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1. Introduction 

In recent years, tectonic plate movements have caused huge natural disasters, such as the 
Great Sumatra-Andaman earthquake and the resulting Asian tsunami, which led to 
significant loss of human lives and properties (Ammon et al., 2005; Lay et al., 2005). 
Scientific evidences  proved it was the beginning of a new earthquake supper-cycle in this 
active area (Sieh et al., 2008). In order for scientists to further study such disasters and 
provide early warning of imminent seismic events, many continuous-Global Positioning 
System (cGPS) arrays were developed and deployed to monitor the active tectonic plates 
around the world such as “SuGAr” along the Sumatran fault, “GEONET” covering all Japan 
islands,  and “SCIGN” covering most of southern California. Each of these cGPS arrays 
contains tens to hundreds of GPS stations. Using precise GPS receivers, antennas and 
scientific-grade GPS processing software, measurements from each GPS station are able to 
provide location information with sub-millimeter accuracy. These location data produced by 
the GPS stations, which are located in the vicinity of active tectonic plates, provided accurate 
measurements of tectonic movements during the short period of a co-seismic event as well 
as for the long period observation of post-seismic displacement.  
The GPS applications in earthquake studies (Segall & Davis, 1997) include monitoring of  
co-seismic deformation, post seismic and inter-seismic processes. Post seismic (except 
aftershocks) and inter-seismic deformations are much smaller than co-seismic events, where 
there is little or no supporting information from seismic measurements. In this instance, GPS 
can be used to detect the long time inter-seismic strain accumulation which leads to 
indentify the location of future earthquake (Konca et al., 2008). 
In cGPS arrays utilizing satellite communications such as the Sumatran cGPS Array 
(SuGAr), each GPS station in the cGPS array will periodically measure the tectonic and/or 
meteorological data which will be stored locally. A collection of these observed GPS data 
will then be sent to a data server through a dedicated satellite link from each station either 
in real-time or at update intervals ranging from hours to months. At the server, the collected 
data from the GPS stations will be processed by using closely correlated data from each 
station to reduce errors in the location measurements. Since the amount of data transmitted 
from each station could be relatively large, the communication bandwidth and the number 
of uplinks are the most important factors in terms of operational expenditure. Each satellite 
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link requires costly subscription and data transmission across these links are usually 
charged based on the connection time or the amount of data transmitted/received. 
Therefore, in order to reduce the operational cost of a cGPS array, it is paramount that the 
number of satellite links as well as the data sent on these links be kept to a minimum. The 
rest of this chapter is organized as follows. Commonly used data formats for GPS processing 
is introduced in section 2. Introduction of cGPS arrays including SuGAr are presented in 
section 3. Proposed modifications of SuGAr network and parallel GPS processing which 
make use of mesh network are evaluated in section 4. Lastly, the chapter will end with a 
brief conclusion. 

2. Common data formats used for cGPS systems 

Scientific-grade GPS receivers store their measured signals in binary format that prolong 
logging time of those devices. Some of the most commonly used property binary formats for 
GPS receivers are R00/T00/T01/T02 and B-file/E-file used by Trimble and Ashtech 
receivers respectively. Another widely adopted binary format proposed by UNAVCO is the 
“BINary EXchange” (BINEX) format, which is used for research purposes. It has been 
designed to encapsulate most of the information currently acceptable for GPS data. Binary 
files were converted to text file for easy handling and processing. For GPS data storage and 
transmission, the most generally used GPS exchange data type is the RINEX format 
(Gurtner & Mader, 1990). It contains processed data collected by the GPS stations. This 
format defined four file types for observation data, navigation message, meteorological 
message and GLONASS navigation message. As correlation exists between the consecutive 
GPS measurement data, CRINEX (Hatanaka, 1996), a compressed RINEX format, proposed 
based on the idea that observation information between each measurement was related and 
changed at a small pace. The use of CRINEX reduces the storage space and transmission 
bandwidth requirements as only the difference between the current observation data and 
the first occurrence of it is stored. 

3. Sumatran cGPS array - introduction and configuration 

Many cGPS arrays were deployed to monitor some of the active tectonic plates around the 
world. Each of these cGPS arrays contains tens to hundreds of GPS stations, spanning from 
hundreds to thousands kilometers and varying methods are used for monitoring and 
harvesting the data from those stations. In this section, some of those arrays are described. 
The GPS Observation Network system (GEONET) (Yamagiwa et al., 2006) is one of the most 
dense cGPS network comprising of over 1200 GPS stations nationwide. It was used to 
support real-time crustal deformation monitoring and location-based services. GEONET 
provides real-time 1Hz data through a dedicated IP-VPN (Internet Protocol Virtual Private 
Network). 
The Southern California Integrated GPS Network (SCIGN) (Hudnut et al., 2001) contain 
more than 250 stations covering most of southern California which provide near real-time 
GPS data. SCIGN is used for fault interaction and post-seismic deformation in the eastern 
California shear zone. 
The New Zealand GeoNet (Patterson et al., 2007) is a nation-wide network of broadband 
and strong ground motion seismometers complimented by regional short period 
seismometers and cGPS stations, volcano-chemical analyzers and remote monitoring 

www.intechopen.com



Usage of Mesh Networking in a Continuous-Global Positioning System Array for Tectonic Monitoring   

 

417 

capabilities. It comprises of more than 150 cGPS stations across New Zealand. All seismic 
and GPS data are transmitted continuously to two data centers using radio, land-based or 
VSAT systems employing Internet Protocol data transfer techniques. 
The Sumatran continuous-Global Positioning System Array (SuGAr) is located along 
Sumatra, Indonesia. As at the end of 2009, it consists of 32 operational GPS stations 
spanning 1400 km from north to south of Sumatra (Fig. 1). Stations are located either in 
remote islands or in rural areas near the tectonic place boundary which is one of the most 
active plates in the world. Due to the lack of local data communication network 
infrastructure, satellite telemetry is the only means of communicating with the GPS stations. 
All of the stations are equipped with a scientific-grade GPS receiver, a GPS antenna, a 
satellite modem, solar panels and batteries.  
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Fig. 1. Geographical distribution of the SuGAr stations 
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4. Utilisation of mesh networking 

Mesh networking is proposed in this chapter to reduce the number of satellite links and 
bandwidth requirement for transmission of GPS data. To analyze the optimization achieved 
by the use of mesh networking on the SuGAr network, evaluation was performed using the 
archived SuGAr observation data from the last two months (61 days) of 2007. Only 24 
stations were taken into account in this case study, as only 24 GPS stations were able to 
provide the complete GPS dataset for this entire period. This experiment data set can be 
accessed from the SOPAC website (http://sopac.ucsd.edu/). 
Several assumptions were made for the evaluations presented in this study as follows: 

• All GPS stations have enough energy to deal with the overheads cause by the additional 
communication equipments and data computation required. This assumption can be 
satisfied by adding more batteries and solar panels to the existing nodes. 

• To simplify the analysis, the terrain information between the GPS stations was not 
taken into consideration in this analysis. In practice, construction of tall antenna towers 
as well as the use of multi-hop relays/repeaters can be used to overcome obstructions if 
required. 

• The transmission overheads for the long range radios, such as packet formatting and 
control protocols, were not included in the evaluation as they will not have an impact 
on the analysis presented in this study. 

The two main performance attributes of interest in this study are the reduction of the 
number of satellite links as well as the total amount of data transmitted via these links. 

4.1 Removal of co-related data and reduction of uplink requirements 

Mesh networking and clustering can be used to reduce the number of satellite links required 
for data telemetry between the GPS stations and the remote server. Wireless mesh networks 
can be established using long-range radios such as those developed by companies like 
FreeWave or Intuicom. These radios provide a point-to-point line-of-sight (LoS) wireless 
communication link with a maximum range of more than 96 kilometres (60 miles) and a 
maximum over-the-air throughput of 154 Kbps. For communication links over a longer 
distance, multi-hop communications can be utilized by deploying relay stations. The use of 
relay stations may also overcome LoS obstructions between GPS stations as well as provide 
for extended mesh networking capabilities such as redundancy. Depending on the cost, 
geographical, power or latency considerations, the number of hops and the radio range 
supported may be limited. In this case, clusters of GPS stations will be formed and a cluster-
head would be selected for each cluster. Each cluster-head will have satellite communication 
capabilities and will be responsible for collecting all the observation data from the GPS 
stations within the cluster and transmitting them to the remote centralized data server. This 
greatly reduces the number of satellite links needed, as each cluster requires a minimum of 
only one satellite link. The various possible mesh network setups using the current 
geographical locations of the GPS station in the SuGAr array will also be presented. 
In this study, each GPS station can be equipped with one or more long-range radios such as 
the FreeWave FGR-115RE. These radios specify a maximum range of over 90 km and can be 
used to form peer-to-peer wireless mesh networks between GPS stations. Assuming the 
maximum range of 90 km, the absence of relay stations or repeaters and the geographical 
locations of the 24 GPS stations, Fig.2 shows the network topology of GPS stations that will 
be formed using the FreeWave radios. It will contain one cluster with eight nodes, one 
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cluster with three nodes, two clusters with two nodes, and nine clusters with one node. 
Assuming that only one satellite uplink is required for each cluster, 13 satellite links will 
have to be maintained. 
 

 

Fig. 2. Clusters of GPS station using 90 kilometer radio range 

The range of the radio can be extended through the use of relay stations or repeaters. Thus, 
using the geographical locations of the 24 GPS stations, the minimum number of uplinks 
required and cluster size across various radio ranges can be determined. Fig. 3 shows the 
number of uplinks required for the various ranges. From the figure, it can be seen that given 
a maximum radio range of 20 km, only two GPS stations can be linked together and all other 
GPS stations were out of range from each other. Therefore, 23 satellite uplinks were required 
in this case. However, given a maximum radio range of 250 km, all GPS stations were 
grouped into one cluster using only one uplink.  
 

 

Fig. 3. Number of satellite uplinks required across various radio ranges 
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Fig. 4 provides the graph showing the average and the maximum number of GPS stations in 
a cluster across a radio range from 10 km to 250 km. As the number of GPS stations in a 
cluster increases, the data aggregated at the cluster-head will also increase in size. This will 
lead to better compression ratio at the cluster-heads and this phenomenal will be presented 
in more detail in the later part of this secion.  
 

 

Fig. 4. Cluster sizes characteristics based on the various radio ranges 

4.2 Collaborative compression of data 

Cluster-based compression at the cluster-heads will be introduced where each cluster-head 
will compress the observation data from all GPS stations within the cluster using the LZMA 
(Ziv & Lempel, 1977) algorithm prior to transmission via the satellite link. Compared to the 
existing SuGAr deployment where each GPS station transmits the observation data 
independently, the use of mesh networking allows larger datasets to be formed through the 
aggregation of observation data from each GPS station within the cluster. Given that the 
compression ratio generally increases in proportion to the size of the dataset to be 
compressed, the number of bytes transmitted via the satellite will be significantly reduced.   
Currently, the SuGAr sends collected data daily through dedicated satellite links from each 
GPS station. For this analysis, the GPS measurements will be converted locally to CRINEX 
format at each GPS station. Fig. 5 shows the total number of data bytes transmitted via all 
the satellite links using three different setups as follows: 

• Setup 1: For the first setup, CRINEX data was uploaded via dedicated satellite links 
from each GPS stations without further compression. 

• Setup 2: For the second setup, the CRINEX data was compressed using the LZMA 
algorithm prior to transmitting via dedicated satellite links at each GPS station.  

• Setup 3: For the third and final setup, clusters of GPS stations were formed using long 
range radios with various maximum transmission ranges. In each cluster, one GPS 
station will be designated as the cluster-head and all other stations will forward their 
CRINEX data to the cluster-head. The cluster-head will perform further compression 
using LZMA algorithm on the aggregated data as a whole prior to transmitting the 
compressed data to the data server via a satellite link.  

From Fig. 5, it can be seen that for Setup 2, the total number of bytes transmitted via all the 
satellite links over a 61 days period were reduced by about 67% when compared to Setup 1. 
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This demonstrates the effectiveness of the LZMA compression algorithm. Further reduction 
was demonstrated by the use of the cluster-based approach in Setup 3. In this setup, as a 
larger dataset was compressed, the compression ratios achieved by the LZMA algorithm at 
the cluster-head were more significant than in the case where compression was performed 
at individual GPS stations separately. Thus, this method reduced the total number of bytes 
transmitted by about 2% and 9% when compared to Setup 2 for a maximum radio range of 
90 km and 250 km respectively. 
 

 

Fig. 5. Total size of transmitted data based on daily updates across two months (61 days) for 
various radio ranges 

The analysis performed in Fig. 5 was based on daily updates from the GPS stations. 
However, more frequent updates might be useful for early warning systems and near real-
time assessment of tectonic plate movements. Thus, further analysis was performed to 
evaluate the performance of the three setups across three different update intervals: daily, 
hourly and two minutely. Table 1 shows the comparison of Setup 1 (uncompressed data) 
and Setup 2 (un-clustered compressed data) with various update frequency. It can be seen 
from the results that as the update intervals get more regular, the performance of the LZMA 
algorithm suffers as smaller datasets were being compressed. For example, when daily 
updates were performed with the GPS station sampling once every 2 seconds, dataset 
consisting of a total of (24hrs * 60min * 60 sec /2) = 43200 measurements (epochs) was 
compressed whereas in the case where hourly updates were performed, each dataset consist 
of only (60 min * 60 sec /2) = 1800 measurements (epochs).  However, from the results, it can 
be seen that even when updates were performed every two minutes, the use of the LZMA 
compression in Setup 2 still enables less data to be transmitted via the satellite when 
compared to Setup 1. 
 

Total Transmitted Data 
Update Frequency 

Uncompress Compress Percentagea 

Daily 325,099,037 byte 112,188,360 byte 35% 

Hourly 402,298,012 byte 158,994,711 byte 40% 

2Minutely 2,245,193,111 byte 979,810,017 byte 44% 
a. Percentage of compress data when compare with uncompress data 

Table 1. Compare Uncompressed and Compressed Data 
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Fig. 6 shows the total transmitted data size in Setup 3 as a percentage to the total transmitted 
data size in Setup 2 across various radio ranges. From the results, it can be seen that the use 
of long range radios to form mesh networks and clusters in Setup 3 significantly reduces the 
amount of data to be transferred via the satellite links when compared to Setup 2. This 
reduction is more significant when the update frequency increases. This is due to the use of 
data aggregation within the cluster to enable larger datasets to be compressed. For example, 
when a maximum radio range of 250 km is used, data from all 24 GPS stations will 
aggregated prior to compressing using the LZMA algorithm. Assuming hourly update 
intervals, each dataset consisting of ((60min * 60 sec /2) * 24 nodes) = 43200 measurements 
(epochs) was compressed in Setup 3 as compared to the 1800 measurements in Setup 2. 
Because of this, Setup 3 managed to reduce the total data transmission across the 61 days by 
about 70% when compared to Setup 2.  
 

 

Fig. 6. Compare the improvement between compress observation data and use of clusters 
over different update intervals and radio range. 
 

Total Transmitted Data 
Update Frequency 

Uncompress Compress Percentageb 

Daily 322,554,780 byte 111,317,030 byte 35% 

Hourly 341,813,991 byte 137,613,065 byte 40% 

2 Minutely 710,381,007 byte 417,818,057 byte 59% 
b. Percentage of compress data when compare with uncompress data without header 

Table 2. Compare Uncompress and Compress Data without Header 

To further reduce the size of the transmitted data, the observation headers sent with every 
update from the GPS stations were removed whenever possible. This significantly reduced 
the size of the uncompressed data in Setup 1 as shown in Table 2. Moderate reductions in 
Setup 2 were also observed when the observation headers were removed. 
To conclude the evaluations, the use of Setup 3 (the use of wireless mesh networks) without 
observation headers was compared to Setup 2 (use of dedicated satellite links). The result of 
this comparison is shown in Fig. 7. From the figure, it can be seen that the use of mesh 
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networking, cluster-based compression and removal of the observation header significantly 
reduces the amount of data transmitted via the satellite links. 
 

 

Fig. 7. Compare the improvement between compress observation data (with header) and use 
of cluster-based compression (without headers) over different update intervals and radio 
range. 

4.3 Parallel and distributed in-situ processing for GPS corrections 

In-situ parallel and distributed processing of GPS corrections can be made possible using 
mesh networking. The observation data from adjacent GPS stations can be grouped together 
and processed in a hierarchy fashion. Compared to the conventional method of sequential 
processing, the computational complexity and computation time of parallel and distributed 
GPS processing with various schemes decreases significantly. By sharing data within the 
mesh network, it is possible for in-network processing to be performed for GPS corrections 
using the embedded processing capability at each GPS station. This allows early-warning 
applications to be developed without the need for costly data transmission to a remote 
centralised server. The remaining of this section is organized as follow. Firstly, GPS 
measurement and parameters estimation process is briefly presented. Secondly, the 
computational complexity of parallel processing is evaluated using one layer and multiple 
layers approach. Finally, two empirical studies with various settings are studied. 
Assuming that all receivers can receive signals from both frequencies L1 and L2, the 
ionosphere-free linear combination can be calculated. The distance between satellites and 
receivers are given by carrier phase and pseudo-range measurements. In phase 
measurement, at time t, the distance between receiver r and the satellite x models is derived 
as  

 ( )rxt rxt rxt rt rxt rxt rt xt rxtL b z m C c vρ θ ω= + + + + + +  (1) 

and the pseudo-range measurement is derived as 

 ( )rxt rxt rt rxt rt xt rxtP z m C cρ θ η= + + + +  (2) 
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in which, ρrxt is the true range, brxt is the phase bias or ambiguity, zrt is the zenith 

troposphere delay, m(θrxt) is the map function of elevation angle between transmitter and 
receiver. Receiver and transmitter correction are Crt and cxt respectively. The noise of the 

measurement is represented by vrxt for phase and ηrxt for pseudo-range measurement.  
Data is considered from R receiver and X transmitters spanning across Δ time with the data 
collection frequency σ. The median probability that a satellite signal is detected by a receiver 

above an elevation cutoff is given by Ω/4π (≈ 0.25 for a 15° cutoff). Thus, the number of 
measurement is given by  

 m = RX ( /4 ) ( / ) dπ δΩ Δ  (3) 

in which d is the number of data types, typically including two types; ionosphere-free phase 
and pseudo-range. The number of parameters from those receivers and transmitters will be 
estimated and consist of receivers, transmitters and polar motion parameters. It is given by  

 n = aR + bX + c  (4) 

The parameters related to the receiver include three Cartesian coordinates, tropospheric 
delay, receiver clock bias and phase bias parameter for each transmitter in the view of that 
receiver, so a = 5 + X. The transmitter parameters include epoch state position, velocity, two 
solar radiation parameters, Y bias parameter and clock bias, b = 10. Polar motion and rates 
are estimated in one day time given by c = 5. 
The computation complexities of the parameter evaluation process using least square 
estimate method of n parameters with m measurement requires the number of arithmetic 
operations B in equation (5). This is also known as the computation burden. The detail 
analysis was presented in Zumberge, et al (1997). 

 2B  n m∝  (5) 

One approach to reduce the computation complexity is to divide the data into groups and 
layers, which could then be processed in a parallel fashion. In addition, it makes use of 
common parameters and receivers between groups in the same layer. The detail of this 
processing approach will be presented in the next sub-sections. 

4.3.1 Parallel GPS processing 

In this part, parallel parameters estimation is studied with the objective of reducing the 
computation complexity and processing time when compared to the centralize processing 
method that is mentioned previously. It deals with estimating n unknown parameters of m 
measurements from R receivers and X transmitters. Moreover, receivers are divided into 
groups based on some criteria such as antenna type (Miyazaki, 1999), geography (Serpelloni 
et al., 2006), and/or the availability of data. Groups may share some common reference 
stations/receivers. One layer and multilayer parallel processing approach will be presented 
in the remaining of this section. All used notations are listed at the end of this chapter. 
a. One layer parallelism 
In one layer method, receivers are divided into J computation groups (Fig. 8) instead of 
estimating all parameters within one group. Suppose that the number of common 
parameters between all groups is κn and the remaining parameters equally divided for each 
group is (1-κ)n/J. In addition, the number of common reference receivers between all  
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Fig. 8. One level parallel processing 

groups is ζR. For simplicity, suppose the number of common measurement proportional to 

ζ is given by ζm and the remaining measurements are equally divided between groups, (1-

ζ)m/J, for each group. The number of parameters and measurements at level zero for each 
group is thus derived as 

 
( ) ( )

0, 0,

1 -  1 -  
  i i

n m
n n and m m

J J

κ ζ
κ ζ= + = +  (6) 

Arithmetic operations required are proportional to 2
0, 0,i in m  , thus from equation (5) 

 

2

0,

(1 ( 1) ) (1 ( 1) )
B   i

J n J m

J J

κ ζ⎛ ⎞+ − + −
∝ ⎜ ⎟

⎝ ⎠
 (7) 

in which B0,i is the number of arithmetic operations required at any group i (1≤i≤J) at level 
zero. There are J groups in this level with the same number of arithmetic operations so the 
total number of operations is equal to J multiplied by the number of operation of one 
representative group B0,1. Hence, the total number of arithmetic operations at level zero is 
equal to 

 0 0, 0,1
1

    
J

i
i

B B J B
=

= = ∗∑  (8) 

Finally, the parameter estimation processing at level 1 is the refinement of J group at level 
zero. It includes n parameters and the number of measurement equaling to the total number 
of estimated parameter of J groups at level zero. Using equation (5), the computation burden 
is derived as 

 ( )( )2 2
1 0,

1

  1 1
J

i
i

B n n n J nκ
=

∝ = + −∑  (9) 

Thus, the total number of operations B is equal to the sum of all computation burdens at 
level zero and level one as follows,  

 2
0 1 2

(1 ( - 1) )(1 ( 1) )
(1 ( - 1) )( )

J J m
B B B n J n

J

κ ζκ + + −
= + ∝ + +  (10) 
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The computation reduction percentage χ is equal to number of operations divide by the 
number of operation n2m required for simultaneous parameter evaluation.  

 
2 2

(1 ( - 1) )(1 ( 1) )
 (1 ( - 1) )( )

B J J n
J

mn m J

κ ζχ κ + + −
= ∝ + +  (11) 

The value of χ approaches unity when ζ and κ approaches 1 assuming n/m is small. 
Therefore, if all the parameters and receivers are common between groups, parallel 
processing is ineffective.  
This method is applied for the Sumatra continuous GPS (cGPS) array (Tran & Wong, 2009) 
and the results are evaluated for two different configurations using the parameters X = 24, 

Ω/4π = 0.25, Δ = 24h, σ = 2 min, d = 2, a = 29, b = 10, c = 5. For the first configuration, the 
number of receivers R equal to 40 which include 32 GPS stations of Sumatra cGPS array and 
8 International GNSS Service (IGS) reference stations. In the second configuration, only 32 
Sumatra cGPS stations were used without reference stations.  

In the first configuration, we have ζ equal to the number of reference stations divide by the 

total number of stations, thus, ζ=8/40=0.2. The number of common parameters equal to the 
sum of the parameters of the common reference stations, the transmitter parameters and the 

polar motion. This can be calculated using equation (12), so κ ≈ 0.34.  

 n a R bX cκ ζ= + +  (12) 

In the second configuration, the number of common reference stations, ζ, is equal to zero 

and so, using equation (12), κ ≈ 0.17. 
The computation reduction with respect to the different groups is presented in Fig. 9. In the 
case where reference stations were utilized, the maximum reduction reached 57% when 
receivers were divided into 5 groups. It decreases when the number of group increased due 
to the overheads of the reference station when using more groups. In the case where no 
reference stations were used, the maximum reduction reaches 91.6% when receivers where 
divided into 16 groups with 2 receivers per groups. 
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Fig. 9. Computation reduction for the Sumatra cGPS array using one level parallel processing 
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b. Multilayer parallelism 
For generalization, the multilayer parallel is studied with L layer and each layer includes 
power of p groups. It denotes that there are p power of L groups at level zero and each 
group at level j (1≤j≤L) receives data from p groups at the adjacent predecessor level j-1. For 
instance, p equals to two in Fig. 10. 
 

Group 1 Group 2
Group 

2^L-1

Group 

2^L
Group 3 Group 4Level 0

Level 1

Level 2

Level L

 

Fig. 10. Multilayer parallel processing with L layer with power of 2 groups. The processing 
tree will contain 2^L groups at level 0 and each group at level j (0<j≤L) is the combination of 
2 node at level j – 1. 

With the same assumption of common parameters and measurements with the one layer 
parallel method mentioned previously, the number of parameters is equal to the sum of the 
common parameters and private parameters of each group of receivers and number of 
measurements are equal to sum of the common measurements from common receivers and 
private measurements from the private receivers. 

 0, 0,

(1 -  ) (1 -  )
        i iL L

n m
n n and m m

p p

κ ζκ ζ= + = +  (13) 

Therefore, the number of arithmetic operations of group i at level zero is  

 2 2
0, 0, 0,

(1 ) (1 )
= ( ) ( )i i i L L

n m
B n m n m

p p

κ ζκ ζ− −
∝ + +  (14) 

So, the total computation burden for level zero which include Lp  group equals to 

 0 0,
1

 = 

Lp

i
i

B B
=
∑  (15) 
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Furthermore, the computation burden for each group i at level j (1≤ j ≤L) is proportional 

to 2
, ,j i j in m , in which the number of parameter nj,i is equal to the sum of common parameters 

κn and the private parameters of p ancestor group at level j–1, each of which comprise 

of ( )1(1 -  ) /j Ln p pκ −∗  private parameters. Therefore, 

 ,

(1 -  )
    j

j i L

n
n n p

p

κκ= +  (16) 

In addition, the number of measurements at level j is equal to the summation of all 
estimated parameters of p ancestor at level j–1,  

 1
,

(1 -  ) (1 -  )
  p(   ) p   j i

j i L L

n n
m n p n p

p p

κ κκ κ−= + = +  (17) 

Therefore, the computation burden of each group i at level j equals to  

 2
,

(1 -  ) (1 -  )
 (   ) (   )j j

j i L L

n n
B n p p n p

p p

κ κκ κ∝ + +  (18) 

The total computation burden for level j which include L jp −  groups is then derived as  
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,
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j j L j

j j i L L
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= ∝ + +∑  (19) 

The total computation burden of multiple parallel processing is equal to summation of 

computation of all level from level 0 to L as follows: 
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c. Computation time 
Assuming that the computation time is the dominant latency between processing groups at 

adjacent layer, the processing time of parallel GPS processing, in the worst case, is 

calculated by the summation of the maximum computation time at each layer at the critical 

computation path. The critical path for one layer and multilayer parallel processes is given 

in Fig. 11 and Fig. 12 respectively. 

The computation time C is equal to number of arithmetic operation multiply by c, the 

computation time for each arithmetic operation. The equation for one layer and multilayer 

are therefore derived as follow: 

 ( )( )
2

2 (1 ( 1) ) (1 ( 1) )
1 1 *onelayer

J n J m
C n J n c

J J

κ ζκ
⎛ ⎞⎛ ⎞+ − + −⎜ ⎟= + − + ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (21) 
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.  

Fig. 11. One layer critical path 
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Fig. 12. Multilayer critical path 

4.3.2 Empirical study 
To compare the reduction in computation burden and computation time of one layer and 
multilayer parallel parameter estimation for GPS processing, two experimental setups were 
studied as following.  
Experiment set 1: for the network parameter estimation, reference receivers were not 
included. This experiment compares the number of processing groups, computation 
reduction and computation time between three system settings with different number of 
GPS receivers. Three system settings are 
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• One layer, 

• Multilayer with power of 2, 

• Multilayer with power of 3 
The results of experiment set 1 is shown from Fig. 13 to Fig. 15. From the results, it can be 
seen that when the number of receivers is equal to 16 or 48, the number of computation 
process for multilayer with power of 3 is smaller than other two settings. As a result, the 
computer reduction is lower than other settings and the computation burden is larger than 
multilayer with power of 2. With other number of receivers bigger than 48, the computation 
reduction is almost analogous for all settings. Parallel GPS processing significantly reduces 
the computation complexity, especially when the number of receivers is bigger than 32. 
Furthermore, multilayer processing drastically reduces the computation time by about 50% 
when compared with the one layer approach. In most of cases, the number of computation  
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Fig. 13. Compare the number of computation processing groups with respect to number of 
receiver 
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Fig. 14. Compare the computation reduction with respect to number of receivers 
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Fig. 15. Computation time comparison. The computation time is product of c, the 
computation time for one arithmetic operation 

processes of multilevel methods is lower than one level method. As a result, multilevel is the 
best selection for in-network parameter estimation processing as demonstrated in this 
experiment. 
Experiment set 2: global parameter estimate with 8 reference receivers (all group will share 
the same 8 reference receivers) using the same three comparative setting with the first 
experiment: 

• One layer, 

• Multilayer with power of 2, 

• Multilayer with power of 3 
The experiment results are shown from Fig. 16 to Fig. 18 (reference receivers are not 
included in the number receivers in the x-axis of the graph).  
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Fig. 16. Compare the number of computation processing groups with respect to number of 
receivers 
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Fig. 17. Compare the computation reduction with respect to number of receivers 
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Fig. 18. Computation time comparison. The computation time is product of c, the 
computation time for one arithmetic operation 

From the results, it can be seen that when the number of receivers is equal to 32 or 96, the 
number of computation processes using the multilayer approach with a power setting of 3 is 
smaller when compared to the other settings. The computation reduction is also larger than 
the other settings in the case of 32 receivers and larger than multilayer with a power of 2 in 
the case of 96 receivers. Thus, it can be seen that parallel GPS processing significantly 
reduces the computation complexity, especially when the number of receivers is bigger than 
32 and steadily increases when the number of receivers increases. Furthermore, the 
multilayer processing approach slightly decreases the computation time, as in most of the 
cases, the number of computational operations performed by the multilevel methods is 
lower than the one level method.  
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5. Conclusion 

A study using mesh networking for tectonic monitoring was presented. Mesh networks can 
be established between the GPS stations by means of long-range radios and data 
aggregation was performed to enable cluster-based compression. Using the actual data 
captured from the Sumatran cGPS array (SuGAr) in the evaluation and analysis, it was 
concluded that the proposed use of mesh networking not only reduces the number of costly 
satellite uplinks required, it also significantly reduces the total amount of data transferred 
through these links. Moreover, by making use of mesh networks between the GPS stations, 
parallel, distributed and hierarchical GPS processing methods can be made possible. By 
reducing the computation complexity, this proposed computational model allows the 
possible use of the spare computational power within the cGPS network such as from the 
routers and station controllers using the wireless mesh network connections between 
stations to transmit GPS data and perform collaborative GPS processing in a real-time 
fashion. 
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Notations 

R number of receiver (GPS station) 
X number of transmitter (satellite) 
n total number of parameter have to estimate 
m total number of measurement 
κ share parameters percentage between groups 

ζ share measurement percentage between groups 
B computation burden  
J number of computation group 
L number of processing level 
p in multiple level processing method, group at level i receive data from  
 p group at level i-1 
nj,i number of parameter at level j and group i have to estimate 
mj,i number of measurement at level j and group i 
Bj,i computation burden at group i of level j 
Bj total computation burden at level j 
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