angles )s(θ  and q(s). These angles are measured directly or indirectly.  
The angle )s(θ   is measured dircetly by the projection on the image plane 

111 SSS YOZ  
(relation 78) and q(s) is computed from the projection on the image plane 

222 SSS YOZ  
(relation 79). The stability of the closed-loop system is proven by the Lyapunov’s second 
method but, in order to avoid the complex problems derived from using the nonlinear 
derivation integral model, a method based on the energy-work relationship (Ge at al.,1996) 
was be developed (see Appendix 2). 
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Proposition: The closed-loop hyper redundant arm system is stable if the control law is 

 )t,'s(e)s(k)t,'s(e)s(k)t,s(F ss

21
θθθθθ

•
⋅−⋅−=  (89) 

 [ ⋅⋅−= − ))t,'s((costg)s(k)t,s(F s
11

qq θ ])s(q)t,''s(tgq d
s −  (90) 

where ]'l,0['s ∈ , ]''l,0[''s ∈  and )s(k),s(k),s(k 1
q

21
θθ  are positive coefficients of the control law 

for all ]l,0[s∈ . The parameter of the control law (88), (89), can be inferred from the image 
feature extraction of the two planes. The parameters 

s
eθ  can be directly calculated from 

equation (85-88) and seθ
•

 can be indirectly computed. Also sθ , qs and d
sq  are evaluated 

directly from the trajectory projections. We remark that the control law represents a robust 
control, independent of the camera parameters. No intrinsec camera parameters are 
assumed known. 

4.3 Appendix 2 

We will consider a spatial tentacle model, an ideal system, neglecting friction and structural 
damping. We assume a uniformly distributed mass with linear density ]m/kg[ρ . We will 

consider a non-extensible arm with constant length. 
We will use the notations: 

)t,s(qq = , )t,'s('q'q = , 
t

)t,s(q
q

∂
∂

=
•

, 

t

)t,'s(q
'q

∂
∂

=
•

, 
2

2

t

)t,'s(q
'q

∂
∂

=
••

, 
2

2

t

)t,''s(q
''q

∂
∂

=
••

, 

The position of a point P is given by (31-33) and the velocity components are given by (34-
37). From an element dm, kinetic and potential energy are given by will be (38-40).  
Following (41-42) were computed. 
The dynamic model is obtained by using Lagrange equation of motion 

 F
q

V

q

T

q

T

dt

d
=+−

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

• δ
δ

δ
δ

δ

δ
 (91) 

where (.)/(.) δδ  denotes a functional partial (variational) Gateaux derivate (Wang, 1965), as 
shown before, that is defined as the variation of the functional Ω  with respect to the 
function θ at a point ]l,0[s∈ . From (41-42) it results, 

( )−⎜
⎝
⎛ ⋅+−⋅⋅⋅⋅ ∫ ∫

••l

0

s

0

''qcos'qcos)''q'qcos(''qsin'qsin'qρ +−⋅⋅⋅
••

)'''sin(''qsin'qcos' θθθ

 ( ) +⋅−−⋅⋅⋅+
•

)''qcosqsin)'''cos(''qsin'qcos'q 2 θθ −−⋅⋅⋅
•

)'''cos(''qsin'qcos'2 θθθ

+⋅⋅⎟
⎠
⎞−⋅⋅−

••
''ds'ds)'q''qsin(''q'q ∫ =⋅⋅⋅

s

0

qF'ds'qcosgρ

(92) 
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∫ ∫⎜
⎝
⎛ +−⋅⋅⋅

••l

0

s

0

)''q'qsin('cos''qsin'qρ +−⋅⋅⋅
••

)'''cos('cos''qcos' θθθ

 ( )+−⋅⋅⋅+
•

)'''sin(''qcos'qcos'q 2 θθ −−⋅⋅⋅
•

)'''sin(''qcos'qcos' θθθ

 θθθθ F''ds'ds)'''cos(''qcos'q' =⋅⋅⎟
⎠
⎞−⋅⋅⋅−

••

(93)

We consider the following Lyapunov function. 

 ∫ ⋅⋅⋅++=
l

0

21* ds)t,s(e)s(k
2

1
)t(V)t(T)t(V θθ  (94) 

where T, V represent the kinetic and potential energies of the system. V*(t) is pozitive 
definited because the terms that represent the energy T and V are always 0)t(T ≥ , 0)t(V ≥ . 
For the steady desired position, we have 

 ∫ ⎜
⎝
⎛ +⋅=

•• l

0

* )t,s(e)t,s(F)t(V θθ ds)t,s(e)(k)t,s(e)t,s(F 1
qq ⋅⎟

⎠
⎞⋅+⋅

•

θθ θ  (95) 

If we use the control low defined by the relations (89)-(90), where the parameters of motion 
are evaluated from (78)-(79), (85)-(88), we will have, 

 ∫ ⋅⎟
⎠
⎞

⎜
⎝
⎛⋅−=

•• l

0

2
1* ds)t,s(ek)t(V θθ  (96) 

 0)t(V * ≤
•

 (97) 
Q.E.D. 
The derivative of the error in the control laws (89), (90) can be computed by an iteration 
procedure.  The coordinate 

1sx  on the projection 
1sC  can be evaluated by the relation 

 's)'sj(sin)'si(x
i

1j
ss 11

ΔΔθΔ ⋅⋅=⋅ ∑
=

 (98) 

 's)'sj()'sj(cos)'si(x
i

1j
ss 11

ΔΔθΔΔθΔΔ ⋅⋅⋅⋅=⋅ ∑
=

 (99) 

Assuming that 
2

)s( isi

πθ ≠ , we obtain 
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(100) 
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If ( )
2

sisi

πθ = , a similar procedure for ( )'siy
1s Δ⋅  can be used. 

4.4 Camera calibration 

The term “camera calibration” in the context of this paper refers to positioning and orienting 
the two cameras at imposed values (Fig. 11) (Tanasie et al., 2009).). This calibration is 
performed only at the beginning, after that the cameras remain still. First, a zoom that 
maximizes the image resolution of the working space used by the manipulator is performed. 
Second, positioning of the two cameras brings the manipulator in the middle of the two 
images. Third, a pan / tilt orientation is performed (as descried later in the paper). At this 
step the manipulator is moved in a test position that allows free of (or minimum) errors 
calibration. The test images are compared to the images generated by the graphic simulator 
(ideal images) which represent references for the calibration operation. 
 

 
Fig. 11. Camera calibration system 

In order, to ease the fulfil of the cameras calibration, a graphic simulator based on a 2D 
direct kinematics model was designed, implemented and used. By consequence, during the 
calibration procedure, the robot was commanded to bend in planes perpendicular to the 
cameras axes. Thus only the arching angle needs to be computed and a 2D model is 
sufficient to solve the problem. The next version of the software application introduces also 
the possibility to calibrate in 3D, the test positions corresponding to unrestricted planes 
orientation. A very important task in developing this application is to control the camera 
position and orientation. From this point of view, the calibration operation assures that the 
two cameras’ axes are orthogonal. In the beginning, the tentacle manipulator receives the 
needed commands in order to stand in a test pose (imposed position and orientation). The 
same commands are sent to the graphic simulator. Two different sets of images are 
obtained: real images acquired by the real cameras and simulated images offered by the 
graphic simulator. From these two sets of images, two sets of parameters are computed: real 
parameters are computed from real images and, respectively, ideal parameters are 
computed from synthetic images. Comparing the two sets of parameters and knowing the 
image/parameters behavior for the camera orientation, the cameras are orientated 
(pan/tilt/zoom) in order to minimize the error. 
A graphical simulator was designed and implemented in order to test the robot behavior 
under certain circumstances (Cojocaru et al., 2010). The simulator approximates the curved 
segments of the hyper redundant robot and considers constant the length of the median arc 
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of each segment. To ease the presentation, the term segment will be used in all that follows 
referring to the median segment (arched or un-arched). For the arched segment, its median 
arc remains constant. In this paper the term O-X angle will be used to denote the angle that 
the chord made by an arched element of the robot makes with the O-X axis of a selected 
reference system. 
The inputs for the simulator are: robot configuration; robot initial position; rontrol laws for 
each of the segments of the hyper redundant robot. The robot configuration consists of the 
number of segments the hyper redundant robot has, the length of each segment and the 
angles that the cords make with the O-X axis. The arching angles are computed from these 
angles. An arching angle is defined as the angle made by the cord (determined by the ends 
of the arched segment) and the original un-arched segment. For the direct kinematics 
problem, the control of the robot simulation is accomplished by giving the O-X angles for 
each of the segments in their final position and the output of the simulation is the hyper 
redundant robot’s end-effector final position in the operation space. In order to compute the 
final position of the end-effector and the hyper redundant robot’s behavior during its 
motion, a few elements must be computed: the relation between the arching angle and the 
angle at center determined by the arched segment (this angle determines the length of the 
arc); the cord length; the relation between an O-X angle and an arching angle; the final 
arching angles – recurrent set.  
The computation of the relation between the arching angle and the angle at center 
determined by the arched segment is determined by the following axiom: For camera 
calibration a direct kinematics model was used, thus the rotation angles for each segment  
are given. For a robot that has only rotation joints, the O-X angle increases (or decreases, 
depending on the selected positive direction) for each segment with the sum of rotation 
angles of each of the previous segments (including the current segment). This is true 
because the orthogonal system attached to the ith segment is obtained from its initial 
position and applying all the anterior transformations. For a hyper redundant robot the 
problems are different. The arching angle is double the sum of each previous arching angle 
plus the current arching angle, because the un-arched segment is a prolongation of the 
previous segment.  
In order to simulate the circular arched segments a series of intermediate points (that are 
connected by lines) between the segment origins must be determined. The Catmull-Rom 
interpolation algorithm was used for this simulator because it was need an interpolation 
algorithm that passes through the control points. Catmull-Rom splines are a family of cubic 
interpolating splines formulated such that the tangent at each point ip  is calculated using 
the previous and next point on the splines, ( )1i1i pp −+ −τ .  
Camera calibration is the essential procedure for all such applications: positioning and 
orienting the cameras in order to support the accuracy of the image features extraction. 
Calibration for a pan/tilt/zoom camera shape is achieved by means of an engineered 
environment and a graphic simulation module.  
Term “camera calibration” in the context of this paper refers to positioning and orienting the 
two cameras at imposed values. This calibration is performed only at the beginning, after 
that the cameras remain still. The general control method is an image based visual servoing 
one instead of position based. Camera calibration based on intrinsic parameters (classic 

www.intechopen.com



 Advanced Strategies for Robot Manipulators 

 

50 

sense, not the one used in this paper) is not necessary. Calibration operation assures that the 
two cameras’ axes are orthogonal.  
Taking into account the presented structure of the tentacle - vision system, in order to apply 
the tested visual servoing algorithm, the two cameras must be positioned and oriented as: 
both focus on the robot, their axes are orthogonal, both have the same zoom factor. 
Two different algorithms were implemented: one uses a cylindrical etalon, other uses the 
graphical simulator. 
For the first algorithm, special starting conditions were imposed in order to support the 
image processing tasks: white background, dark grey cylinder, red vertical equidistant (90 
degrees) axes, friendly initial camera's positions and orientations, zoom x1 (Fig. 12). 
 

 
 

Fig. 12. The cylindrical etalon 

Three succesive and dependent calibrations are performed: Horizontal (pan): position and 
orientation are obtained in two successive, but dependent steps; Vertical (tilt): position and 
orientation are obtained in two successive, but dependent steps; Zoom: tuning the two 
cameras as both look to the cylinder from virtual equal distances. 
Both offsets must be under the accepted thresholds. Else, the positioning destroyed the 
orientation and the procedure must be repeated. A similar algorithm is developed for the 
vertical orientation and positioning.  
The second algorithm works together with the graphic simulator. It was proven that the two 
camera axes are orthogonal if, when both cameras are looking at the tentacle successively 
bended as circle's arcs in two orthogonal planes, are seeing also two circle's arcs (Fig. 13). 
The previous condition is fulfilled if each camera looks at the center of the circle containing 
the arc and the view line is orthogonal on the plane's circle. 
Three calibration steps must be performed: Horizontal calibration - positioning and 
orienting the camera horizontally (pan); Vertical calibration - positioning and orienting the 
camera vertically (tilt); Zoom calibration -  tuning the two cameras as both look at the robot 
from virtual equal distances. 
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Fig. 13. Camera looks to the center of the circle 

How to “move” the camera according to the steps of these algorithms? The image behavior 
in accordance with camera’s movements was studied.  The effect of pan and tilt rotations on 
two points placed in a quadratic position on a circle was geometrically described. 
Coordinate transformation matrices corresponding to rotations with pan and tilt angles, 
respectively for perspective transformation were used. The variation of the distance between 
the two points, placed in a quadratic position on the circle, and the centre of the circle, 
depending of the tilt angle X, is plotted bellow in Fig. 14.  
 

 
 

Fig. 14. Distance variation for quadratic positions 

The variation of the ratio of the two distances is plotted bellow in Fig. 15a. The plot from 
Fig. 15b shows how is transformed a rectangle (inscribed in the circle and having the edges 
parallel with the axes OX and OY) when a tilt rotation is performed. Theoretically, by 
zooming, the distance between the two points varies in a linear way, as it is shown upper 
right. 
The image’s segmentation is basically a threshold procedure applied to the image’s 
histogram. All the procedures included in the calibration algorithms were mathematically 
proven. If the calibration algorithm was successfully applied then the system is ready to 
perform the visual servoing tasks. 
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Fig. 15. a. Ratio distances variation b. Rectangle transformation and distance variation under 
zoom influence 

5. A Compliance control of a hyper redundant robot 

This section treats a class of hyper redundant arms can achieve any position and orientation 
in 3D space, and that can perform a coil function for the grasping. The arm is a high degree 
of freedom structure or a continuum structure, but in this chapter a different technological 
solution is assumed. 
The general form of the arm is shown in Figure 16. It consists of a number (N) of elements, 
cylinders made of fibre-reinforced rubber. 
 

 
 

Fig. 16. The force sensors distribution 

There are four internal chambers in the cylinder, each of them containing the ER fluid with 
an individual control circuit. The deformation in each cylinder is controlled by an 
independent electrohydraulic pressure control system combined with the distributed 
control of the ER fluid. 
The last m elements (m < N) represent the grasping terminal. These elements contain a 
number of force sensors distributed on the surface of the cylinders. These sensors measure 
the contact with the load and ensure the distributed force control (Singh & Popa, 2005) 
during the grasping. The theoretical model is described as in Fig. 7 and equation (26)-(33). 
For an element dm, kinetic and gravitational potential energy will be: 

0 Y

X

Z

Force sensors

Force sensors

0 0.5 1 1.5
1

1.1

1.2

1.3

1.4

1.5

FRx1 f α, ( ) FRx0 f α, ( )−

FRx2 f α, ( ) FRx0 f α, ( )−

α
2− 1− 0 1 2

3−

2−

1−

0

1

2

yp i

yn i

xpi xni, 

www.intechopen.com



Hyper Redundant Manipulators   

 

53 

 ( )2
z

2
y

2
x vvvdm

2

1
dT ++= , zgdmdV ⋅⋅=  (101) 

where dsdm ⋅= ρ , and ρ  is the mass density. 

The elastic potential energy will be approximated by the bending of the element: 

 ( )θ
=

= +∑
2

2 2

14

N

e i i
i

d
V k q  (102) 

We will consider ( )t,sFθ , ( )t,sFq  the distributed forces on the length of the arm that 
determine motion and orientation in the θ -plane, q -plane. The mechanical work is: 

 ( ) ( ) ( ) ( )( )∫ ∫ +=
l

0

t

0
q dsd,sq,sF,s,sFL ττττθτθ $$  (103) 

The energy-work relationship will be 

 ( ) ( ) ( ) ( )( )∫ ∫ +=
l

0

t

0
q dsd,sq,sF,s,sFL ττττθτθ $$  (104) 

where ( )tT  and ( )0T , ( )tV ∗  and ( )0V∗  are the total kinetic energy and total potential 

energy of the system at time t and 0, respectively. 
In this chapter, the manipulator model is considered as a distributed parameter system 
defined on a variable spatial domain [ ]L,0=Ω  and the spatial coordinate s.  

From (101-103), the distributed parameter model becomes, 

( )( )( ( )

( ) ( )( ) ( ) ( )

( )) q
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 (105) 

( )( ( ) ( ) ( )
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θθθθθθθρ

Fksdsdcosqcosqsinqsinqcosqcos

sinqcosqcosqcosqcosqcossinqcosqsinq

2

2
S

0

S

0

=+′′′′−′′′′′′′−′−′′′′′′+
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 (106) 

The control forces have the distributed components along the arm, ( )t,sFθ , ( )t,sFq , 
[ ]L,0s∈  that are determined by the lumped torques, 
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where δ  is Kronecker delta, llll N21 ==== … , and 

 ( ) ( ) 8dSppt 21

iii
⋅−= θθθτ  (108) 

 
( ) ( ) 8dSppt 2

q
1
qq iii

⋅−=τ
, N,,2,1i …=  (109) 

In (107)-(108), 1

i
pθ , 2

i
pθ , 1

qi
p , 2

qi
p  represent the fluid pressure in the two chamber pairs, θ , q  

and S, d are section area and diameter of the cylinder, respectively (Fig. 17). 
 

 
Fig. 17. The cylinder driving 

The pressure control of the chambers is described by the equations: 

 ( ) ki

k
i

ki u
dt

dp
a θ

θθ =  (110) 

 
( ) qki

k
qi

ki u
dt

dp
qb =

, 2,1k = , N,,2,1i …=  (111) 

where ( )θkia , ( )qbki  are determined by the fluid parameters and the geometry of the 

chambers and 

 ( ) 00aki > , ( ) 00bki >  (112) 

The control problem of a grasping function by coiling is constituted from two subproblems: 
the position control of the arm around the object-load and the force control of grasping 
(Chiaverini et al., (1996). We consider that the initial state of the system is given by 

 ( ) [ ]T000 q,s,0 θωω ==  (113) 

corresponding to the initial position of the arm defined by the curve 0C  

 ( ) ( )( )sq,s:C 000 θ , [ ]L,0s∈  (114) 
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Fig. 18. (a) The grasping position; (b) The grasping parameters 

The desired point is represented by a desired position, the curve Cd that coils the load, 

 [ ]Tddd q,θω =  (115) 

 ( ) ( )( )sq,s:C ddd θ , [ ]L,0s∈  (116) 

In a grasping function by coiling, only the last m elements (m < N) are used. Let lg be the 

active grasping length, where ∑
=

=
n

mi
ig ll . We define by ( )tep  the position error 

 ( ) ( ) ( )( ) ( ) ( )( )( )∫
−

−+−=
L

lL
bbp

g

dssqt,sqst,ste θθ  (117) 

It is difficult to measure practically the angles θ , q  for all [ ]L,0s∈ . These angles can be 
evaluated at the terminal point of each element. In this case, the relation (117) becomes 

 ( ) ( )( ) ( )( )( )∑
=

−+−=
N

mi
biibiip qtqtte θθ  (118) 

The error can also be expressed with respect to the global desired position Cd 

 ( ) ( )( ) ( )( )( )∑
=

−+−=
N

1i
diidiip qtqtte θθ  (119) 

The position control of the arm means the motion control from the initial position C0 to the 
desired position Cd in order to minimize the error. An area reaching control problem is 
discussed. The desired area is specified by the inequality function: 

 ( ) 0rf ≤δ  (120) 

where f is a scalar function with continuous first partial derivates, δ = − 0Fr r r , 3
0 Rr ∈  is a 

reference point of the desired area and Fr  is the position vector of the terminal point.  
The potential energy function for the area reaching control has the form: 

 ( ) ( ) ( ) ( )⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

∂
∂

−−−= ∗∗
iiP

T
P2 q,ak
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V
,0maxtektekt

iiiiii
θτ
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Theorem 1. The closed-loop control system for the desired reaching area problem is stable if 
the control forces are 

 ( ) ( ) ( ) ( )( )iiP
T
P

2 q,akrV,0maxtektekt
iiiiii

θτ
θθθθθθ

∗∗ ⋅∂∂−−−= $  (122) 

 ( ) ( ) ( ) ( )( )iiP
T
P

2
qqqq q,akrV,0maxtektekt

iqiiiii
θτθ

∗∗ ⋅∂∂−−−= $  (123) 

Theorem 2. The closed-loop control system of the position (107)-(108), (110)-(111) is stable if 
the fluid pressures control law in the chambers of the elements given by: 

 ( ) ( ) ( ) ( )( )θ θ θ θ θθ= − +$ $$1 2j j
ji ji i i i iu t a k e t k e t  (124) 

 ( ) ( ) ( ) ( )( )θ= − +$ $$1 2j j
qji ji qi qi qi qiu t b k e t k e t  (125) 

where 2,1j = ; N,,2,1i …= , with initial conditions: 

 ( ) ( ) ( ) ( )θ θ θ θ θ− = −1 2 11 210 0 0i i i i ip p k k e  (126) 

 ( ) ( ) ( ) ( )− = −1 2 11 210 0 0qi qi qi qi qip p k k e  (127) 

 ( )θ =$ 0 0ie  (128) 

 ( ) =$ 0 0qie , N,,2,1i …=  (129) 

and the coefficients θ ik , qik , θ
mn
ik , mn

qik  are positive and verify the conditions 

 21
i

11
i kk θθ > ; 22

i
12
i kk θθ >  (130) 

 21
qi

11
qi kk > ; 22

qi
12
qi kk > , N,,2,1i …=  (131) 

The grasping by coiling of the continuum terminal elements offers a very good solution in 
the fore of uncertainty on the geometry of the contact surface. The contact between an 
element and the load is presented in Fig. 19. It is assumed that the grasping is determined 
by the chambers in θ -plane. The relation between the fluid pressure and the grasping forces 
can be inferred for a steady state from, 

 
( ) ( ) ( ) ( ) ( )θ

θ θ
∂

+ = −
∂∫ ∫ ∫# # # #
2

1 22
0 0 0 8

l l s
Ts d

k ds f s T s T s ds p p S
s

 (132) 

where ( )sf  is the orthogonal force on bC , ( )sf  is ( )sFθ  in θ -plane and ( )sFq  in q-plane. 
For small variation iθΔ  around the desired position idθ , in θ -plane, the dynamic model 

(118) can be approximated by the following discrete model, 

 ( ) ( ) ( )eiiididdidiidiiiii Ffdq,Hq,,Hcm −=−+++ θθθΔθθΔθΔ $$$  (133) 
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Fig. 19. The grasping force 

 

 
 

Fig. 20. The block scheme of the control system 

where ΔρSmi = , 1l,,2,1i …= . ( )did q,H θ  is a nonlinear function defined on the desired 

position ( )did q,θ , ( )diii q,,cc θν= , 0ci > , ( )ΩΓθ ∈q, , where ν  is the viscosity of the 

fluid in the chambers. The equation (133) becomes: 

 ( ) ( ) ( )eiiiididiidiiii Ffdq,hq,,cm −=⋅++ θΔθθΔθνθΔ $$$  (134) 

The aim of explicit force control is to exert a desired force idF . If the contact with load is 

modelled as a linear spring with constant stiffness Lk , the environment force can be 

modelled as iLei kF θΔ= . The error of the force control may be introduced as 

 idiefi FFe −=  (135) 

It may be easily shown that the equation (134) becomes 
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Theorem 3. The closed force control system is asymptotic stable if the control law is 
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6. Conclusion 

The research group from the Faculty of Automation, Computers and Electronics, University 
of Craiova, Romania, started working in research field of hyper redundant robots over 25 
years ago. The experiments used cables and DC motors or stepper motors. The rotation of 
these motors rotates the cables which by correlated screwing and unscrewing of their ends 
determine their shortening or prolonging, and by consequence, the tentacle curvature.  
The inverse kinematics problem is reduced to determining the time varying backbone curve 
behaviour. New methods for determining “optimal” hyper-redundant manipulator 
configurations based on a continuous formulation of kinematics are developed.  
The difficulty of the dynamic control is determined by integral-partial-differential models 
with high nonlinearities that characterize the dynamic of these systems. First, the dynamic 
model of the system was inferred. The method of artificial potential was used for these 
infinite dimensional systems. In order to avoid the difficulties associated with the dynamic 
model, the control law was based only on the gravitational potential and a new artificial 
potential. 
The control system is an image – based visual servo control. Servoing was based on 
binocular vision, a continuous measure of the arm parameters derived from the real-time 
computation of the binocular optical flow over the two images, and is compared with the 
desired position of the arm. The method is based on the particular structure of the system 
defined as a “backbone with two continuous angles”. The control of the system is based on 
the control of the two angles. The error angle was used to calculate the spatial error and a 
control law was synthesized. The general control method is an image based visual servoing 
one instead of position based. By consequence, camera calibration based on intrinsic 
parameters is not necessary („calibration“ in the classic sense of the term, not the one used 
in this paper). The term “camera calibration” in the context of this paper refers to 
positioning and orienting the two cameras at imposed values. This calibration is performed 
only at the beginning, after that the cameras remain still. 
A new application investigates the control problem of a class of hyper-redundant arms with 
continuum elements that performs the grasping function by coiling. The control problem of 
a grasping function by coiling is constituted from two subproblems: the position control of 
the arm around the object-load and the force control of grasping. 
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